首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although leaf size is one of the most responsive plant traits to environmental change, the functional benefits of large versus small leaves remain unclear. We hypothesized that modification of leaf size within species resulting from differences in irradiance can allow leaves to acclimate to different photosynthetic or evaporative conditions while maintaining an efficient balance between hydraulic supply (vein density) and evaporative demand. To test this, we compared the function and anatomy of leaf hydraulic systems in the leaves of a woody angiosperm (Toona ciliata M. Roem.) grown under high and low irradiance in controlled conditions. Our results confirm that in this species, differential leaf expansion regulates the density of veins and stomata such that leaf hydraulic conductance and stomatal conductance remain proportional. A broader sample of field-grown tree species suggested that differences in leaf venation and stomatal traits induced by sun and shade were not regulated by leaf size in all cases. Our results, however, suggest that leaf size plasticity can provide an efficient way for plants to acclimate hydraulic and stomatal conductances to the contrasting evaporative conditions of sun and shade.  相似文献   

2.
The variation in stomatal activity within the crowns ofAcer campestre, Carpinus betulus andQuercus cerris was measured by vapour exchange porometer on several summer days in an oak-hornbeam forest, in SW Slovakia, Czechoslovakia. Variation resulted from crown position in the forest stand and from leaf position within the canopy. The highest stomatal conductance was in sunlit sun leaves in the upper part of the canopy. Stomatal conductance decreased with increasing depth in the canopy. The steepest decrease was in the upper canopy, in the intermediate zone between fully sunlit and fully shaded leaves, and was caused by the decline in leaf irradiance and in stomatal density. In codominant trees, the conductance in shade leaves at the base of the crown was significantly lower than in the sun leaves at the top of the crown. In a dominant tree,Q. cerris, the differences in stomatal conductance were small and most frequently insignificant. Variation in incident light also determined the diurnal variation of stomatal conductance with respect to crown aspect. Differences between sun leaves on the east and west facing aspects of the overstory crown ofQ. cerris were demonstrated for several days.  相似文献   

3.
The acclimation responses of walnut leaf photosynthesis to the irradiance microclimate were investigated by characterizing the photosynthetic properties of the leaves sampled on young trees (Juglans nigraxregia) grown in simulated sun and shade environments, and within a mature walnut tree crown (Juglans regia) in the field. In the young trees, the CO(2) compensation point in the absence of mitochondrial respiration (Gamma*), which probes the CO(2) versus O(2) specificity of Rubisco, was not significantly different in sun and shade leaves. The maximal net assimilation rates and stomatal and mesophyll conductances to CO(2) transfer were markedly lower in shade than in sun leaves. Dark respiration rates were also lower in shade leaves. However, the percentage inhibition of respiration by light during photosynthesis was similar in both sun and shade leaves. The extent of the changes in photosynthetic capacity and mesophyll conductance between sun and shade leaves under simulated conditions was similar to that observed between sun and shade leaves collected within the mature tree crown. Moreover, mesophyll conductance was strongly correlated with maximal net assimilation and the relationships were not significantly different between the two experiments, despite marked differences in leaf anatomy. These results suggest that photosynthetic capacity is a valuable parameter for modelling within-canopies variations of mesophyll conductance due to leaf acclimation to light.  相似文献   

4.
The coordination of veins and stomata during leaf acclimation to sun and shade can be facilitated by differential epidermal cell expansion so large leaves with low vein and stomatal densities grow in shade, effectively balancing liquid‐ and vapour‐phase conductances. As the difference in vapour pressure between leaf and atmosphere (VPD) determines transpiration at any given stomatal density, we predict that plants grown under high VPD will modify the balance between veins and stomata to accommodate greater maximum transpiration. Thus, we examined the developmental responses of these traits to contrasting VPD in a woody angiosperm (Toona ciliata M. Roem.) and tested whether the relationship between them was altered. High VPD leaves were one‐third the size of low VPD leaves with only marginally greater vein and stomatal density. Transpirational homeostasis was thus maintained by reducing stomatal conductance. VPD acclimation changed leaf size by modifying cell number. Hence, plasticity in vein and stomatal density appears to be generated by plasticity in cell size rather than cell number. Thus, VPD affects cell number and leaf size without changing the relationship between liquid‐ and vapour‐phase conductances. This results in inefficient acclimation to VPD as stomata remain partially closed under high VPD.  相似文献   

