首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rezaie AR  Sun MF  Gailani D 《Biochemistry》2006,45(31):9427-9433
The autolysis loops (amino acids 143-154, chymotrypsinogen numbering) of plasma serine proteases play key roles in determining the specificity of protease inhibition by plasma serpins. We studied the importance of four basic residues (Arg-144, Lys-145, Arg-147, and Lys-149) in the autolysis loop of the coagulation protease factor XIa (fXIa) for inhibition by serpins. Recombinant fXIa mutants, in which these residues were replaced individually or in combination with alanine, were prepared. The proteases were compared to wild-type fXIa (fXIa-WT) with respect to their ability to activate factor IX in a plasma clotting assay, to hydrolyze the chromogenic substrate S2366, and to undergo inhibition by the C1-inhibitor (C1-INH), protein Z dependent protease inhibitor (ZPI), antithrombin (AT), and alpha(1)-protease inhibitor (alpha(1)-PI). All mutants exhibited normal activity in plasma and hydrolyzed S2366 with catalytic efficiencies similar to that of fXIa-WT. Inhibition of mutants by C1-INH was increased to varying degrees relative to that of fXIa-WT, with the mutant containing alanine replacements for all four basic residues (fXIa-144-149A) exhibiting an approximately 15-fold higher rate of inhibition. In contrast, the inhibition by ZPI was impaired 2-3-fold for single amino acid substitutions, and fXIa-144-149A was essentially resistant to inhibition by ZPI. Alanine substitution for Arg-147 impaired inhibition by AT approximately 7-fold; however, other substitutions did not affect it or slightly enhanced inhibition. Arg-147 was also required for inhibition by alpha(1)-PI. Cumulatively, the results demonstrate that basic amino acids in the autolysis loop of fXIa are important determinants of serpin specificity.  相似文献   

2.
Filion ML  Bhakta V  Nguyen LH  Liaw PS  Sheffield WP 《Biochemistry》2004,43(46):14864-14872
The abundant plasma protein alpha(1)-proteinase inhibitor (alpha(1)-PI) physiologically inhibits neutrophil elastase (NE) and factor XIa and belongs to the serine protease inhibitor (serpin) protein superfamily. Inhibitory serpins possess a surface peptide domain called the reactive center loop (RCL), which contains the P1-P1' scissile peptide bond. Conversion of this bond in alpha(1)-PI from Met-Ser to Arg-Ser in alpha(1)-PI Pittsburgh (M358R) redirects alpha(1)-PI from inhibiting NE to inhibiting thrombin (IIa), activated protein C (APC), and other proteases. In contrast to either the wild-type or M358R alpha(1)-PI, heparin cofactor II (HCII) is a IIa-specific inhibitor with an atypical Leu-Ser reactive center. We examined the effects of replacement of all or part of the RCL of alpha(1)-PI with the corresponding parts of the HCII RCL on the activity and specificity of the resulting chimeric inhibitors. A series of 12 N-terminally His-tagged alpha(1)-PI proteins differing only in their RCL residues were expressed as soluble proteins in Escherichia coli. Substitution of the P16-P3' loop of alpha(1)-PI with that of HCII increased the low intrinsic antithrombin activity of alpha(1)-PI to near that of heparin-free HCII, while analogous substitution of the P2'-P3' dipeptide surpassed this level. However, gel-based complexing and quantitative kinetic assays showed that all mutant proteins inhibited thrombin at less than 2% of the rate of alpha(1)-PI (M358R) unless the P1 residue was also mutated to Arg. An alpha(1)-PI (P16-P3' HCII/M358R) variant was only 3-fold less active than M358R against IIa but 70-fold less active against APC. The reduction in anti-APC activity is desired in an antithrombotic agent, but the improvement in inhibitory profile came at the cost of a 3.5-fold increase in the stoichiometry of inhibition. Our results suggest that, while P1 Arg is essential for maximal antithrombin activity in engineered alpha(1)-PI proteins, substitution of the corresponding HCII residues can enhance thrombin specificity.  相似文献   

