首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nucleotide binding domains (NBDs) of the multidrug transporter of Candida albicans, CaCdr1p, possess unique divergent amino acids in their conserved motifs. For example, NBD1 (N-terminal-NBD) possesses conserved signature motifs, while the same motif is divergent in NBD2 (C-terminal-NBD). In this study, we have evaluated the contribution of these conserved and divergent signature motifs of CaCdr1p in ATP catalysis and drug transport. By employing site-directed mutagenesis, we made three categories of mutant variants. These included mutants where all the signature motif residues were replaced with either alanines or mutants with exchanged equipositional residues to mimic the conservancy and degeneracy in opposite domain. In addition, a set of mutants where signature motifs were swapped to have variants with either both the conserved or degenerated entire signature motif. We observed that conserved and equipositional residues of NBD1 and NBD2 and swapped signature motif mutants showed high susceptibility to all the tested drugs with simultaneous abrogation in ATPase and R6G efflux activities. However, some of the mutants displayed a selective increase in susceptibility to the drugs. Notably, none of the mutant variants and WT-CaCdr1p showed any difference in drug and nucleotide binding. Our mutational analyses show not only that certain conserved residues of NBD1 signature sequence (S304, G306, and E307) are important in ATP hydrolysis and R6G efflux but also that a few divergent residues (N1002 and E1004) of NBD2 signature motif have evolved to be functionally relevant and are not interchangeable. Taken together, our data suggest that the signature motifs of CaCdr1p, whether it is divergent or conserved, are nonexchangeable and are functionally critical for ATP hydrolysis.  相似文献   

2.
3.
Root apical meristem (RAM) and shoot apical meristem (SAM) are vital for the correct development of the plant. The direction, frequency, and timing of cell division must be tightly controlled in meristems. Here, we isolated new Arabidopsis mutants with shorter roots and fasciated stems. In the tonsoku (tsk) mutant, disorganized RAM and SAM formation resulted from the frequent loss of proper alignment of the cell division plane. Irregular cell division also occurred in the tsk embryo, and the size of cells in meristems and embryo in tsk mutant was larger than in the wild type. In the enlarged SAM of the tsk mutant, multiple centers of cells expressing WUSCHEL (WUS) were observed. In addition, expression of SCARECROW (SCR) in the quiescent center (QC) disappeared in the disorganized RAM of tsk mutant. These results suggest that disorganized cell arrangements in the tsk mutants result in disturbed positional information required for the determination of cell identity. The TSK gene was found to encode a protein with 1311 amino acids that possesses two types of protein-protein interaction motif, leucine-glycine-asparagine (LGN) repeats and leucine-rich repeats (LRRs). LGN repeats are present in animal proteins involved in asymmetric cell division, suggesting the possible involvement of TSK in cytokinesis. On the other hand, the localization of the TSK-GFP (green fluorescent protein) fusion protein in nuclei of tobacco BY-2 cells and phenotypic similarity of tsk mutants to other fasciated mutants suggest that the tsk mutation may cause disorganized cell arrangements through defects in genome maintenance.  相似文献   

4.
Maintenance of the stem cell population located at the apical meristems is essential for repetitive organ initiation during the development of higher plants. Here, we have characterized the roles of OBERON1 (OBE1) and its paralog OBERON2 (OBE2), which encode plant homeodomain finger proteins, in the maintenance and/or establishment of the meristems in Arabidopsis. Although the obe1 and obe2 single mutants were indistinguishable from wild-type plants, the obe1 obe2 double mutant displayed premature termination of the shoot meristem, suggesting that OBE1 and OBE2 function redundantly. Further analyses revealed that OBE1 and OBE2 allow the plant cells to acquire meristematic activity via the WUSCHEL-CLAVATA pathway, which is required for the maintenance of the stem cell population, and they function parallel to the SHOOT MERISTEMLESS gene, which is required for preventing cell differentiation in the shoot meristem. In addition, obe1 obe2 mutants failed to establish the root apical meristem, lacking both the initial cells and the quiescent center. In situ hybridization revealed that expression of PLETHORA and SCARECROW, which are required for stem cell specification and maintenance in the root meristem, was lost from obe1 obe2 mutant embryos. Taken together, these data suggest that the OBE1 and OBE2 genes are functionally redundant and crucial for the maintenance and/or establishment of both the shoot and root meristems.  相似文献   

