首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study has been made of the maximum sustained swimming speed of Crucian carp Carassius carassius (L.) using a fixed velocity technique. The data obtained from swimming tests on 214 carp have been analysed using the method of probit analysis. The 50% fatigue level for 13–16 cm fish acclimated to 9.5±0.6°C has been estimated to be 3.35 lengths/sec. Biochemical measurements have been made on the red and white myotomal muscles and liver of fish subjected to both varying intensities of sustained swimming and short periods of vigorous swimming. Free creatine was found to increase only during high speed swimming in the white muscle. Elevated lactate concentrations occurred at both low and high sustained swimming speeds in the red superficial muscle but not during short periods of strenuous exercise. Glycogen depletion from the red musculature also only took place at the sustained swimming speeds investigated. The reverse situation was operative in the white muscle, significant glycogen depletion occurring only at the highest swimming speed studied. Lactate levels were only significantly different from non-exercised fish in the fish swimming at the higher velocities. The effects of periods of recovery following 200 min of sustained swimming were also investigated. White muscle lactate was at a higher level than non-exercise fish 5 h post-exercise, while both red muscle glycogen and lactate rapidly returned to pre-exercise concentrations. Biochemical measurements on the myotomal muscle types have been discussed in relation to the swimming performance of the fish and the division of labour between red and white fibres.  相似文献   

2.
Rowlerson  A. M.  Silva  P.  Rocha  E.  Olmedo  M.  & Valente  L. M. P. 《Journal of fish biology》2004,65(S1):334-334
We studied muscle ontogeny and fibre type characteristics in the blackspot seabream, a new species for commercial aquaculture. Myosin ATPase and SDH histochemistry and immunohistochemistry were tested at different ontogenetic stages, using a panel of antibodies to myosin isoforms and parvalbumin. In general, deep white muscle was parvalbumin‐positive, and superficial 'red' muscle was parvalbumin‐negative at all ages examined. At 6 days of age (transition from endogenous to exogenous feeding) three layers of muscle fibres were observed with different antimyosin reactivities: superficial monolayer, presumptive slow red (present only as a small group of fibres adjacent to the lateral line nerve), and presumptive fast‐white (forming the bulk of the muscle). The superficial monolayer and presumptive slow fibres were positive for SDH. At 60 days of age (transition from live to artificial feeding) an additional fibre type was identified: a typical 'pink' or intermediate layer. In juveniles, the axial muscle consisted mainly of fast white fibres covered by a slow‐red layer and between them a pink layer. Surprisingly, the red layer could be resolved into two distinct types by myosin immunostaining. Red fibres were also present along the horizontal septum, near the notochord. Both red and white muscle layers showed a mosaic appearance, which was confirmed by ATPase reaction. The work was financed by British Council, CRUP, and FCT (PhD Grant SFRH‐BD‐14068–2003).  相似文献   

3.
Summary The metabolic and structural differentiation of locomotory muscles of Notothenia rossii has been investigated. In this species sustained locomotion is achieved by sculling with enlarged pectoral fins (labriform locomotion), whilst the segmental myotomal muscle is reserved for burst activity. Red, white and subepidermal fibres can be distinguished in the trunk by histochemical and ultrastructural criteria. The main pectoral muscle (m. adductor profundus) consists entirely of red fibres. These three main fibres types show differences in histochemical staining profiles, capillarization, myofibril shape and packing, and lipid and mitochondrial content. The fractional volume of mitochondria amounts to 38% for pectoral, 30% for red myotomal and 1.9% for white myotomal fibres. Enzyme activities of red pectoral muscle are consistent with a higher potential for aerobic glucose and fatty acid oxidation than for the red myotomal fibres. Mg2+ Ca2+ -myofibrillar ATPase activities are similar for red pectoral and myotomal muscles and approximately half of those white fibres. Specialisations of N. rossii muscles associated with labriform swimming and locomotion at Antarctic temperatures are discussed.  相似文献   