5.
In order to parametrize a leaf submodel of a canopy level gas-exchange model, a series of photosynthesis and stomatal conductance measurements were made on leaves of white oak (Quercus alba L.) and red maple (Acer rubrum L.) in a mature deciduous forest near Oak Ridge, TN. Gas-exchange characteristics of sun leaves growing at the top of a 30 m canopy and of shade leaves growing at a depth of 3–4 m from the top of the canopy were determined. Measured rates of net photosynthesis at a leaf temperature of 30°C and saturating photosynthetic photon flux density, expressed on a leaf area basis, were significantly lower (P = 0.01; n = 8) in shade leaves (7.9μmol m?2 s?1) than in sun leaves (11–5μmol m?2 s?1). Specific leaf area increased significantly with depth in the canopy, and when photosynthesis rates were expressed on a dry mass basis, they were not significantly different for shade and sun leaves. The percentage leaf nitrogen did not vary significantly with height in the canopy; thus, rates expressed on a per unit nitrogen basis were also not significantly different in shade and sun leaves. A widely used model integrating photosynthesis and stomatal conductance was parametrized independently for sun and shade leaves, enabling us to model successfully diurnal variations in photosynthesis and evapotranspiration of both classes of leaves. Key photosynthesis model parameters were found to scale with leaf nitrogen levels. The leaf model parametrizations were then incorporated into a canopy-scale gas-exchange model that is discussed and tested in a companion paper (Baldocchi & Harley 1995, Plant, Cell and Environment 18, 1157–1173).  相似文献   

6.
Rhizophora mangle L., the predominant neotropical mangrove species, occupies a gradient from low intertidal swamp margins with high insolation, to shaded sites at highest high water. Across a light gradient, R. mangle shows properties of both “light-demanding” and “shade-tolerant” species, and defies designation according to existing successional paradigms for rain forest trees. The mode and magnitude of its adaptability to light also change through ontogeny as it grows into the canopy. We characterized and compared phenotypic flexibility of R. mangle seedlings, saplings, and tree modules across changing light environments, from the level of leaf anatomy and photosynthesis, through stem and whole-plant architecture. We also examined growth and mortality differences among sun and shade populations of seedlings over 3 yr. Sun and shade seedling populations diverged in terms of four of six leaf anatomy traits (relative thickness of tissue layers and stomatal density), as well as leaf size and shape, specific leaf area (SLA), leaf internode distances, disparity in blade–petiole angles, canopy spread: height ratios, standing leaf numbers, summer (July) photosynthetic light curve shapes, and growth rates. Saplings showed significant sun/shade differences in fewer characters: leaf thickness, SLA, leaf overlap, disparity in bladepetiole angles, standing leaf numbers, stem volume and branching angle (first-order branches only), and summer photosynthesis. In trees, leaf anatomy was insensitive to light environment, but leaf length, width, and SLA, disparities in bladepetiole angles, and summer maximal photosynthetic rates varied among sun and shade leaf populations. Seedling and sapling photosynthetic rates were significantly depressed in winter (December), while photosynthetic rates in tree leaves did not differ in winter and summer. Seasonal and ontogenetic changes in response to light environment are apparent at several levels of biological organization in R. mangle, within constraints of its architectural baiiplan. Such variation has implications for models of stand carbon gain, and suggest that response flexibility may change with plant age.  相似文献   

7.
Diurnal changes in photosynthetic gas exchange and chlorophyll fluorescence were measured under full sunlight to reveal diffusional and non‐diffusional limitations to diurnal assimilation in leaves of Arisaema heterophyllum Blume plants grown either in a riparian forest understorey (shade leaves) or in an adjacent deforested open site (sun leaves). Midday depressions of assimilation rate (A) and leaf conductance of water vapour were remarkably deeper in shade leaves than in sun leaves. To evaluate the diffusional (i.e. stomatal and leaf internal) limitation to assimilation, we used an index [1–A/A350], in which A350 is A at a chloroplast CO2 concentration of 350 μ mol mol ? 1. A350 was estimated from the electron transport rate (JT), determined fluorometrically, and the specificity factor of Rubisco (S), determined by gas exchange techniques. In sun leaves under saturating light, the index obtained after the ‘peak’ of diurnal assimilation was 70% greater than that obtained before the ‘peak’, but in shade leaves, it was only 20% greater. The photochemical efficiency of photosystem II ( Δ F/Fm ′ ) and thus JT was considerably lower in shade leaves than in sun leaves, especially after the ‘peak’. In shade leaves but not in sun leaves, A at a photosynthetically active photon flux density (PPFD) > 500 μ mol m ? 2 s ? 1 depended positively on JT throughout the day. Electron flows used by the carboxylation and oxygenation (JO) of RuBP were estimated from A and JT. In sun leaves, the JO/JT ratio was significantly higher after the ‘peak’, but little difference was found in shade leaves. Photorespiratory CO2 efflux in the absence of atmospheric CO2 was about three times higher in sun leaves than in shade leaves. We attribute the midday depression of assimilation in sun leaves to the increased rate of photorespiration caused by stomatal closure, and that in shade leaves to severe photoinhibition. Thus, for sun leaves, increased capacities for photorespiration and non‐photochemical quenching are essential to avoid photoinhibitory damage and to tolerate high leaf temperatures and water stress under excess light. The increased Rubisco content in sun leaves, which has been recognized as raising photosynthetic assimilation capacity, also contributes to increase in the capacity for photorespiration.  相似文献   

