首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inflammation plays a major role in vascular disease. We have shown that leukocyte infiltration and inflammatory mediator expression contribute to vascular remodeling after endoluminal injury. This study tested whether increasing protein O-linked-N-acetylglucosamine (O-GlcNAc) levels with glucosamine (GlcN) and O-(2-acetamido-2-deoxy-d-glucopyranosylidene) amino-N-phenylcarbamate (PUGNAc) inhibits acute inflammatory and neointimal responses to endoluminal arterial injury. Ovariectomized rats were treated with a single injection of GlcN (0.3 mg/g ip), PUGNAc (7 nmol/g ip) or vehicle (V) 2 h before balloon injury of the right carotid artery. O-GlcNAc-modified protein levels decreased markedly in injured arteries of V-treated rats at 30 min, 2 h, and 24 h after injury but returned to control (contralateral uninjured) levels after 14 days. Both GlcN and PUGNAc increased O-GlcNAc-modified protein levels in injured arteries compared with V controls at 30 min postinjury; the GlcN-mediated increase persisted at 24 h but was not evident at 14 days. Proinflammatory mediator expression increased markedly after injury and was reduced significantly (30-50%) by GlcN and PUGNAc. GlcN and PUGNAc also inhibited infiltration of neutrophils and monocytes in injured arteries. Chronic (14 days) treatment with GlcN reduced neointima formation in injured arteries by 50% compared with V controls. Acute GlcN and PUGNAc treatment increases O-GlcNAc-modified protein levels and inhibits acute inflammatory responses in balloon-injured rat carotid arteries; 14 day GlcN treatment inhibits neointima formation in these vessels. Augmenting O-GlcNAc modification of proteins in the vasculature may represent a novel anti-inflammatory and vasoprotective mechanism.  相似文献   

2.
The multiple actions of angiotensin II in atherosclerosis   总被引:3,自引:0,他引:3  
Angiotensin II (Ang II), the effector peptide of the renin-angiotensin system, has been implied in the pathogenesis of atherosclerosis on various levels. There is abundant experimental evidence that pharmacological antagonism of Ang II formation by angiotensin converting enzyme inhibition or blockade of the cellular effects of Ang II by angiotensin type 1 receptor blockade inhibits formation and progression of atherosclerotic lesions. Angiotensin promotes generation of oxidative stress in the vasculature, which appears to be a key mediator of Ang II-induced endothelial dysfunction, endothelial cell apoptosis, and lipoprotein peroxidation. Ang II also induces cellular adhesion molecules, chemotactic and proinflammatory cytokines, all of which participate in the induction of an inflammatory response in the vessel wall. In addition, Ang II triggers responses in vascular smooth muscle cells that lead to proliferation, migration, and a phenotypic modulation resulting in production of growth factors and extracellular matrix. While all of these effects contribute to neointima formation and development of atherosclerotic lesions, Ang II may also be involved in acute complications of atherosclerosis by promoting plaque rupture and a hyperthrombotic state. Accordingly, Ang II appears to have a central role in the pathophysiology of atherosclerosis.  相似文献   

3.
Periadventitial application of the urokinase-plasminogen activator (uPA) in pluronic gel to an injured artery stimulated the neointima and neoadventitia formation as well as cell migration and proliferation in vivo. In contrast, the tissue-type plasminogen activator (tPA) reduced the number of neointimal smooth muscle cells and neointimal area and attenuated the lumen stenosis after a balloon catheter injury of the rat carotid artery. This ability to stimulate the neointima and neoadbentitia formation was found to be quite specific for the uPA. The findings suggest that this uPA property provides a specific functional target for attenuating growth of the damage.  相似文献   

