首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We constructed several well-defined mutations in the nonstructural portion of the poliovirus type I (Mahoney strain) genome by making small insertions in an infectious cDNA clone. The derived viral strains carrying the mutations exhibited a variety of distinct plaque phenotypes. Thus, we were able to examine genetic complementation between different pairs of mutants by comparing the yields of progeny virus in mixed and single infections. Two mutants bearing lesions in the 2A and 3A regions of the genome, which are defective in the inhibition of host cell translation and the synthesis of viral RNA, respectively, could be rescued efficiently by genetic complementation; three replication-deficient mutants containing insertions in the 2B, 3D (replicase), and 3'-untranslated regions could not. Both the 2A and 3A mutants could be rescued by each other and by all of the other mutants tested. Because yield enhancement was apparent well before the completion of a single infectious cycle, it is likely that complementation of both mutants involved early diffusion of functional products. These data provide the first unambiguous evidence that the nonstructural portion of the poliovirus genome contains multiple complementation groups. The data also suggest that certain nonstructural functions act only in cis.  相似文献   

2.
Wild-type bacteriophage T4 was enriched for mutants which fail to degrade Escherichia coli deoxyribonucleic acid (DNA) by the following method. E. coli B was labeled in DNA at high specific activity with tritiated thymidine ((3)H-dT) and infected at low multiplicity with unmutagenized T4D. At 25 min after infection, the culture was lysed and stored. Wild-type T4 degrades the host DNA and incorporates the (3)H-dT into the DNA of progeny phage; mutants which fail to degrade the host DNA make unlabeled progeny phage. Wild-type progeny are eventually inactivated by tritium decay; mutants survive. Such mutants were found at a frequency of about 1% in the survivors. Eight mutants are in a single complementation group called denA located near gene 63. Four of these mutants which were examined in detail leave the bulk of the host DNA in large fragments. All eight mutants exhibit much less than normal T4 endonuclease II activity. The mutants produce somewhat fewer phage and less DNA than does wild-type T4.  相似文献   

3.
Five temperature-sensitive mutants of simian virus 40 containing two temperature-sensitive mutations were isolated. The double mutant of the A and D complementation groups, like the D mutants, failed to complement by conventional complementation analysis and did not induce host DNA synthesis at 40 degrees C. However, under conditions that suppressed the D defect, the A:D double mutant expressed only the A defect. Thus, viral DNA replication dropped rapidly after this mutant was shifted from permissive to restrictive temperatures. The A:D double mutant failed to transfrom at the restrictive temperature when subconfluent Chinese hamster lung monolayers were used. Double mutants of A:B, A:C, and A:BC complementation groups, like their A parent, were defective in viral DNA replication, in the induction of host DNA synthesis and in the transformation of secondary Chinese hamster lung cells at the nonpermissive temperature.  相似文献   

4.
The purpose of the experiments described was to identify X chromosome genes functioning mainly or exclusively during oogenesis. Two mutagenesis experiments were carried out with ethyl methane sulfonate. Following treatment inducing 60% lethals, 9% of the treated X chromosomes carried a female sterility mutation which did not otherwise seriously affect viability. Among —95 isolated mutants, 19 were heat-sensitive and 5 cold-sensitive. The mutants have been classified as follows: I (16 mutants; 12 complementation groups): the females laid few or no eggs; the defect concerned either ovulation or oogenesis. II (37 mutants; 18 complementation groups): the female laid morphologically abnormal eggs, often with increased membrane permeability. III A (13 mutants; at least 8 complementation groups): the homozygous females were sterile if mated to mutant males; their progeny (homo- and hemizygous) died at a late embryonic stage (11 mutants), at the larval stage (1 mutant) or at the pupal stage (1 mutant). However fertility was partly restored by breeding to wild-type males as shown by survival of some heterozygous descendants. III B (29 mutants; 22 complementation groups): the fertility of the females was not restored by breeding to a wild-type male. Most of the eggs of 13 of the mutants died at a late stage of embryogenesis. The eggs of the others ceased development earlier or, perhaps, remained unfertilized. The distribution of the number of mutants per complementation group led to an estimation of a total of about 150 X-linked genes involved in female fertility. The females of three mutants, heat-sensitive and totally sterile at 29°, produced at a lower temperature descendants morphologically abnormal or deprived of germ cells. Three other mutants not described in detail showed a reduction in female fertility with many descendants lacking germ cells. A desirable mutant which was not recovered was one with normal fertile females producing descendants which, regardless of their genotype, bore specific morphological abnormalities. The value of the mutants isolated for analysis of the complex processes leading to egg formation and initiation of development is discussed.  相似文献   