8.
Higher leaf vein density (D(vein) ) enables higher rates of photosynthesis because enhanced water transport allows higher leaf conductances to CO(2) and water. If the total cost of leaf venation rises in proportion to the density of minor veins, the most efficient investment in leaf xylem relative to photosynthetic gain should occur when the water transport capacity of the leaf (determined by D(vein) ) matches potential transpirational demand (determined by stomatal size and density). We tested whether environmental plasticity in stomatal density (D(stomata) ) and D(vein) were linked in the evergreen tree Nothofagus cunninghamii to achieve a balance between liquid and gas phase water conductances. Two sources of variation were examined; within-tree light acclimation, and differences in sun leaves among plants from ecologically diverse populations. Strong, linear correlations between D(vein) and D(stomata) were found at all levels of comparison. The correlations between liquid- and vapour-phase conductances implied by these patterns of leaf anatomy were confirmed by direct measurement of leaf conductance in sun and shade foliage of an individual tree. ? Our results provide strong evidence that the development of veins and stomata are coordinated so that photosynthetic yield is optimized relative to carbon investment in leaf venation.  相似文献   

9.
We merge concepts from stomatal optimization theory and cohesion–tension theory to examine the dynamics of three mechanisms that are potentially limiting to leaf‐level gas exchange in trees during drought: (1) a ‘demand limitation’ driven by an assumption of optimal stomatal functioning; (2) ‘hydraulic limitation’ of water movement from the roots to the leaves; and (3) ‘non‐stomatal’ limitations imposed by declining leaf water status within the leaf. Model results suggest that species‐specific ‘economics’ of stomatal behaviour may play an important role in differentiating species along the continuum of isohydric to anisohydric behaviour; specifically, we show that non‐stomatal and demand limitations may reduce stomatal conductance and increase leaf water potential, promoting wide safety margins characteristic of isohydric species. We used model results to develop a diagnostic framework to identify the most likely limiting mechanism to stomatal functioning during drought and showed that many of those features were commonly observed in field observations of tree water use dynamics. Direct comparisons of modelled and measured stomatal conductance further indicated that non‐stomatal and demand limitations reproduced observed patterns of tree water use well for an isohydric species but that a hydraulic limitation likely applies in the case of an anisohydric species.  相似文献   

10.
Four tree, five shrub, and ten herbaceous species growing naturally in an oak-hornbeam forest were used for simultaneous study of the leaf diffusive resistances in the course of several summer days. Absolute minima of the stomatal resistance in the sun tree, the shrub, and the herbaceous species leaves were 1.7 to 6.2 s cm-1, 6.1 to 10.8 s cm-1, and 4.8 to 9.7 (17.3 inConvallaria majalis leaves) s cm-1, respectively. Minimum daily leaf resistances in the course of a day were noted earlier in the morning in sun leaves of large trees than in shade leaves of other species. Stomata were fully opened later in the morning and they began to close sooner in the afternoon in usual shade leaves of the plants in the interior of the forest canopy than those in sun leaves in active surfaces of the canopy (tops of tree crowns). The relatively large differences in leaf resistances found among investigated species may be explained by differences in leaf anatomy (stomata frequency and size) and in ambient leaf or plant environment caused by leaf (plant) position in different vertical layers.  相似文献   