4.
Chymase is an important enzyme for the generation of angiotensin (Ang) II and in the activation of transforming growth factor (TGF)-beta1. Therefore, chymase may be involved in the hemodialysis access dysfunction, which is caused by intimal hyperplasia that occurs after polytetrafluoroethylene (PTFE) graft implantations. Bilateral U-shaped PTFE grafts were placed between the femoral vein and artery in dogs. Chymase inhibitor (NK3201, 1 mg/kg per day, p.o.) treatments were initiated 3 days before the operation. After the implantation, the stenosis by neointima proliferation was most frequently observed in the venous side of the PTFE grafts. In the hyperplastic neointima, myofibroblasts were the main cellular components. On the other hand, fibroblasts only occupied cellular components in a much smaller proportion in the neointima. However, these cells seem to be rich in the properties of proliferation and migration. After PTFE graft implantations, extensive accumulations of chymase-positive mast cells were found mainly in the tissue surrounding the grafts. The Ang II- and TGF-beta-positive cells were found in an adjacent section that was in close proximity to the chymase-positive cells. In contrast, the AT(1) receptors, as well as TGF-beta type II receptors, were expressed either in the neointima or in the outside adventitia of the PTFE grafts. Chymase inhibitor treatment resulted in a reduction of chymase, Ang II and TGF-beta1 expression, leading to a significant inhibition of neointimal formation. These findings indicating that an increase of chymase via promoting Ang II and TGF-beta1 generation plays a pivotal role in the neointimal formation after the implantation of PTFE grafts and also suggesting that chymase inhibition may be a new strategy that can be used to prevent PTFE graft dysfunctions in clinical settings.  相似文献   

5.
Background aimsPreviously, we have demonstrated that administration of dermatan sulfate (DS) suppresses neointima formation in the mouse carotid artery by activating heparin co-factor II. A similar suppressive effect was observed by increasing the number of progenitor cells in circulation. In this study, we investigated the combination of DS and bone marrow mononuclear cells (MNC), which includes potential endothelial progenitors, in neointima formation after arterial injury.MethodsArterial injury was induced by mechanical dilation of the left common carotid artery. We analyzed the extension of endothelial lesion, thrombus formation, P-selectin expression and CD45+ cell accumulation 1 and 3 days post-injury, and neointima formation 21 days post-injury. Animals were injected with MNC with or without DS during the first 48 h after injury.ResultsThe extension of endothelial lesion was similar in all groups 1 day after surgery; however, in injured animals treated with MNC and DS the endothelium recovery seemed to be more efficient 21 days after lesion. Treatment with DS inhibited thrombosis, decreased CD45+ cell accumulation and P-selectin expression at the site of injury, and reduced the neointimal area by 56%. Treatment with MNC reduced the neointimal area by 54%. The combination of DS and MNC reduced neointima formation by more than 91%. In addition, DS promoted a greater accumulation of MNC at the site of injury.ConclusionsDS inhibits the initial thrombotic and inflammatory processes after arterial injury and promotes migration of MNC to the site of the lesion, where they may assist in the recovery of the injured endothelium.  相似文献   

6.
Angiotensin IV, (V-Y-I-H-P-F), binds to AT4 receptors in blood vessels to induce vasodilatation and proliferation of cultured bovine endothelial cells. This latter effect may be important not only in developing tissues but also in injured vessels undergoing remodelling. In the present study, using normal rabbit carotid arteries, we detected AT4 receptors in vascular smooth muscle cells and in the vasa vasorum of the adventitia. Very low receptor levels were observed in the endothelial cells. In keeping with the described binding specificity of AT4 receptors, unlabelled angiotensin IV competed for [125I]angiotensin IV binding in the arteries, with an IC50 of 1.4 nM, whereas angiotensin II and angiotensin III were weaker competitors. Within the first week following endothelial denudation of the carotid artery by balloon catheter, AT4 receptor binding in the media increased to approximately 150% of control tissue. AT4 receptor binding further increased in the media, large neointima and re-endothelialized cell layer to 223% at 20 weeks after injury. In view of the known trophic effects of angiotensin IV, the elevated expression of AT4 receptors, in both the neointima and media of arteries, following balloon injury to the endothelium, suggests a role for the peptide in the adaptive response and remodelling of the vascular wall following damage.  相似文献   