4.
The fibres of superficial and deep abductor muscles of the pectoral fins of the stripped weakfish, Cynoscion guatucupa have been studied using histochemical techniques: succinic dehydrogenase (SDH) for mitochondria, periodic acid–Schiff (PAS) for glycogen, myosin‐adenosintriphosphatase (mATPase) to identify different fibre types based on the contraction speed and modified ATPase to identify capillaries. The fibre diameters were measured, and the capillaries of the main fibre types – red, pink and white— were counted. The two muscles showed both macroscopically and microscopically two well‐differentiated zones with predominant white fibres. The area of insertion of muscles into the fin rays had red, pink and white fibres. The origin zone of the muscle into the bone was composed by white fibres only. Both zones of white muscle evidenced a mosaic of small, medium and large polygonal white fibres. Red, pink and white muscles showed a wide histochemical diversity of fibre subtypes. The area per peripheral capillary increased from the red to the white muscles. Due to the predominance of white fibres, the pectoral fins of C. guatucupa were mainly involved in rapid movements to stop/discontinue and stabilize the body during swimming.  相似文献   

5.
Animals perform a vast array of motor activities. Although it has generally been accepted that muscles are well suited to the function that they must perform, specialization for performing one function may compromise their ability for carrying out another. We examined this principle in the toadfish muscular system: slow-twitch red and fast-twitch white myotomal muscles are used for powering swimming at relatively low frequencies, while the superfast swimbladder muscle powers mating calls by contracting at 100 Hz. We measured muscle power output over a wide range of frequencies. The red and white locomotory muscles could not generate power over ca. 2.2 and 12 Hz, respectively and, hence, could not power sound production. In contrast, the swimbladder muscle has many specializations that permit it to generate power at frequencies in excess of 100 Hz. However, these specializations drastically reduce its power output at low frequencies: the swimbladder muscle generated only one-twentieth of the power of the red muscle and one-seventh of the power of the white muscle at the frequencies used during swimming. To generate the same total power needed for swimming would require unfeasibly large amounts of swimbladder muscle that could not fit into the fish. Hence, the designs of the swimbladder and locomotory muscles are mutually exclusive.  相似文献   

6.
The mutagenic properties of the pyrethroid Fastac 10 EC were estimated using the micronucleus test in tadpoles of Rana temporaria and Xenopus laevis. The frequency of erythrocytes with micronuclei was examined in blood smears obtained from animals kept for 14 days in water containing 3 different concentrations of Fastac 10 EC. The study was accompanied by a positive control using the known mutagens cyclophosphamide and N-methyl-N-nitrosourea. The results obtained showed that at high concentrations Fastac 10 EC has a clastogenic activity and/or damages the mitotic spindle, as manifested by a significant increase in the frequency of the micronucleated red blood cells. It was also demonstrated that tadpoles of Rana temporaria are more sensitive to the mutagenic effect of the pyrethroid than are those of Xenopus laevis.  相似文献   

7.
A histochemical study of the myotomal muscles in the grass pickerel, Esox americanus vermiculatus , and the muskellunge, E. masquinongy , was performed using actomyosin ATPase and NADH diaphorase activities. Three fibre types, i.e., red, white and pink were distinguished on the basis of their enzyme activities. White muscle fibres comprised the bulk of the myotomal musculature. The relative proportion of red muscle fibres was greater in the caudal region than in more anterior regions of the body. Pink fibres formed only a few layers between red and white. These findings are discussed in relation to the possible functional significance of the muscle fibre types in swimming and feeding behaviour in these species.  相似文献   

8.
Using cytochrome C-oxidase staining, different types of somatic musculature were clearly distinguished in the gymnotoid fish Eigenmannia virescens. Except for a few thin fibres in the region of the horizontal septum, which stained faintly, no others in the trunk muscle stained. Strong staining appeared in the fibres of the anal fin muscles. According to the classification of fish musculature into white, intermediate and red, only the locomotory organ of this fish has red fibres, whereas the trunk muscles are white. The red muscles along the horizontal septum, found in all other fish which have been investigated in this respect, seem to be absent. This is noteworthy since the anal fin alone provides locomotion while the trunk muscles are responsible for posture only.  相似文献   