5.
Cold-sensitive bacteriophage phiX174 mutants, another class of conditional lethals, were examined with regard to growth parameters, DNA synthesis, and particle properties. Two mutants, cs70 and cs82, were examined. Mutant cs70 was eclipse defective, showing altered eclipse kinetics at permissive temperature (40 C) and failing entirely to eclipse at restrictive temperature (25 C). Mutant cs70 replicated well at 25 C if allowed prior eclipse at 40 C. Mutant cs82 had wild-type eclipse at both temperatures but was defective in single-strand synthesis at 25 C, which led to delayed progeny phage appearance, decreased progeny phage synthesis rate, and greatly reduced burst size. The cs82 block could not be bypassed by temperature shift. Since complementation analysis of cs70 and cs82 was not feasible due to the unique properties of these mutants, those phiX174 properties affected by the virus coat were examined as an index of a mutation in a coat protein gene. Mutant cs70 had aberrant attachment kinetics at both 25 C and 40 C, evidence of a coat protein alteration. Mutant cs70 also exhibited significantly decreased thermal stability, further evidence of an altered virus structure. Mutant cs82 had increased thermal stability, but the difference was not sufficient to allow unequivocal assignment of this mutant to a coat protein gene. Both mutants had wild-type antiserum inactivation and host range, although cs70 was subject to less of (low-level) plating restriction by endogenous F(+) factors.  相似文献   

6.
The temperature dependence of the virion-associated polymerase activity of six temperature-sensitive (ts) mutants of vesicular stomatitis virus (tsW10, 11, 14, 16B, 28, and 29) has been examined in vitro and compared to the heat-resistant parent (HR). The polymerase of five of the mutants (tsW10, 11, 14, 16B, and 28) appears to be significantly more ts than that of HR. Because certain pairs of these five mutants can complement each other's in vitro polymerase activity, it appears that in vitro some components involved in the polymerase of one virion can be utilized by another virion. Examination of 19 revertants of tsW11 and tsW16B which had regained their ability to replicate at 38 C showed that their in vitro polymerase activity had also become less ts. Furthermore, it was found that the pairs of mutants which showed in vitro complementation of polymerase activity at 38 C were those which had shown complementation in yielding infectious progeny in mixedly infected cells. These two observations suggest that the ts behavior of the in vitro polymerase activity of the five mutants is related to their inability to replicate at the nonpermissive temperature.  相似文献   

7.
Amber mutants of bacteriophage BF23 were classified into two functional groups, types I and II, by the yields of the infecting-mutant genotypes in plate complementation tests. Type I mutants produced their genotypes at levels more than 20% of the total progeny phages, and type II mutants did so at levels of less than 5%. Comparison of the results of plate complementation tests with those of extract complementation tests revealed that all the type I mutants were defective in the tail formation, while most type II mutants were defective in the formation of either mature heads (type IIa) or both mature heads and tails (type IIb). Since in extract complementation tests the activated phages are always of genotypes corresponding to mutations defective in only the tail formation, the plate complementation test is comparable with the extract complementation test when judged on the basis of the yield of the mutant genotypes. Of 29 complementation groups, 8 type I, 14 type IIa, and 5 type IIb mutants were identified. Previously, amber mutations of BF23 were mapped on four genetic segments. These segments were ordered in one linkage map by crosses between deletion and amber mutants.  相似文献   

8.
B Yu  G D Thompson  P Yip  P L Howell  A R Davidson 《Biochemistry》2001,40(51):15581-15590
Argininosuccinate lyase (ASL) is a homotetrameric enzyme that catalyzes the reversible cleavage of argininosuccinate to arginine and fumarate. Deficiencies in the enzyme result in the autosomal, recessive disorder argininosuccinic aciduria. Considerable clinical and genetic heterogeneity is associated with this disorder, which is thought to be a consequence of the extensive intragenic complementation identified in patient strains. Our ability to predict genotype-phenotype relationships is hampered by the current lack of understanding of the mechanisms by which complementation can occur. The 3-dimensional structure of wild-type ASL has enabled us to propose that the complementation between two ASL active site mutant subunits, Q286R and D87G, occurs through a regeneration of functional active sites in the heteromutant protein. We have reconstructed this complementation event, both in vivo and in vitro, using recombinant proteins and have confirmed this hypothesis. The complementation events between Q286R and two nonactive site mutants, M360T and A398D, have also been characterized. The M360T and A398D substitutions have adverse effects on the thermodynamic stability of the protein. Complementation between either the M360T or the A398D mutant and the stable Q286R mutant occurs through the formation of a more stable heteromeric protein with partial recovery of catalytic activity. The detection and characterization of a novel complementation event between the A398D and D87G mutants has shown how complementation in patients with argininosuccinic aciduria may correlate with the clinical phenotype.  相似文献   