7.
Song Z  Jin R  Yu S  Rivet JJ  Smyth SS  Nanda A  Granger DN  Li G 《PloS one》2011,6(8):e23239
Despite extensive investigations, restenosis, which is characterized primarily by neointima formation, remains an unsolved clinical problem after vascular interventions. A recent study has shown that CD40 signaling through TNF receptor associated factor 6 (TRAF6) plays a key role in neointima formation after carotid artery injury; however, underlying mechanisms are not clearly elucidated. Because neointima formation may vary significantly depending on the type of injury, we first assessed the effect of CD40 deficiency on neointima formation in 2 injury models, carotid artery ligation and femoral artery denudation injury. Compared with wild-type mice, CD40 deficiency significantly reduced neointima formation and lumen stenosis in two different models. Further, we investigated the mechanism by which CD40 signaling affects neointima formation after arterial injury. In wild-type mice, the expression levels of CD40, several TRAF proteins, including TRAF1, TRAF2, TRAF3, TRAF5, and TRAF6, as well as total NF-kB p65 and phospho-NF-kB p65, in the carotid artery were markedly upregulated within 3-7 days after carotid ligation. Deficiency of CD40 abolished the injury-induced upregulation of TRAFs including TRAF6 and NF-kB-p65 in the injured vessel wall. Further, CD40(-/-) mice showed a significant decrease in the recruitment of neutrophils (at 3, 7d) and macrophages (at 7, 21d) into injured artery; this effect was most likely attributed to inhibition of NF-kB activation and marked downregulation of NF-kB-related gene expression, including cytokines (TNFα, IL-1β, IL-6), chemokines (MCP-1), and adhesion molecules (ICAM-1, VCAM-1). Moreover, neutrophil recruitment in a model of thioglycollate-induced peritonitis is impaired in CD40-deficient mice. In vitro data revealed that CD40 deficiency blocked CD40L-induced NF-kB p65 nuclear translocation in leukocytes. Altogether, our data identified for the first time that CD40 is essential in the upregulation of TRAF6, NF-kB activation, and NF-kB-dependent proinflammatory genes in vivo. Our findings firmly established the role for CD40 in neointima formation in 2 distinct injury models.  相似文献   

8.
The aim of this study is to determine the effect of losartan on insulin and angiotensin II (Ang II) concentrations in plasma as well as on lipoprotein lipase activity (LPL) and angiotensin II content in the adipose tissue of hypertensive rats. Fifty male rats were divided in five groups. Group A served as controls. Group B underwent renal artery stenosis. Group C were administered losartan (10 mg/kg/day) per os, while rats in group D were submitted to renal artery stenosis and were treated with losartan as above. Group E was used as sham-operated control. The animals were sacrificed at day 21. Blood samples were collected, and perirenal adipose tissue was isolated. Furthermore, adrenal's were removed and their relative weight (adrenal weight/body weight) was used as an index of sympathetic stimulation. According to our results, renovascular hypertension resulted in lower insulin concentrations and higher Ang II content in plasma. In hypertensive rats, LPL activity was decreased, while the adrenals' relative weight was elevated. On the other hand, losartan administration resulted in normalization of insulin concentrations in plasma and adrenals' relative weight, with consequent up regulation of LPL activity in adipose tissue. In conclusion, renovascular hypertension interferes in lipid metabolism by reducing LPL activity in adipose tissue, while losartan administration reverses this effect by enhancing insulin release and reducing sympathetic nervous system (SNS) stimulation.  相似文献   