9.
To test the hypothesis that white muscle fibre portions of the myotomes are used at sustainable swimming speeds, skipjack tuna, Katsuwonus pelamis , were forced to swim against various current velocities in a water tunnel while electrical activity of the red and white muscle fibres was simultaneously recorded. Eight fish were tested, five fish graded white muscle fibres into activity at swimming speeds above their minimum hydrostatic equilibrium speed, but well below the estimated maximum sustainable swimming speed of skipjack tuna. Three other fish showed white muscle fibre activity at minimum swimming speeds, a possibly abnormal condition.  相似文献   

10.
Summary The pink muscle of several Teleosts was examined immunohistochemically using antisera specific for the myosins of red and white muscle, and histochemically using various methods for demonstrating myosin ATPase (in ATPase) activity.In the catfish the pink muscle consists of 2 different layers of fibres. The superficial layer has a low mATPase activity after both acid and alkali pre-incubation, whereas the deeper layer has a high mATPase activity after acid and alkali pre-incubation, being more resistent to these conditions even than is the white muscle.In the trout the pink muscle is composed of fibres with the same mATPase activity as in the superficial pink muscle of the catfish, whereas in the rock goby, goldfish, mullet and guppy the pink muscle is like the deep pink layer of the catfish.Immunohistochemically the fibres of the pink muscle behave like the white muscle fibres except in the guppy and rock goby in which at the level of the lateral line there occurs a transition zone between red and pink fibres. The fibres of this region react with both anti-fast and (to a lesser extent) anti-slow myosin antisera, and have a mATPase activity which, going from the superficial to the deeper fibres, gradually loses the red muscle characteristics to acquire those of the main pink muscle layer.  相似文献   

11.
Rainbow trout were trained for 3–4 weeks in a flume at swimming speeds of 1, 2 and 3 l s−1. For each experiment growth rates were estimated and by measuring the hypertrophy of red and mosaic skeletal muscle fibres their function was described at particular swimming speeds and compared with earlier experiments on coalfish using the same technique.
Maximum growth, compared with controls in still water, occurred at swimming speeds of 1 l s−1. At this speed the trout mosaic muscle fibres hypertrophied by 40% but the red muscle fibres showed only a 25% hypertrophy. It is suggested that natural swimming speeds are close to 1Ls−l and the trout mosaic fibres are better adapted for use at this speed in comparison with coalfish white muscle fibres.  相似文献   

12.
The pink muscle of several Teleosts was examined immunohistochemically using antisera specific for the myosins of red and white muscle, and histochemically using various methods for demonstrating myosin ATPase (mATPase) activity. In the catfish the pink muscle consists of 2 different layers of fibres. The superficial layer has a low mATPase activity after both acid and alkali pre-incubation, whereas the deeper layer has a high mATPase activity after acid and alkali pre-incubation, being more resistent to these conditions even than is the white muscle. In the trout the pink muscle is composed of fibres with the same mATPase activity as in the superficial pink muscle of the catfish, whereas in the rock goby, goldfish, mullet and guppy the pink muscle is like the deep pink layer of the catfish. Immunohistochemically the fibres of the pink muscle behave like the white muscle fibres except in the guppy and rock goby in which at the level of the lateral line there occurs a transition zone between red and pink fibres. The fibres of this region react with both anti-fast and (to a lesser extent) anti-slow myosin antisera, and have a mATPase activity which, going from the superficial to the deeper fibres, gradually loses the red muscle characteristics to acquire those of the main pink muscle layer.  相似文献   

13.
Functional morphology including the origin, insertion, and innervation of the respiratory muscles in relation to buccal pressure pump and opercular suction pumps in a fresh-water bottom dwelling siluroid fish, Bagarius bagarius have been studied. Histochemical studies were made on the succinic dehydrogenase activity of adductor mandibulae, retractor tentaculi, levator operculi, dilatator operculi, adductor operculi, intermandibularis, interhyoideus, hyohyoideus superior and constrictor branchialis. The intensity of reaction reveals the presence of three types of muscle fibres in some of the respiratory muscles. The muscle containing red muscle fibres are mostly innervated by the branches of the VIIth cranial nerve. The retractor tentaculi consists of superficial white muscle fibres and the interior part is dominated by red muscle fibres. The muscles (adductor operculi, levator operculi, dilatator operculi, interhyoideus, hyohyoideus superior) concerned with the opercular suction pumps are of mixed type and consist of white and red muscle fibres, whereas adductor mandibulae and intermandibularis are made up entirely of white muscle fibres. The adductor muscle bundles of the constrictor branchialis, which are responsible for movement of gill filaments, are dominated by the red muscle fibres. The abductor part, however, is made up entirely of white muscle fibres.  相似文献   