9.
A number of the temperature-sensitive mutants of Sindbis virus originally isolated and characterized by Burge and Pfefferkorn (1966, 1968) were reexamined for their abilities to grow and complement one another in cultured BHK-21 and Aedes albopictus (mosquito) cells. The response of the mutants to conditions of high and low temperature was similar in cultured cells of both the vertebrate and invertebrate hosts. Complementation experiments in BHK-21 cells produced growth patterns similar to those described by Burge and Pfefferkorn for chicken embryo fibroblast cells (1966) and placed the mutants into six nonoverlapping complementation groups. When examined in the cultured mosquito cells, only three of the nine mutants used in this study demonstrated complementation under a variety of experimental conditions. Homologous interference experiments demonstrated that the unusual patterns of complementation obtained in the A. albopictus cells did not result from an inefficient infection of the invertebrate cells by the mutants.  相似文献   

10.
Temperature-sensitive mutants of herpes simplex virus type 1 belonging to four DNA- complementation groups exhibited two distinct patterns of viral DNA synthesis after shift-up to the nonpermissive temperature. In cultures infected with mutants belonging to complementation groups A, C, and D, little or no viral DNA was synthesized after shift-up. In cultures infected with a mutant in complementation group B, nearly normal amounts of viral DNA were synthesized after shift-up.  相似文献   

11.
Different temperature-sensitive mutants of vesicular stomatitis virus have been characterized in terms of their ability to induce synthesis of viral ribonucleic acid (RNA) in BHK-21 cells at 39 C (the restrictive temperature for these mutants). Mutants belonging to complementation groups I and IV (and probably II) did not induce actinomycin-resistant RNA synthesis in infected cells incubated at 39 C. All three mutants comprising complementation group III induced viral RNA synthesis at 39 C. The temperature sensitivity of the defective viral functions has also been studied by temperature-shift experiments. The functions associated with the mutants of groups I, II, and IV were required early, whereas the function associated with the group III mutants was not required until a late stage of the viral cycle. The heat sensitivity of extracellular virion was not correlated with complementation group.  相似文献   

12.
Host DNA synthesis is induced when CV-1 (monkey kidney) cell cultures are infected at 40 C with wild-type virions or with temperature-sensitive Simian virus 40 mutants of the "early" complementation group A. Host DNA synthesis is not induced when cultures are infected with mutants of the late complementation group D. The simplest explanation for these observations, that induction depends not upon the expression of some early gene function but rather on the presence of an active D protein in the infecting virion, has been examined. Indirect experiments suggest that this explanation is not correct. Moreover, the induction of host DNA synthesis is impaired when cultures are infected with mutants of the A group at 42.5 C rather than 40 C, suggesting that the A function may be responsible for host induction. The inability of D virions to induce host DNA synthesis may reflect their inability to "uncoat" at 40C.  相似文献   

13.
Fifteen temperature-sensitive mutants of the RSN-2 strain of respiratory syncytial virus have been classified into six complementation groups, two of which appeared to be homologous with two of the three complementation groups of the A2 strain described by Wright et al. (P. F. Wright, M. A. Gharpure, D. S. Hodes, and R. M. Chanock, Arch. Gesamte Virusforsch, 41:238--247). Thus seven complementation groups of respiratory syncytial virus, designated A, B, C, D, E, F, and G, have been defined. The frequency and type of mutant isolated varied according to strain; group C was unique to the A2 strain, and groups D, E, F, and G were unique to the RSN-2 strain. The highest complementation indexes were obtained by preincubation for 7 h at permissive temperature, followed by incubation at restrictive temperature for 40 to 50 h in the case of A2 strain mutants or 80 to 90 h for RSN-2 strain mutants. Genetic recombination was not detected.  相似文献   

14.
Fifty temperature-sensitive mutants, which replicate at 32 degrees C but not at 39.5 degrees C, were isolated after mutagenesis of the vaccine strain of adenovirus type 7 with hydroxylamine (mutation frequency of 9.0%) or nitrous acid (mutation frequency of 3.8%). Intratypic complementation analyses separated 46 of these mutants into seven groups. Intertypic complementation tests with temperature-sensitive mutants of adenovirus type 5 showed that the mutant in complementation group A failed to complement H5ts125 (a DNA-binding protein mutant), that mutants in group B and C did not complement adenovirus type 5 hexon mutants, and that none of the mutants was defective in fiber production. Further phenotypic characterization showed that at the nonpermissive temperature the mutant in group A failed to make immunologically reactive DNA-binding protein, mutants in groups B and C were defective in transport of trimeric hexons to the nucleus, mutants in groups D, E, and F assembled empty capsids, and mutants in group G assembled DNA-containing capsids as well as empty capsids. The mutants of the complementation groups were physically mapped by marker rescue, and the mutations were localized between the following map coordinates: groups B and C between 50.4 and 60.2 map units (m.u.), groups D and E between 29.6 and 36.7 m.u., and group G between 36.7 and 42.0 m.u. or 44.0 and 47.0 m.u. The mutant in group A proved to be a double mutant.  相似文献   