5.
Phyllotaxy is defined as the spatial arrangement of leaves on the stem. The mechanism responsible for this extremely regular pattern is one of the most fascinating enigmas in plant biology. In this study, we identified a gene regulating the phyllotactic pattern in rice. Loss‐of‐function mutants of the DECUSSATE (DEC) gene displayed a phyllotactic conversion from normal distichous pattern to decussate. The dec mutants had an enlarged shoot apical meristem with enhanced cell division activity. In contrast to the shoot apical meristem, the size of the root apical meristem in the dec mutants was reduced, and cell division activity was suppressed. These phenotypes indicate that DEC has opposite functions in the shoot apical meristem and root apical meristem. Map‐based cloning revealed that DEC encodes a plant‐specific protein containing a glutamine‐rich region and a conserved motif. Although its molecular function is unclear, the conserved domain is shared with fungi and animals. Expression analysis showed that several type A response regulator genes that act in the cytokinin signaling pathway were down‐regulated in the dec mutant. In addition, dec seedlings showed a reduced responsiveness to exogenous cytokinin. Our results suggest that DEC controls the phyllotactic pattern by affecting cytokinin signaling in rice.  相似文献   

6.
7.
The Arabidopsis thaliana genome contains hundreds of genes essential for seed development. Because null mutations in these genes cause embryo lethality, their specific molecular and developmental functions are largely unknown. Here, we identify a role for EMB1611/MEE22 , an essential gene in Arabidopsis, in shoot apical meristem maintenance. EMB1611 encodes a large, novel protein with N-terminal coiled-coil regions and two putative transmembrane domains. We show that the partial loss-of-function emb1611-2 mutation causes a range of pleiotropic developmental phenotypes, most dramatically a progressive loss of shoot apical meristem function that causes premature meristem termination. emb1611-2 plants display disorganization of the shoot meristem cell layers early in development, and an associated stem cell fate change to an organogenic identity. Genetic and molecular analysis indicates that EMB1611 is required for maintenance of the CLV-WUS stem cell regulatory pathway in the shoot meristem, but also has WUS -independent activity. In addition, emb1611-2 plants have reduced shoot and root growth, and their rosette leaves form trichomes with extra branches, a defect we associate with an increase in endoreduplication. Our data indicate that EMB1611 functions to maintain cells, particularly those in the shoot meristem, roots and developing rosette leaves, in a proliferative or uncommitted state.  相似文献   

8.
SNAREs (soluble N-ethylmaleimide sensitive factor attachment protein receptors) mediate specific membrane fusion between transport vesicles or organelles and target membranes. VAM3/SYP22 and PEP12/SYP21 are Qa-SNAREs that act in the vacuolar transport pathway of Arabidopsis thaliana, and are localized predominantly on the vacuolar membrane and the pre-vacuolar compartment (PVC), respectively. Previous studies have shown that loss-of-function mutants of VAM3/SYP22 or PEP12/SYP21 showed male gametophytic lethality, suggesting that VAM3/SYP22 and PEP12/SYP21 possess different, non-redundant functions. We have re-evaluated the effects of mutations in these genes using T-DNA insertion mutants in the Columbia accession. We found that a mutation in VAM3/SYP22 (vam3-1) caused pleiotropic abnormalities, including semi-dwarfism and wavy leaves. In contrast, a loss-of-function mutant of PEP12/SYP21 (pep12) showed no apparent abnormal phenotype. We also found that the double vam3-1 pep12 mutant had severely reduced fertilization competence, although male and female gametophytes (vam3-1(-) pep12(-) ) maintained the ability to fertilize. Moreover, promoter swapping analysis revealed that expression of a GFP-PEP12/SYP21 fusion under the control of the VAM3/SYP22 promoter suppressed all phenotypes of the vam3-1 mutant. These results indicate that the functions of VAM3/SYP22 and PEP12/SYP21 were redundant and interchangeable.  相似文献   

9.
The defective kernel mutation empty pericarp2-R (emp2-R) causes retardation and subsequent abortion of maize kernel development. Analyses of genetic aneuploid kernels indicate that the embryo phenotype is not dependent on the endosperm genotype; the mutation conditions embryo defects even in the presence of a normal endosperm. Embryos reach an abnormal coleoptilar stage before aborting and disintegrating. The mutants form primary embryonic organs only; the scutellum and coleoptile develop, but no leaves are formed. Immunohisto-localization studies utilized KNOX homeodomain proteins as markers of meristem formation and identity. These analyses indicate that the shoot meristem forms in emp2-R mutant embryos, but does not mature to a tunica-corpus shape. No evidence of leaf founder cell initialization was revealed in the mutant meristems. These data indicate that the emp2 gene may be required for embryogenic patterning beyond the coleoptilar stage of development.  相似文献   