11.
Variation in stomatal development and physiology of mature leaves from Alnus glutinosa plants grown under reference (current ambient, 360 μmol mol−1 CO2) and double ambient (720 μmol mol−1 CO2) carbon dioxide (CO2) mole fractions is assessed in terms of relative plant growth, stomatal characters (i.e. stomatal index and density) and leaf photosynthetic characters. This is the first study to consider the effects of elevated CO2 concentration on the distribution of stomata and epidermal cells across the whole leaf and to try to ascertain the cause of intraleaf variation. In general, a doubling of the atmospheric CO2 concentration enhanced plant growth and significantly increased stomatal index. However, there was no significant change in relative stomatal density. Under elevated CO2 concentration there was a significant decrease in stomatal conductance and an increase in assimilation rate. However, no significant differences were found for the maximum rate of carboxylation ( V cmax) and the light saturated rate of electron transport ( J max) between the control and elevated CO2 treatment.  相似文献   

12.
The temperature and water relations of sun versus shade leavesof Hyptis emoryi Torr. were evaluated from field measurementsmade in late summer. Throughout most of the day sun leaves hadhigher temperatures and higher resistances to water vapour diffusion,but lower transpiration rates and lower stem water potentials,than did shade leaves. Leaf absorptivity to solar irradiationwas less for 1.5-cm-long sun leaves (0.44) than for 4.0-cm shadeleaves (0.56). For both leaf types the stomatal resistance increasedas the water vapour concentration drop from the leaf to theair increased. Energy balance equations were used together with the measuredtemperature dependence of photosynthesis to predict the effectof variations in leaf absorptivity, length, and resistance onnet photosynthesis. The influence of leaf dimorphism on wholeplants was determined by calculating daily photosynthesis andtranspiration for plants with various percentages of sun andshade leaves. A hypothetical plant with all sun leaves in thesun had about twice the photosynthesis and half the transpirationratio as did plants with sun leaves in the shade or shade leavesin the sun or shade. Plants with both sun and shade leaves hadthe highest predicted photosynthesis per unit ground area. Thepossible adaptive significance of the seasonal variation insun and shade leaf percentages observed for individual H. emoryibushes is discussed in terms of water economy and photosynthesi  相似文献   

13.
In the French Alps, Soldanella alpina (S. alpina) grow under shade and sun conditions during the vegetation period. This species was investigated as a model for the dynamic acclimation of shade leaves to the sun under natural alpine conditions, in terms of photosynthesis and leaf anatomy. Photosynthetic activity in sun leaves was only slightly higher than in shade leaves. The leaf thickness, the stomatal density and the epidermal flavonoid content were markedly higher, and the chlorophyll/flavonoid ratio was significantly lower in sun than in shade leaves. Sun leaves also had a more oxidised plastoquinone pool, their PSII efficiency in light was higher and their non-photochemical quenching (NPQ) capacity was higher than that of shade leaves. Shade-sun transferred leaves increased their leaf thickness, stomatal density and epidermal flavonoid content, while their photosynthetic activity and chlorophyll/flavonoid ratio declined compared to shade leaves. Parameters indicating protection against high light and oxidative stress, such as NPQ and ascorbate peroxidase, increased in shade-sun transferred leaves and leaf mortality increased. We conclude that the dynamic acclimation of S. alpina leaves to high light under alpine conditions mainly concerns anatomical features and epidermal flavonoid acclimation, as well as an increase in antioxidative protection. However, this increase is not large enough to prevent damage under stress conditions and to replace damaged leaves.  相似文献   

14.
Lianas impose intense resource competition for light in the upper forest canopy by displaying dense foliage on top of tree crowns. Using repeated access with a construction crane, we studied the patterns of canopy colonization of the lianas Combretum fruticosum and Bonamia trichantha in a Neotropical dry forest in Panama. Combretum fruticosum flushed leaves just before the rainy season, and its standing leaf area quickly reached a peak in the early rainy season (May–June). In contrast, B. trichantha built up foliage area continuously throughout the rainy season and reached a peak in the late rainy season (November). Both species displayed the majority of leaves in full sun on the canopy surface, but C. fruticosum displayed a greater proportion of leaves (26%) in more shaded microsites than B. trichantha (12%). Self-shading within patches of liana leaves within the uppermost 40–50 cm of the canopy reduced light levels measured with photodiodes placed directly on leaves to 4–9 percent of light levels received by sun leaves. Many leaves of C. fruticosum acclimated to shade within a month following the strongly synchronized leaf flushing and persisted in deep shade. In contrast, B. trichantha produced short-lived leaves opportunistically in the sunniest locations. Species differences in degree of shade acclimation were also evident in terms of structural (leaf mass per area, and leaf toughness) and physiological characters (nitrogen content, leaf life span, and light compensation point). Contrasting leaf phenologies reflect differences in light exploitation and canopy colonization strategies of these two liana species.  相似文献   