14.
A qualitative histochemical study has been made of the myotomal muscles of five teleost fish (glass fish, Chanda ranga; carp, Carassius carassius; coalfish, Gadus virens; black mollie, Molliensia sp. and grey mullet, Mugil cephalus ) . Three or four main fibre types were distinguished in these species on the basis of the distribution and relative activities of glycogen, lipid, aglycerophosphate dehydrogenase, phosphorylase, and succinic dehydrogenase. The so-called red and white fibre types were found to have similar histochemical properties to previously investigated species. All the species studied, with the exception of the glass fish, Chanda ranga , were found to have one or two types of pink fibre situated between the red and white fibre regions. In the carp, coalfish and mullet, the pink fibres were found to be composed of small and large diameter fibres which were similar to red and white fibres respectively, except for their staining for succinic dehydrogenase. Considerable differences were found in the relative amounts of pink muscles between species. Minor fibre components were found in several species. These consisted of very small diameter fibres which did not stain well with any of the histochemical procedures used. It is suggested that these fibres represent areas of continuing muscle growth. The results obtained are discussed in relation to the division of labour between myotomal muscles during swimming.  相似文献   

15.
The distribution of capillaries in teleost and rat striated muscles was investigated using a number of different methods. A new method for directly viewing capillaries was developed. Teleost white muscle has a capillary: fibre (C:F) ratio of between 0.2 and 0.3; and 0.6 to 1.0 peripheral capillaries per muscle fibre. 26-49% of fibres had no peripheral capillaries. Values for the rat gastrocnemius were 1.2, 2.6 and 4.8% respectively which compares well with literature values. Flathead red muscle had a C:F ratio of between 1.9 and 2.5; and between 5.3 and 6.6 peripheral capillaries per muscle fibre depending on the method used. Values for rat soleus were 1.8 and 4.1 respectively. Teleost pink fibres had an intermediate number of capillaries. Rat striated muscle, particularly the gastrocnemius, was found to be heterogeneous with respect to the distribution of capillaries. Flathead red muscle was homogeneous whilst teleost white muscle was only slightly variable. Flathead red muscle fibres are well suppled with subsarcolemmal mitochondria. These show a clumped distribution corresponding to the position of capillaries. In contrast teleost white fibres are almost totally devoid of these and all other mitochondria. No differences were observed in the vascularisation of either muscle type along the length of the fish. The results are discussed in relation to the division of labour between fibre types during swimming.  相似文献   

16.
The histochemical pattern of red, pink and white muscle of fish living in fresh, brackish, and salt water is reported. The muscle fibres were stained routinely during the year for lactate dehydrogenase (LDH), menadione α-glycerophosphate dehydrogenase (Mα—GPDH), succinic dehydrogenase (SDH), myosin adenosine triphosphatase (myosin ATPase), phosphorylase, lipids and glycogen. The pink and red muscles contain more glycogen and lipids and have a higher SDH activity, which is in accord with their aerobic metabolism and function in sustained swimming activity. The acid labile myosin ATPase activity characteristic of fast twitch fibres is present in the white fibres of most species, however in the white muscle of Gobius paganellus the enzyme activity is stable to both acid and alkali and, in addition, there is a scattered distribution of different fibre types in red and, especially, pink muscle. A study of seasonal variation patterns of myosin ATPase in white muscle of mugilidae over a period of two years has demonstrated, in late summer, the appearance of new small diameter fibres, with a high acid stable enzyme activity, that develop into the large diameter acid labile fibres.  相似文献   