10.
11.
In Arabidopsis thaliana, the BEL1-like TALE homeodomain protein family consists of 13 members that form heterodimeric complexes with the Class 1 KNOX TALE homeodomain proteins, including SHOOTMERISTEMLESS (STM) and BREVIPEDICELLUS (BP). The BEL1-like protein BELLRINGER (BLR) functions together with STM and BP in the shoot apex to regulate meristem identity and function and to promote correct shoot architecture. We have characterized two additional BEL1-LIKE HOMEODOMAIN (BLH) proteins, SAWTOOTH1 (BLH2/SAW1) and SAWTOOTH2 (BLH4/SAW2) that, in contrast with BLR, are expressed in lateral organs and negatively regulate BP expression. saw1 and saw2 single mutants have no obvious phenotype, but the saw1 saw2 double mutant has increased leaf serrations and revolute margins, indicating that SAW1 and SAW2 act redundantly to limit leaf margin growth. Consistent with this hypothesis, overexpression of SAW1 suppresses overall growth of the plant shoot. BP is ectopically expressed in the leaf serrations of saw1 saw2 double mutants. Ectopic expression of Class 1 KNOX genes in leaves has been observed previously in loss-of-function mutants of ASYMMETRIC LEAVES (AS1). Overexpression of SAW1 in an as1 mutant suppresses the as1 leaf phenotype and reduces ectopic BP leaf expression. Taken together, our data suggest that BLH2/SAW1 and BLH4/SAW2 establish leaf shape by repressing growth in specific subdomains of the leaf at least in part by repressing expression of one or more of the KNOX genes.  相似文献   

12.
Kessler S  Townsley B  Sinha N 《Plant physiology》2006,141(4):1349-1362
Plant development requires regulation of both cell division and differentiation. The class 1 KNOTTED1-like homeobox (KNOX) genes such as knotted1 (kn1) in maize (Zea mays) and SHOOTMERISTEMLESS in Arabidopsis (Arabidopsis thaliana) play a role in maintaining shoot apical meristem indeterminacy, and their misexpression is sufficient to induce cell division and meristem formation. KNOX overexpression experiments have shown that these genes interact with the cytokinin, auxin, and gibberellin pathways. The L1 layer has been shown to be necessary for the maintenance of indeterminacy in the underlying meristem layers. This work explores the possibility that the L1 affects meristem function by disrupting hormone transport pathways. The semidominant Extra cell layers1 (Xcl1) mutation in maize leads to the production of multiple epidermal layers by overproduction of a normal gene product. Meristem size is reduced in mutant plants and more cells are incorporated into the incipient leaf primordium. Thus, Xcl1 may provide a link between L1 division patterns, hormonal pathways, and meristem maintenance. We used double mutants between Xcl1 and dominant KNOX mutants and showed that Xcl1 suppresses the Kn1 phenotype but has a synergistic interaction with gnarley1 and rough sheath1, possibly correlated with changes in gibberellin and auxin signaling. In addition, double mutants between Xcl1 and crinkly4 had defects in shoot meristem maintenance. Thus, proper L1 development is essential for meristem function, and XCL1 may act to coordinate hormonal effects with KNOX gene function at the shoot apex.  相似文献   

13.
14.
Postembryonic organ formation in higher plants relies on the activity of stem cell niches in shoot and root meristems where differentiation of the resident cells is repressed by signals from surrounding cells. We searched for mutations affecting stem cell maintenance and isolated the semidominant l28 mutant, which displays premature termination of the shoot meristem and differentiation of the stem cells. Allele competition experiments suggest that l28 is a dominant-negative allele of the APETALA2 (AP2) gene, which previously has been implicated in floral patterning and seed development. Expression of both WUSCHEL (WUS) and CLAVATA3 (CLV3) genes, which regulate stem cell maintenance in the wild type, were disrupted in l28 shoot apices from early stages on. Unlike in floral patterning, AP2 mRNA is active in the center of the shoot meristem and acts via a mechanism independent of AGAMOUS, which is a repressor of WUS and stem cell maintenance in the floral meristem. Genetic analysis shows that termination of the primary shoot meristem in l28 mutants requires an active CLV signaling pathway, indicating that AP2 functions in stem cell maintenance by modifying the WUS-CLV3 feedback loop.  相似文献   