3.
We previously described the isolation and purification of two similar alpha 1-protease inhibitors from mouse plasma termed alpha 1-PI(E) and alpha 1-PI(T) because of their respective affinities for elastase and trypsin. Some of the biochemical and immunological properties of these proteins are reported. Both are acidic glycoproteins with pI's of 4.1-4.2. The plasma half-life of each inhibitor, determined after administration of the 125I-protein, is approximately 4 h both in normal mice and in mice after induction of the acute phase reaction. The two proteins have almost identical amino acid compositions and similar CNBr peptide maps. Tryptic maps, however, are considerably different. Reverse-phase chromatography separated alpha 1-PI(E) into three distinct isoforms, each eluting with approximately 60% acetonitrile. Under these conditions alpha 1-PI(T) shows a single peak, clearly different from those of alpha 1-PI(E). The three alpha 1-PI(E) isoforms have the same molecular weights on sodium dodecyl sulfate-gel electrophoresis and the same tripeptide sequence at their N-terminus, and appear to be immunologically identical. Polyclonal, monospecific antibodies to each native inhibitor, prepared in rabbits, showed no cross-reactivity when tested by functional assay or crossed immunoelectrophoresis. Interestingly, each antibody recognized epitopes on the C-terminal portion of its respective antigen. These studies confirm that alpha 1-PI(E) and alpha 1-PI(T), although highly similar, are products of different genes. Like human alpha 1-PI, the two mouse inhibitors are partially inactivated by mild oxidation with chloramine-T, losing all elastase inhibitor and lesser amounts of antichymotryptic and antitryptic activity. However, unlike the human protein, neither alpha 1-PI(E) nor alpha 1-PI(T) was found to have a methionine residue at its P1 site.  相似文献   

4.
5.
Expression of alpha 1 proteinase inhibitor (alpha 1-PI) in human mononuclear phagocytes may provide a local mechanism for inactivation of serine proteases at sites of tissue injury, thereby preventing incidental damage to surrounding tissue and allowing for orderly initiation of repair. We have previously shown that serine (neutrophilic or pancreatic) elastase and lipopolysaccharide (LPS) each mediate an increase in the expression of alpha 1-PI in human peripheral blood monocytes and bronchoalveolar macrophages. In this study we demonstrate that elastase and LPS have an additive positive regulatory effect on alpha 1-PI expression. Distinct pretranslational and translational mechanisms of action for elastase and LPS, respectively, account for the additive effect. The possibility that translational regulation of alpha 1-PI by LPS involves a mechanism analogous to that of the yeast gene GCN4 during amino acid starvation and that of the human ferritin gene in response to iron is discussed.  相似文献   

6.
Fusion proteins integrating dual pesticidal functions have been devised over the last 10 years to improve the effectiveness and potential durability of pest-resistant transgenic crops, but little attention has been paid to the impact of the fusion partners on the actual activity of the resulting hybrids. Here we assessed the ability of the rice cysteine protease inhibitor, oryzacystatin I (OCI), to retain its protease inhibitory potency when used as a template to devise hybrid inhibitors with dual activity against papain-like proteases and carboxypeptidase A (CPA). C-terminal variants of OCI were generated by fusing to its C-terminal end: (i) the primary inhibitory site of the small CPA inhibitor potato carboxypeptidase inhibitor (PCI, amino acids 35-39); or (ii) the complete sequence of PCI (a.a. 1-39). The hybrid inhibitors were expressed in E. coli and tested for their inhibitory activity against papain, CPA and digestive cysteine proteases of herbivorous and predatory arthropods. In contrast with the primary inhibitory site of PCI, the entire PCI attached to OCI was as active against CPA as free, purified PCI. The OCI-PCI hybrids also showed activity against papain, but the presence of extra amino acids at the C terminus of OCI negatively altered its inhibitory potency against cysteine proteases. This negative effect, although not preventing dual binding to papain and CPA, was correlated with an increased binding affinity for papain presumably due to non-specific interactions with the PCI domain. These results confirm the potential of OCI and PCI for the design of fusion inhibitors with dual protease inhibitory activity, but also point out the possible functional costs associated with protein domain grafting to recipient pesticidal proteins.  相似文献   