9.
The carotid artery balloon injury model in rats has been well established for over two decades. It remains an important method to study the molecular and cellular mechanisms involved in vascular smooth muscle dedifferentiation, neointima formation and vascular remodeling. Male Sprague-Dawley rats are the most frequently employed animals for this model. Female rats are not preferred as female hormones are protective against vascular diseases and thus introduce a variation into this procedure. The left carotid is typically injured with the right carotid serving as a negative control. Left carotid injury is caused by the inflated balloon that denudes the endothelium and distends the vessel wall. Following injury, potential therapeutic strategies such as the use of pharmacological compounds and either gene or shRNA transfer can be evaluated. Typically for gene or shRNA transfer, the injured section of the vessel lumen is locally transduced for 30 min with viral particles encoding either a protein or shRNA for delivery and expression in the injured vessel wall. Neointimal thickening representing proliferative vascular smooth muscle cells usually peaks at 2 weeks after injury. Vessels are mostly harvested at this time point for cellular and molecular analysis of cell signaling pathways as well as gene and protein expression. Vessels can also be harvested at earlier time points to determine the onset of expression and/or activation of a specific protein or pathway, depending on the experimental aims intended. Vessels can be characterized and evaluated using histological staining, immunohistochemistry, protein/mRNA assays, and activity assays. The intact right carotid artery from the same animal is an ideal internal control. Injury-induced changes in molecular and cellular parameters can be evaluated by comparing the injured artery to the internal right control artery. Likewise, therapeutic modalities can be evaluated by comparing the injured and treated artery to the control injured only artery.  相似文献   

10.
Subendothelial invasion by leukocytes is a sign of intimal thickening in arteriosclerosis and in the response of a vessel to mechanical damage. Our study was designed to establish whether these cells are implicated in the formation of a neointima in an autologous arterial graft model in the rat and to evaluate the effects of cyclosporin A (CsA). Three study groups were established according to whether the animals were treated with CsA-Cp (Sandimmun), CsA-Et (ethanol vehicle) or received no treatment (control group). Both drug forms were administered (5 mg/kg/day, s.c.) from 4 days prior to surgery until the time of sacrifice. Antibodies specific for lymphocytes (CD4, CD8), monocytes/macrophages-ED1, smooth muscle alpha-actin and the von Willebrand factor (vWF) were used to identify the cells in the grafted arterial wall. In control grafts, the neointima had formed by 2 weeks post-implant. However, the cells comprising this layer generally presented no positivity whatsoever towards the antibodies employed. At 50 days, the new layer was observed to be formed by a vWF-positive endothelium and alpha-actin-positive cells. In all three groups, several polymorphonuclear (PMN) cells adhered to the denuded luminal surface from 7 days onwards. In the treated animals, neutrophils and monocytes were seen to infiltrate intimal and medial layers during the later post-implant stages. Around the third week post-implant, the neointima had reached the grafted segment from the distal portion of the recipient artery, and by 50 days it was similar to that seen in control specimens. Our findings suggest that: a) neutrophils play a role in neointimal thickening in this arterial autograft model; and b) CsA promotes the adhesion and infiltration of neutrophils in the injured arterial wall.  相似文献   

11.
Superoxide anion is elevated during neointima development and is essential for neointimal vascular smooth muscle cell (VSMC) proliferation. However, little is known about the role of manganese superoxide dismutase (MnSOD, SOD2) in the neointima formation following vascular injury. SOD2 in the mitochondria plays an important role in cellular defense against oxidative damage. Because of its subcellular localization, SOD2 is considered the first line of defense against oxidative stress and plays a central role in metabolizing superoxide. Because mitochondria are the most important sources of superoxide anion, we speculated that SOD2 may have therapeutic benefits in preventing vascular remodeling. In this study, we used a rat carotid artery balloon-injury model and an adenoviral gene delivery approach to test the hypothesis that SOD2 suppresses vascular lesion formation. SOD2 was activated along with the progression of neointima formation in balloon-injured rat carotid arteries. Depletion of SOD2 by RNA interference markedly promoted the lesion formation, whereas SOD2 overexpression suppressed the injury-induced neointima formation via attenuation of migration and proliferation of VSMCs. SOD2 exerts its inhibitory effect on VSMC migration induced by angiotensin II by scavenging superoxide anion and suppressing the phosphorylation of Akt. Our data indicate that SOD2 is a negative modulator of vascular lesion formation after injury. Therefore, SOD2 augmentation may be a promising therapeutic strategy for the prevention of lesion formation in proliferative vascular diseases such as restenosis.  相似文献   