17.
Metabolic potential and muscle development were investigated relative to habitat and phylogeny in seven species of New Zealand triplefin fishes. Activity was measured in three principal glycolytic enzymes (lactate dehydrogenase, pyruvate kinase and phosphofructokinase) and two oxidative enzymes (citrate synthase and L3-hydroxyacyl CoA:NAD(+) oxidoreductase). The non-bicarbonate buffering capacity of caudal muscle was also estimated. Phylogenetic independent contrast analyses were used to reduce the effects of phylogenetic history in analyses. A positive relationship between metabolic potential and the effective water velocity at respective habitat depths was found only after the exclusion from analyses of the semi-pelagic species Obliquichthys maryannae. O. maryannae showed high glycolytic enzyme activities, and displayed double the activity of both oxidative enzymes relative to the six benthic species. Histochemically stained sections taken immediately posterior to the vent showed that adult O. maryannae and larval Forsterygion lapillum had significantly more red muscle, and smaller cross-sectional areas of white and red muscle fibres, than adults of benthic species. The distribution of red muscle in adult O. maryannae resembled that of larval F. lapillum, and differed from the typical teleost pattern seen in adults of the six benthic species. Both adult O. maryannae and larval F. lapillum have an expansive lateralis superficialis muscle, typical of larval fish, which encompasses much of the caudal trunk. Results suggest that anaerobic potential in New Zealand triplefins: (a) increases with the locomotory requirements of different habitats, and (b) displays a negative relationship with depth-dependent water velocities in benthic species. O. maryannae appears to have increased aerobic potential for sustained swimming by paedomorphic retention of larval muscle architecture.  相似文献   

18.
AMP-deaminase activity was measured in white muscle from a wide range of fish, including one cyclostome, 13 chondrosteans, and one teleost to elucidate the pattern of the AMP-deaminase activity in white muscle of fish. Compared to a mammalian (rat) muscle extract, low enzyme activities are found in the cyclostome and two elasmobranchs from two families (Scyliorhinidae, Hexanchidae). In contrast, higher AMP-deaminase activities, similar to mammals, are expressed in Squalidae, all families of skates, Chimaeridae and in the teleostean fish. We then compared AMP-deaminase activities in red and white muscles from two representative elasmobranch fish, the dogfish (Scyliorhinus canicula) and the thornback ray (Raja clavata). The fibre type composition and distribution of the locomotory musculature were determined in these two elasmobranchs to establish a relationship between the morphology, the type of fibres of the locomotion-implicated muscles and the AMP-deaminase activity. Experimental data are discussed with respect to the layout of fibres in the myotome. In both species, three fibre types were identified. In the two fish myotomes, most of the axial muscles are white fibres while red fibres constitute a thin sheet. Some differences were observed between the two species in the distribution of intermediate fibres: in dogfish, these are located between the red and white fibres; in thornback ray, some are dispersed within the white fibre region, while others form an intermediary layer like in dogfish. These results suggest that in the course of evolution, an amplification of the AMP-deaminase activity in muscle was coupled with increase of complexity of the muscular structure.  相似文献   

19.
Myoglobin content is found to be higher in skeletal than in cardiac muscle of Tursiops truncatus and Phocaena phocaena and much higher than that in skeletal muscles of terrestrial mammals. According to the myoglobin content muscle fibres are devided into five types: red, white and three intermediate types. Deep muscles contain more red fibres and less intermediate fibres than superficial ones. White fibres compose almost one half of all fibres of the superficial skeletal muscles of the dolphins. The role of myoglobin distribution and higher content in oxygen supply of muscular tissue is discussed in relation to the peculiarities of dolphin breathing and blood circulation.  相似文献   

20.
Both red and white muscle were removed from juvenile and adult Atlantic mackerel, Scomber scombrus L., for histochemical characterization of the muscle fibre types. Staining of white muscle for myosin ATPase, SDH, NADH diaphorase, GPDH and LDH revealed that these fibres are homogeneous. Red muscle was shown to be heterogeneous, of at least two fibre types recognizable on the basis of myosin ATPase staining with preincubation at a pH of 9·8. These two red types are dispersed throughout the red muscle and are present in both juveniles and adults. Red muscle is located both deep within the myotomes and as a superficial layer of muscle fibres. A third group of muscle fibres, intermediate in nature, was distinguished at the apex of the red muscle 'triangle,' between the epaxial and hypaxial muscle, using NADH diaphorase and myosin ATPase stains. This paper discusses the possibility that functionally different muscle fibres occur in the red swimming muscle of the Atlantic mackerel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号