7.
Several variants of alpha 1-proteinase inhibitor (alpha 1-PI) were investigated by spectroscopic methods and characterized according to their inhibitory activity. Replacement of Thr345 (P14) with Arg in alpha 1-PI containing an Arg residue in position 358 (yielding [Thr345----Arg, Met358----Arg]alpha 1-PI) results in complete loss of its inhibitory activity against human alpha-thrombin; whereas an exchange of residue Met351 (P8) by Glu [( Met351----Glu, Met358----Arg]alpha 1-PI) does not alter activity. [Thr345----Arg, Met358----Arg]alpha 1-PI is rapidly cleaved by thrombin, while [Met358----Arg]alpha 1-PI and [Met351----Glu, Met358----Arg]alpha 1-PI form stable proteinase-inhibitor complexes. The stability of [Thr345----Arg, Met358----Arg]alpha 1-PI against guanidinium chloride denaturation is significantly enhanced compared to wild-type alpha 1-PI, and does not change after cleavage, resembling ovalbumin, a serpin with no inhibitory activity, from which the Thr345----Arg amino acid exchange had been derived. [Met351----Glu, Met358----Arg]alpha 1-PI and [Met358----Arg]alpha 1-PI resemble the wild-type protein in this respect. The CD spectra of intact and cleaved alpha 1-PI variants do not compare well with the wild-type protein, probably reflecting local structural differences. Insertion of a synthetic peptide, which corresponds to residues Thr345----Met358 of human alpha 1-PI, leads to the formation of binary complexes with all variants having the characteristic features of the binary complex between peptide and wild-type protein.  相似文献   

8.
The glycoprotein alpha-1-proteinase inhibitor (alpha-1-PI) is a member of the serpin super family that causes rapid and irreversible inhibition of redundant serine protease activity. A homogenous preparation of ovine alpha-1-PI, a 60 kDa protein was obtained by serially subjecting ovine serum to 40-70% (NH(4))(2)SO(4) precipitation, Blue Sepharose, size-exclusion, and concanavalin-A chromatography. Extensive insights into the trypsin, chymotrypsin, and elastase interaction with ovine alpha-1-PI, point towards the involvement of Phe(350) besides the largely conserved Met(356) in serine protease recognition and consequent inhibition. The N-terminal of C-terminal peptides cleaved on interaction with elastase, trypsin, and chymotrypsin prove the presence of diffused sub-sites in the vicinity of Met(356) and the strategically positioned Pro anchored peptide stretch. Further, human alpha-1-PI is more thermolabile compared to ovine alpha-1-PI, higher thermolability is mainly attributed to poorer glycosylation. The enzymatic deglycosylation of human and ovine alpha-1-PI results in diminished thermostability of the inhibitors, with sharp decrease in thermal transition temperatures but retaining their inhibitory potency. Homology modeling of the deduced amino acid sequence of ovine alpha-1-PI using the human alpha-1-PI template has been used to explain the observed inhibitor-protease interactions.  相似文献   

9.
A cDNA library in lambda-phage lambda gt11 containing DNA inserts prepared from human liver mRNA was screened with monoclonal antibodies to human protein C inhibitor. Six positive clones were isolated from 6 X 10(6) phages and plaque purified. The cDNA in the phage containing the largest insert, which hybridized to a DNA probe prepared on the basis of the amino-terminal amino acid sequence of the mature inhibitor, was sequenced. This cDNA insert contained 2106 base pairs coding for a 5'-noncoding region, a 19-amino acid signal peptide, a 387-amino acid mature protein, a stop codon, and a long 3'-noncoding region of 839 base pairs. Based on the amino acid sequence of the carboxyl-terminal peptide released by cleavage of protein C inhibitor by activated protein C as well as by thrombin, the reactive site peptide bond of protein C inhibitor is Arg354-Ser355. Five potential carbohydrate-binding sites were found in the mature protein. The high homology of the amino acid sequence of protein C inhibitor to the other known inhibitors clearly demonstrates that protein C inhibitor is a member of the superfamily of serine protease inhibitors including alpha 1-antichymotrypsin, alpha 1-antitrypsin, antithrombin III, ovalbumin, and angiotensinogen. Based on the difference matrices for these proteins, we present possible phylogenetic trees for these proteins.  相似文献   