15.
Eurya japonica occurs in diverse light environments through seed dispersal by birds. As the seed size is extremely small, we hypothesized that newly germinated seedlings with restricted depth of roots and length of the hypocotyl would suffer high mortality due to increased transpiration in sunny habitats and low light in shady habitats. We also expected that surviving seedlings would differ in leaf traits between habitats as a result of selection. We aimed to determine how photosynthetic traits differ between habitats and how leaf structure is related to this difference. We examined photosynthesis and leaf morpho‐anatomy for plants cloned from cuttings collected from the forest understory (shade population) and neighboring roadsides and cut‐over areas (sun population) and then grown under two irradiances (18.5% and 100% sunlight) in an experimental garden. Under growth in 100% sunlight, cloned plants from the sun population exhibited significantly greater area‐based photosynthetic capacity compared to cloned plants from the shade population at a comparable stomatal conductance, which was attributable to a higher area‐based leaf nitrogen concentration. On the other hand, mean values of photosynthetic capacity did not significantly differ between the two populations. Cloned plants from the sun population had significantly thicker leaf laminas and spongy tissue and lower stomatal density compared to cloned plants from the shade population. Thickened leaf lamina might have increased leaf tolerance to physical stresses in open habitats. The variation in leaf morpho‐anatomy between the two populations can be explained in terms of the economy of leaf photosynthetic tissue.  相似文献   

16.
Leaf anatomical and chemical characteristics, water relations and stomatal regulation were studied in the shrub Myrtus communis growing under two contrasting Mediterranean light environments (full light versus 30% of full light) during the spring-summer period. These studies aimed to assess plant response to the combined effects of light and water availability. Foliar morphology, anatomy and chemistry composition acclimated positively to light conditions. Leaves of sun-exposed plants were thicker (38.7%) than those of shaded plants, mainly due to increased palisade parenchyma thickness, had a higher nitrogen concentration and stomatal density than the shade ones, which maximized foliar area (>SLA) and Chl/N molar ratio to improve light interception. Chlorophyll concentration per leaf area (Chl(a)) was always higher in sun leaves while, as expressed on dry mass (Chl(m)), significant differences were only apparent in September, shade leaves presenting higher values. During the summer period Chl(a) and Chl(m) markedly declined in sun leaves and remained unchanged in shade ones. The ratio of chlorophyll a/b was not affected either by the light intensity or by the season. Shade leaves presented generally a higher concentration of soluble carbohydrates per dry mass. No significant differences in starch concentration were apparent between sun and shade leaves and a gradual depletion occurred during the water stress period. Maximum stomatal conductances correlated positively with predawn water potential. Throughout the season, sun plants always presented higher leaf conductance to water vapour and lower minimum leaf water potentials, indicating an interaction of light-environment on these water relation parameters. Stomatal closure constitutes a mechanism to cope with diurnal and seasonal water deficits, sun plants presenting a more efficient control of water losses during water deficiency period. In addition, both sun and shade plants evidenced leaf osmotic adjustment ability in response to water stress, which was greater in sun ones.  相似文献   

17.
Knowledge on variations in stomata is useful in reflecting leaf physiological characteristics of CO2 uptake and water transpiration, and predicting the responses of plants to future climate change. Stomatal density and number of stomatal rows (current-year, 1- and 2-year-old needles) in relation to tree age (ranging from 25 to 320 years old), elevation (ranging from 738 to 1,380 m a.s.l.), and sun exposure (sun and shade exposure) were investigated in Pinus koraiensis trees. Stomatal density and number of stomatal rows in relation to tree age and elevation showed a humped curve with the maximum values at intermediate levels of tree age (210 years old) and elevation (1,050 m a.s.l.), respectively. Needle age but not sun exposure significantly affected the stomatal density across tree ages and elevations. Our results suggest that variations in stomatal density of Pinus koraiensis needles are related to ontogenetic growth and environmental factors.  相似文献   

18.