12.
The pathobiologic process of arterial stenosis following balloon angioplasty continues to be an enigmatic problem in clinical settings. This research project investigates the ability of YC-1, a benzyl indazole derivative that sensitizes sGC/cGMP, to stimulate endogenous cGMP and attenuate balloon injury-induced neointima (NI) formation in the rat carotid artery. Northern and Western blot analyses revealed enhanced acute expression of iNOS and inducible heme oxygenase (HO-1) mRNA and protein in the injured artery. The contralateral uninjured artery also demonstrated acute HO-1 mRNA and protein induction without detectable iNOS expression. Perivascular application of YC-1 immediately following injury significantly stimulated acute vessel wall cGMP compared to untreated controls. YC-1 treated sections demonstrated significant reduction in NI area (-74%), NI area/medial wall area (-72%), and NI thickness (-76%) 2 weeks post-injury. These results directly implicate YC-1 as a potent new therapeutic agent capable of reducing post-angioplasty stenosis through endogenous CO- and/or NO-mediated, cGMP-dependent processes.  相似文献   

13.
The comparative morphological investigation of endothelium (E) of femoral arteries in old and young rabbits has revealed quantitative differences in the content of cells differing in their structure and function, and a four-fold increase in the number of cells having some signs of malfunction or injury in the E of old vs. young animals. These peculiarities, as well as different initial functional state of groups of cells, their location in the intima and degree of their compression during a 30 min vasoconstriction induced by angiotensin II (0.5 microgram/kg-1.min-1) predetermine a different degree of injury of endothelial cells. A phasic response of endothelial cells to angiotensin II administration, as well as slow restoration of permeability and autolysis of part of the injured endothelial cells in old animals are revealed. A peculiar pattern of the endothelial injury in old animals at a sharp increase of the blood pressure may account for the causes of the accelerated formation of fibrous-muscular thickenings and lipid strips in arteries of old rabbit at chronic hypertension.  相似文献   

14.
15.
Accumulating data support the hypothesis that reactive oxygen species (ROS) play a critical role in the vascular complications observed in diabetes. However, the mechanisms of ROS-mediated vascular complications in diabetes are not clear. We tested the hypothesis that ROS-mediated increase in proapoptotic factor Bax expression leads to medial smooth muscle cell (SMC) apoptosis that is associated with neointima formation. We used a fructose-rich diet for 4 wk to model Type 2 diabetes in rats. SOD mimetic membrane-permeable 4-hydroxy-2,2,6,6,-tetramethylpiperidine-1-oxyl (Tempol, 1 mM) was administered in drinking water to scavenge superoxide starting 1 day before surgery and continued during the duration of the experiment. Vascular injury resulted in a significant increase in medial SMC apoptosis that was associated with neointima formation. The number of medial SMC positive for Bax immunostaining significantly increased in injured arteries compared with uninjured arteries. Superoxide scavenging by Tempol treatment inhibited both the Bax-positive index as well as the apoptotic index of medial SMC in response to vascular injury. Tempol treatment inhibited apoptotic loss of medial SMC, thus increasing their density in the injured arteries. These alterations in the media were associated with a marked decrease in neointima formation in injured arteries. We conclude that Bax expression may play an important role in vascular SMC apoptosis and, finally, that this regulatory mechanism is redox sensitive.  相似文献   

16.
4 groups of male Wistar rats were studied: - normotensive control rats (4 animals) treated with s.c. water - normotensive rats (6 animals) treated with s.c. 5 mg/Kg Oxprenolol - hypertensive control rats (renal artery stenosis) (6 animals) treated with s.c. water - hypertensive rats (renal artery stenosis) (9 animals) treated with s.c. 5 mg/Kg Oxprenolol. The animals were treated and/or operated at six weeks of age and sacrificed at 12 weeks of age. Blood Pressure (BP), Heart Rate (HR), Ventricular Mass (VM) and Thickness of the Aortic Media (A Th) were determined. Oxprenolol did reduce HR but not BP in both normotensive and hypertensive rats: these animals showed a reduced A Th but not a reduced VM compared with untreated control rats. These results suggest a direct effect of Oxprenolol on A Th independently from BP values, but not on VM.  相似文献   