10.
The specific inhibition of serine proteases, which are crucial switches in many physiologically important processes, is of value both for basic research and for therapeutic applications. Ecotin, a potent macromolecular inhibitor of serine proteases of the S1A family, presents an attractive scaffold to engineer specific protease inhibitors because of its large inhibitor-protease interface. Using synthetic shuffling in combination with a restricted tetranomial diversity, we created ecotin libraries that are mutated at all 20 amino acid residues in the binding interface. The efficacy of these libraries was demonstrated against the serine protease plasma kallikrein (Pkal). Competitive phage display selection yielded a Pkal inhibitor with an apparent dissociation equilibrium constant (K(i)*) of 11 pM, whereas K(i)* values for related proteases (such as Factor Xa (FXa), Factor XIa (FXIa), urokinase-type plasminogen activator (uPA), thrombin, and membrane-type serine protease 1 (MT-SP1)) were four to seven orders of magnitude higher. The adaptability of the scaffold was demonstrated by the isolation of inhibitors to two additional serine proteases, MT-SP1/matriptase and Factor XIIa.  相似文献   

11.
A novel proteinaceous protease inhibitor was isolated from the culture supernatant of Bacillus brevis HPD31. The protease inhibitor of B. brevis (designated BbrPI) was produced extracellularly in multiple forms having at least three different molecular weights. One of them, BbrPI-a, was purified to near homogeneity and only showed inhibitory activity toward serine proteases, such as trypsin, chymotrypsin, and subtilisin. BbrPI was presumed to form a trypsin-inhibitor complex in a molar ratio of 1:1. The inhibitor was found to be heat resistant at neutral and acidic pHs. The gene coding for BbrPI was cloned into Escherichia coli, and its nucleotide sequence was determined. The sequence suggested that BbrPI is produced with a signal peptide of 24 amino acid residues. The amino acid sequence of the protein deduced from the DNA sequence contained the amino acid sequences of amino termini of the inhibitors, a, b, and c, and their putative precursor determined chemically. The molecular weight of the precursor was about 33,000, and the molecular weights of inhibitors a, b, and c were about 22,000, 23,500, and 24,000, respectively. It is presumed that the secreted precursor protein, which is probably inactive, is cleaved by protease into several active protease inhibitor molecules. BbrPI shows no significant homology to the protease inhibitors described previously and is unique in not having any cysteine residues in its molecule.  相似文献   

12.
Two similar but distinct forms of α1-protease inhibitor (α1-PI) have been isolated and purified 120-fold to homogeneity from the plasma of female, white Swiss (Ha/ICR) mice. The two inhibitors can be separated by chromatography on DEAE-cellulose using a shallow NaCl gradient at pH 8.9 for elution. Because of their differing specificities for elastase and trypsin we have labeled the two inhibitors α1-PI(E) and α1-PI(T), respectively. The apparent Mr for both proteins, as estimated by gel exclusion chromatography, is approximately 53,000 daltons. However by polyacrylamide gel electrophoresis in the presence of SDS, α1-PI(T) has an apparent mr of 65,000 while the apparent mr of α1-PI(E) is 55,000. These results suggest differences in charge and carbohydrate composition. The two mouse inhibitors also have different AT-terminal amino acids. Like human α1-PI the mouse inhibitors form stable complexes with proteases. However they differed from human α1-PI in that they were not found to neutralize either human thrombin or plasmin. While α1-PI(E) inhibits bovine pancreatic trypsin, chymotrypsin, and porcine pancreatic elastase, α1-PI(T) is an effective inhibitor only of trypsin. Plasma levels of α1-PI(E) increase significantly 24 h after stimulation of the acute phase reaction while those of α1-PI(T) do not. Our data suggest that α1-PI(E) and α1-PI(T) are products of different genes.  相似文献   