Background and Aims

Leaf and wood plasticity are key elements in the survival of widely distributed plant species. Little is known, however, about variation in stomatal distribution in the leaf epidermis and its correlation with the dimensions of conducting cells in wood. This study aimed at testing the hypothesis that Podocarpus lambertii, a conifer tree, possesses a well-defined pattern of stomatal distribution, and that this pattern can vary together with the dimensions of stem tracheids as a possible strategy to survive in climatically different sites.

Methods

Leaves and wood were sampled from trees growing in a cold, wet site in south-eastern Brazil and in a warm, dry site in north-eastern Brazil. Stomata were thoroughly mapped in leaves from each study site to determine a spatial sampling strategy. Stomatal density, stomatal index and guard cell length were then sampled in three regions of the leaf: near the midrib, near the leaf margin and in between the two. This sampling strategy was used to test for a pattern and its possible variation between study sites. Wood and stomata data were analysed together via principal component analysis.

Key Results

The following distribution pattern was found in the south-eastern leaves: the stomatal index was up to 25 % higher in the central leaf region, between the midrib and the leaf margin, than in the adjacent regions. The inverse pattern was found in the north-eastern leaves, in which the stomatal index was 10 % higher near the midrib and the leaf margin. This change in pattern was accompanied by smaller tracheid lumen diameter and length.

Conclusions

Podocarpus lambertii individuals in sites with higher temperature and lower water availability jointly regulate stomatal distribution in leaves and tracheid dimensions in wood. The observed stomatal distribution pattern and variation appear to be closely related to the placement of conducting tissue in the mesophyll.  相似文献   

19.
Phenotypic plasticity in response to light in the coffee tree   总被引:2,自引:0,他引:2  
Phenotypic plasticity to light availability was examined at the leaf level in field-grown coffee trees (Coffea arabica). This species has been traditionally considered as shade-demanding, although it performs well without shade and even out-yields shaded coffee. Specifically, we focused our attention on the morpho-anatomical plasticity, the balance between light capture and excess light energy dissipation, as well as on physiological traits associated with carbon gain. A wide natural light gradient, i.e., a diurnal intercepted photon irradiance differing by a factor of 25 between the deepest shade leaves and the more exposed leaves in the canopy, was explored. Responses of most traits to light were non-linear, revealing the classic leaf sun vs. leaf shade dichotomy (e.g., compared with sun leaves, shade leaves had a lower stomatal density, a thinner palisade mesophyll, a higher specific leaf area, an improved light capture, a lower respiration rate, a lower light compensating point and a limited capacity for photoprotection). The light-saturated rates of net photosynthesis were higher in sunlit than in shade leaves, although sun leaves were not efficient enough to use the extra light supply. However, sun leaves showed well-developed photoprotection mechanisms in comparison to shade leaves, which proved sufficient for avoiding photoinhibition. Specifically, a higher non-photochemical quenching coefficient was found in parallel to increases in: (i) zeaxanthin pools, (ii) de-epoxidation state of the xanthophyll cycle, and (iii) activities of some antioxidant enzymes. Intracanopy plasticity depended on the suite of traits considered, and was high for some physiological traits associated with photoprotection and maintenance of a positive carbon balance under low light, but low for most morpho-anatomical features. Our data largely explain the successful cultivation of the coffee tree in both exposed and shade environments, although with a poor resource-use efficiency in high light.  相似文献   

20.
Light gradients within tree canopies play a major role in the distribution of plant resources that define the photosynthetic capacity of sun and shade leaves. However, the biochemical and diffusional constraints on gas exchange in sun and shade leaves in response to light remain poorly quantified, but critical for predicting canopy carbon and water exchange. To investigate the CO2 diffusion pathway of sun and shade leaves, leaf gas exchange was coupled with concurrent measurements of carbon isotope discrimination to measure net leaf photosynthesis (An), stomatal conductance (gs) and mesophyll conductance (gm) in Eucalyptus tereticornis trees grown in climate controlled whole‐tree chambers. Compared to sun leaves, shade leaves had lower An, gm, leaf nitrogen and photosynthetic capacity (Amax) but gs was similar. When light intensity was temporarily increased for shade leaves to match that of sun leaves, both gs and gm increased, and An increased to values greater than sun leaves. We show that dynamic physiological responses of shade leaves to altered light environments have implications for up‐scaling leaf level measurements and predicting whole canopy carbon gain. Despite exhibiting reduced photosynthetic capacity, the rapid up‐regulation of gm with increased light enables shade leaves to respond quickly to sunflecks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号