15.
M V Haspel  R Duff    F Rapp 《Journal of virology》1975,16(4):1000-1009
Twenty-four genetically stable temperature-sensitive mutants of measles virus were isolated after mutangenesis by 5-azacytidine, 5 fluorouracil, or proflavine. The restricted replication of all mutants at 39 C was blocked subsequent to cell penetration and could not be attributed to heat inactivation of virus infectivity. Complementation analysis was made possible through the use of poly-L-ornithine. The members of one complementation group exhibited wild-type RNA synthesis at the nonpermissive temperature and induced the synthesis of virus antigens. These mutants were found defective in both hemolysin antigen synthesis and cell fusion "from within," supporting the unitary hypothesis for these functions. The members of the other two complementation groups synthesized neither virion RNA nor detectable virus antigens at the nonpermissive temperature.  相似文献   

16.
BHK-21 cells infected with temperature-sensitive mutants of Sindbis virus in complementation groups D and E differed in their appearance under nonpermissive conditions. Cells infected at nonpermissive temperature with virus defective in complementation group E had nucleocapsids attached in large numbers to the inside surface of the host plasma membrane. Infection with a group D mutant produced nucleocapsids that did not attach to the plasma membrane but rather remained free in the cell cytoplasm.  相似文献   

17.
Ishii K  Moss B 《Journal of virology》2001,75(4):1656-1663
Previous analyses of randomly generated, temperature-sensitive vaccinia virus mutants led to the mapping of DNA synthesis negative complementation groups to the B1R, D4R, D5R, and E9L genes. Evidence from the yeast two-hybrid system that the D4R and D5R proteins can interact with the A20R protein suggested that A20R was also involved in DNA replication. We found that the A20R gene was transcribed early after infection, consistent with such a role. To investigate the function of the A20R protein, targeted mutations were made by substituting alanines for charged amino acids occurring in 11 different clusters. Four mutants were not isolated, suggesting that they were lethal, two mutants exhibited no temperature sensitivity, two mutants exhibited partial temperature sensitivity, and two mutants formed no plaques or infectious virus at 39 degrees C. The two mutants with stringent phenotypes were further characterized. Temperature shift-up experiments indicated that the crucial period was between 6 and 12 h after infection, making it unlikely that the defect was in virus entry, early gene expression, or a late stage of virus assembly. Similar patterns of metabolically labeled viral early proteins were detected at permissive and nonpermissive temperatures, but one mutant showed an absence of late proteins under the latter conditions. Moreover, no viral DNA synthesis was detected when cells were infected with either stringent mutant at 39 degrees C. The previous yeast two-hybrid analysis together with the present characterization of A20R temperature-sensitive mutants suggested that the A20R, D4R, and D5R proteins are components of a multiprotein DNA replication complex.  相似文献   

18.
Various mutants were isolated from a microvirid (isometric single-stranded DNA) phage alpha 3, by mutagenesis with hydroxylamine or nitrous acid. They were divided into eight complementation groups, and mainly by genetic crosses the gene alignment was determined as -A-B-C'-D-J'-F-G-H-. Except for groups C' and J', each defective gene product was clearly discerned in electropherograms of proteins extracted from the phage-infected suppressor-negative (Su-) Escherichia coli. Only gene A mutants abolished synthesis of the progeny replicative-form DNA (RF), whereas mutants belonging to groups B, C', D, E, F and J' affected RF replication at late stage, as well as synthesis of the single-stranded DNA (SS). Additional properties of several mutants are also discussed.  相似文献   

19.
20.
Temperature-sensitive mutants of simian virus 40 (SV40) have been classified as those that are blocked prior to viral DNA synthesis at the restrictive temperature, "early" mutants, and those harboring a defect later in the replication cycle, "late" mutants. Mutants of the A and D complementation groups are early, those of the B, C, and BC groups are late. Our results confirm earlier reports that A mutants are defective in a function required for the initiation of each round of viral DNA synthesis. D mutants, on the other hand, continue viral DNA replication at the restrictive temperature after preincubation at the permissive temperature. The length of time required for D function to be expressed at the permissive temperature-after which infection proceeds unabated on shifting of the cultures to the restrictive temperature-is 10 to 20 h. The viral DNA synthesized in D mutants under these conditions progresses in normal fashion through replicative intermediate molecules to mature component I and II DNA molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号