13.
Prostate-specific antigen (PSA), produced by prostate cells, provides an excellent serum marker for prostate cancer. It belongs to the human kallikrein family of enzymes, a second prostate-derived member of which is human glandular kallikrein-1 (hK2). Active PSA and hK2 are both 237-residue kallikrein-like proteases, based on sequence homology. An hK2 model structure based on the serine protease fold is presented and compared to PSA and six other serine proteases in order to analyze in depth the role of the surface-accessible loops surrounding the active site. The results show that PSA and hK2 share extensive structural similarity and that most amino acid replacements are centered on the loops surrounding the active site. Furthermore, the electrostatic potential surfaces are very similar for PSA and hK2. PSA interacts with at least two serine protease inhibitors (serpins): alpha-1-antichymotrypsin (ACT) and protein C inhibitor (PCI). Three-dimensional model structures of the uncleaved ACT molecule were developed based upon the recent X-ray structure of uncleaved antithrombin. The serpin was docked both to PSA and hK2. Amino acid replacements and electrostatic complementarities indicate that the overall orientation of the proteins in these complexes is reasonable. In order to investigate PSA's heparin interaction sites, electrostatic computations were carried out on PSA, hK2, protein C, ACT, and PCI. Two heparin binding sites are suggested on the PSA surface and could explain the enhanced complex formation between PSA and PCI, while inhibiting the formation of the ACT-PSA complex, PSA, hK2, and their preliminary complexes with ACT should facilitate the understanding and prediction of structural and functional properties for these important proteins also with respect to prostate diseases.  相似文献   

14.
The major inhibitor of trypsin in seeds of Prosopsis juliflora was purified by precipitation with ammonium sulphate, ion-exchange column chromatography on DEAE- and CM-Sepharose and preparative reverse phase HPLC on a Vydac C-18 column. The protein inhibited trypsin in the stoichiometric ratio of 1:1, but had only weak activity against chymotrypsin and did not inhibit human salivary or porcine pancreatic alpha-amylases. SDS-PAGE indicated that the inhibitor has a Mr of ca 20,000, and IEF-PAGE showed that the pI is 8.8. The complete amino acid sequence was determined by automatic degradation, and by DABITC/PITC microsequence analysis of peptides obtained from enzyme digestions of the reduced and S-carboxymethylated protein with trypsin, chymotrypsin, elastase, the Glu-specific protease from S. aureus and the Lys-specific protease from Lysobacter enzymogenes. The inhibitor consisted of two polypeptide chains, of 137 residues (alpha chain) and 38 residues (beta chain) linked together by a single disulphide bond. The amino acid sequence of the protein exhibited homology with a number of Kunitz proteinase inhibitors from other legume seeds, the bifunctional subtilisin/alpha-amylase inhibitors from cereals and the taste-modifying protein miraculin.  相似文献   

15.
The plasma protein alpha 2-antiplasmin is the main physiological inhibitor of the serine protease plasmin, which is responsible for the dissolution of fibrin clots. We have determined the primary structure of mature human alpha 2-antiplasmin by DNA sequencing of overlapping cDNA fragments prepared from human liver mRNA. cDNA clones were identified by hybridization with a 48-base pair deoxyoligonucleotide probe deduced from the sequence of a 16-amino acid peptide of alpha 2-antiplasmin. Mature human alpha 2-antiplasmin contains 452 amino acids. It is homologous (23-28%) with five other proteins belonging to the serine protease inhibitor (serpin) superfamily. Its reactive site, i.e. the peptide bond cleaved by reaction with its primary target enzyme, plasmin, consists of Arg364-Met365. This dipeptide corresponds to the reactive site Met358-Ser359 of the archetypal serpin, alpha 1-antitrypsin.  相似文献   

16.
Due to the action of a serum protease, the two most cathodal isoinhibitors of the alpha 1-proteinase inhibitor (alpha 1-PI) are cleaved at the Gly5-Asp6 bond and lack two negative charges. In spite of this, these can bind trypsin and chymotrypsin, showing that the N-terminal pentapeptide is not indispensable for inhibition function. Pancreatic proteases also cleave a bond near the N-terminus in alpha 1-PI, resulting in a loss of two negative charges and a corresponding cathodal shift in the electrofocusing behavior of the isoinhibitors. Trypsin cleaves isoinhibitors near the N-terminus at a large inhibitor excess and unless an additional cleavage takes place, at least two of the new isoinhibitors remain active. An additional cleavage(s), most likely at a distance of 30-40 residues from the C-terminus results in a corresponding decrease of the molecular mass and a loss of inhibition function. Although the C-terminal cleavage peptide does separate from the protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, it remains associated with it under conditions of polyacrylamide gel isoelectric focusing. Chymotrypsin also cleaved alpha 1-PI near the N-terminus but this could be observed only at protease excess and the modified isoinhibitors did not form complexes with chymotrypsin. The molecular polymorphism of alpha 1-PI is partly explained by the absence of the N-terminal pentapeptide from some of the isoinhibitors.  相似文献   