17.
18.
BACKGROUND: Previous studies have shown that incubation of balloon-injured rat carotid arteries with adenoviral vectors encoding the carboxyl terminus of the beta-adrenergic receptor kinase (Ad2/betaARKct) for 30 min reduces neointima formation. However, it is unclear whether this beneficial effect of betaARKct could be achieved using a catheter-based vector delivery system and whether the observed inhibition of neointima formation translated into a reduction of vessel stenosis. METHODS: In this study, Ad2/betaARKct was infused into the balloon-injured site of rabbit iliac arteries using a porous infusion catheter over 2 min. Twenty-eight days after gene transfer, angiographic and histological assessments were performed. RESULTS: Angiographic and histological assessments indicate significant (p < 0.05) inhibition of iliac artery neointima formation and lumen stenosis by Ad2/betaARKct. Our studies demonstrate that an inhibitory effect of Ad2/betaARKct on neointima formation is achievable using a catheter-based vector delivery system and that the inhibition of neointima formation translates into a gain in the vessel minimal luminal diameter. The extent of inhibition (35%) was comparable to that observed with adenoviral-mediated expression of thymidine kinase plus ganciclovir treatment, a cytotoxic gene therapy approach for restenosis. CONCLUSIONS: These results suggest that adenoviral-mediated gene transfer of betaARKct is a clinically viable cytostatic gene therapy strategy for the treatment of restenosis.  相似文献   

19.
目的:观察凝血酶调节蛋白(Thrombomodulin,TM)基因转染兔髂动脉损伤模型后,对动脉血管内膜增生狭窄的防治作用。方法:用注射式加压转染的方式对兔动脉壁转染pcDNA3.1/hTM质粒,再制造动脉损伤-阻滞模型,于术后3天、7天、14天、28天用免疫组化的方法观察TM蛋白在各组血管腔内的表达,术后14天、28天用彩色多普勒观察活体吻合口内径和血流流速;再做病理切片Verhoeff染色,观察血管内膜增生的程度、部位,计算血管内膜面积、中膜面积和血管狭窄率。结果:术后3天、7天、14天、28天hTM质粒转染组中hTM表达一直保持在高水平,7天达到高峰,14天、28天虽有所下降但是表达强度仍然高于载体质粒转染组合空白对照组。在术后14天、28天彩色多普勒观察测量吻合口内径:hTM质粒转染组分别为1.93mm±0.34mm,1.89mm±0.28mm;载体质粒转染组为1.59mm±0.43mm,1.38mm±0.28mm;空白对照组1.46mm±0.25mm,1.44mm±0.32mm。在这两个时间点,hTM质粒转染组血管狭窄率为32±23%,37±14%;载体质粒转染组为58±21%,63±17%;空白对照组为58±19%,61±23%。结论:hTM基因在转染动脉壁后能减少动脉损伤-阻滞模型在后期的血管内膜增生,改善血管的狭窄状况。  相似文献   

20.
The sympathetic nervous system has been shown to influence immune function. Angiotensin II and substance P are two neurally active peptides that have been shown to increase sympathetic nervous system activity when injected centrally. Using osmotic minipumps, we chronically infused angiotensin II (1 microgram/h) and substance P (2 micrograms/h) into the brains of intact Sprague-Dawley rats for a period of 1 month and 2 weeks, respectively. Age-matched control animals were infused with artificial cerebrospinal fluid. We then examined the effect of this infusion on the percentage of different lymphocyte populations in the peripheral blood. The angiotensin II infused animals showed an increase in the percentage of total T-cells and a decrease in the percentage of B-cells relative to controls. The substance P treated animals also showed an increase in the percentage of T-cells present, but failed to show the decrease in the B-cell population seen with the angiotensin II infused group. This study shows that the central nervous system can influence the immune system. As shown in this study, these effects are most likely mediated via the sympathetic nervous system. These results add to the expanding body of data suggesting an important role of the central nervous in regulating immune function and our susceptibility to disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号