15.
Moon S  Jung KH  Lee DE  Lee DY  Lee J  An K  Kang HG  An G 《Molecules and cells》2006,21(1):147-152
Most plant organs develop from meristems. Rice FON1, which is an ortholog of Clv1, regulates stem cell proliferation and organ initiation. The point muta-tions, fon1-1 and fon1-2, disrupt meristem balance, resulting in alteration of floral organ numbers and the architecture of primary rachis branches. In this study, we identified two knockout alleles, fon1-3 and fon1-4, generated by T-DNA and Tos17 insertion, respectively. Unlike the previously isolated point mutants, the null mutants have alterations not only of the reproductive organs but also of vegetative tissues, producing fewer tillers and secondary rachis branches. The mutant plants are semi-dwarfs due to delayed leaf emergence, and leaf senescence is delayed. SEM analysis showed that the shoot apical meristems of fon1-3 mutants are enlarged. These results indicate that FON1 controls vegetative as well as reproductive development by regulating meristem size.  相似文献   

16.
PASTICCINO (PAS) genes are required for coordinated cell division and differentiation during plant development. In loss-of-function pas mutants, plant aerial tissues showed ectopic cell division that was specifically enhanced by cytokinins, leading to disorganized tumor-like tissue. To determine the role of the PAS genes in controlling cell proliferation, we first analyzed the expression profiles of several genes involved in cell division and meristem function. Differentiated and meristematic cells of the pas mutants were more competent for cell division as illustrated by the ectopic and enlarged expression profiles of CYCLIN-DEPENDENT KINASE A and CYCLIN B1. The expression of meristematic homeobox genes KNOTTED-LIKE IN ARABIDOPSIS (KNAT2, KNAT6), and SHOOT MERISTEMLESS was also increased in pas mutants. Moreover, the loss of meristem function caused by shoot meristemless mutation can be suppressed by pas2. The KNAT2 expression pattern defines an enlarged meristematic zone in pas mutants that can be mimicked in wild type by cytokinin treatment. Cytokinin induction of the primary cytokinin response markers, ARABIDOPSIS RESPONSE REGULATOR (ARR5 and ARR6), was enhanced and lasted longer in pas mutants, suggesting that PAS genes in wild type repress cytokinin responses. The expression of the cytokinin-regulated cyclin D, cyclin D3.1, was nonetheless not modified in pas mutants. However, primary auxin response genes were down-regulated in pas mutants, as shown by a lower auxin induction of IAA4 and IAA1 genes, demonstrating that the auxin response was also modified. Altogether, our results suggest that PAS genes are involved in the hormonal control of cell division and differentiation.  相似文献   

17.
18.
19.
Tsuda K  Ito Y  Sato Y  Kurata N 《The Plant cell》2011,23(12):4368-4381
Self-maintenance of the shoot apical meristem (SAM), from which aerial organs are formed throughout the life cycle, is crucial in plant development. Class I Knotted1-like homeobox (KNOX) genes restrict cell differentiation and play an indispensable role in maintaining the SAM. However, the mechanism that positively regulates their expression is unknown. Here, we show that expression of a rice (Oryza sativa) KNOX gene, Oryza sativa homeobox1 (OSH1), is positively regulated by direct autoregulation. Interestingly, loss-of-function mutants of OSH1 lose the SAM just after germination but can be rescued to grow until reproductive development when they are regenerated from callus. Double mutants of osh1 and d6, a loss-of-function mutant of OSH15, fail to establish the SAM both in embryogenesis and regeneration. Expression analyses in these mutants reveal that KNOX gene expression is positively regulated by the phytohormone cytokinin and by KNOX genes themselves. We demonstrate that OSH1 directly binds to five KNOX loci, including OSH1 and OSH15, through evolutionarily conserved cis-elements and that the positive autoregulation of OSH1 is indispensable for its own expression and SAM maintenance. Thus, the maintenance of the indeterminate state mediated by positive autoregulation of a KNOX gene is an indispensable mechanism of self-maintenance of the SAM.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号