17.
When the extent of plasminogen activation by staphylokinase (SAK) or streptokinase (SK) was measured in human plasma, SAK barely induced plasminogen activation, whereas SK activated plasminogen significantly. When the plasma was clotted with thrombin, the plasminogen activation by SAK was markedly enhanced, but that of SK was little enhanced. Similarly, in a purified system composed of plasminogen, fibrinogen and alpha 2-plasmin inhibitor (alpha 2-PI, alpha 2-antiplasmin), such a fibrin clot increased the activity of SAK significantly. However, when alpha 2-PI was removed from the reaction system, enhancement of the SAK reaction was not observed. In addition, SAK as distinct from SK, showed very little interference with the action of alpha 2-PI. Plasminogen activation by SAK is thus essentially inhibited by alpha 2-PI, but this reaction is not inhibited in fibrin clots. These results suggest that SAK forms a complex with plasminogen, which binds to fibrin and induces fibrinolysis.  相似文献   

18.
The identification of specific amino acid residues involved in protein-protein interaction is fundamental to understanding structure-function relationships. Supported by mathematical calculations, we designed a high-density mutagenesis procedure for the generation of a mutant library of which a limited number of random clones would suffice to exactly localize amino acid residues essential for a particular protein-protein interaction. This goal was achieved experimentally by consecutive cycles of DNA shuffling, under error prone conditions, each followed by exposure of the target protein on the surface of phages to screen and select for correctly folded, functional mutants. To validate the procedure, human plasminogen activator inhibitor 1 (PAI-1) was chosen, because its 3D structure is known, many experimental tools are available and it may serve as a model protein for structure-function studies of serine proteinases and their inhibitors (serpins). After five cycles of DNA shuffling and selection for t-PA binding, analysis of 27 randomly picked clones revealed that PAI-1 mutants contained an average of 9.1 amino acid substitutions distributed over 114 different positions, which were preferentially located at the surface of the protein. This limited collection of mutant PAI-1 preparations contained multiple mutants defective in binding to three out of four tested anti-PAI-1 monoclonal antibodies. Alignment of the nucleotide sequence of defective clones permitted assignment of single dominant amino acid residues for binding to each monoclonal antibody. The importance of these residues was confirmed by testing the properties of single point mutants. From the position of these amino acid residues in the 3D structure of PAI-1 and the effects of the corresponding monoclonal antibodies on t-PA-PAI-1 interaction, conclusions can be drawn with respect to this serpin-serine proteinase interaction.  相似文献   

19.
The interaction of duodenase, a new serine protease from a small group of Janus-faced proteases, with serpins, alpha 1-protease inhibitor (alpha 1-PI) and antichymotrypsin (ACT) from human blood serum, was studied. The stoichiometry of the inhibition process was found to be 1.2 and 1.3 mol/mol for alpha 1-PI and ACT, respectively. The presence of a stable enzyme-inhibitory complex duodenase-alpha 1-PI was confirmed by SDS-PAGE. No formation of the duodenase-ACT complex was demonstrated; instead, the band of the cleaved inhibitor was indicated upon the ACT hydrolysis. The suicide mechanism of the duodenase interaction with the human blood serpins was proved. The association rate constants (Ka, M-1 s-1) were 2.4 +/- 0.3 x 10(5) for alpha 1-PI and 3.0 +/- 0.4 x 10(5) for ACT. These results indicate the possibility of the regulation of duodenase activity by endogenous serpins. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2003, vol. 29, no. 6; see also http://www.maik.ru.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号