首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinesin family member BimC has a highly positively charged domain of approximately 70 amino acids at the N terminus of the motor domain. Motor domain constructs of BimC were prepared with and without this extra domain to determine its influence. The level of microtubules needed for half saturation of the ATPase of BimC motor domain constructs is reduced by approximately 7000-fold at low ionic strength upon addition of this extra N-terminal extension. Although the change in microtubule affinity is less at higher salt, addition of the N-terminal domain still produces a 20-fold increase in affinity for microtubules in 200 mm potassium acetate. A fusion protein of the N-terminal domain and thioredoxin binds tightly to MTs at low salt, consistent with the increased affinity of motor domain constructs (which contain the N-terminal domain) being due to the additional binding of the N-terminal domain to the microtubule. Hydrodynamic analysis indicates that the N-terminal extension is in a highly extended conformation, suggesting that it may be intrinsically disordered. Fusion of the N-terminal extension of BimC onto the motor domain of conventional kinesin produces a similar large increase in microtubule affinity without significant reduction in kcat or velocity in an in vitro motility assay, suggesting that the N-terminal extension can act in a modular manner to increase the microtubule affinity of kinesin motor domains without a decrease in velocity.  相似文献   

2.
The emerging kinesin family of microtubule motor proteins.   总被引:17,自引:0,他引:17  
A family of proteins related to the microtubule motor, kinesin, is emerging. Members of this family, which includes both plus- and minus-end motors, are involved in nuclear functions such as nuclear fusion after karyogamy, spindle pole-body separation and chromosome segregation, as well as in transport in neuronal cells.  相似文献   

3.
The human kinetochore is a highly complex macromolecular structure that connects chromosomes to spindle microtubules (MTs) in order to facilitate accurate chromosome segregation. Centromere-associated protein E (CENP-E), a member of the kinesin superfamily, is an essential component of the kinetochore, since it is required to stabilize the attachment of chromosomes to spindle MTs, to develop tension across aligned chromosomes, to stabilize spindle poles and to satisfy the mitotic checkpoint. Here we report the 2.5A resolution crystal structure of the motor domain and linker region of human CENP-E with MgADP bound in the active site. This structure displays subtle but important differences compared to the structures of human Eg5 and conventional kinesin. Our structure reveals that the CENP-E linker region is in a "docked" position identical to that in the human plus-end directed conventional kinesin. CENP-E has many advantages as a potential anti-mitotic drug target and this crystal structure of human CENP-E will provide a starting point for high throughput virtual screening of potential inhibitors.  相似文献   

4.
Neurospora crassa kinesin NcKin3 belongs to a unique fungal-specific subgroup of small Kinesin-3-related motor proteins. One of its functions appears to be the transport of mitochondria along microtubules. Here, we present the X-ray structure of a C-terminally truncated monomeric construct of NcKin3 comprising the motor domain and the neck linker, and a 3-D image reconstruction of this motor domain bound to microtubules, by cryoelectron microscopy. The protein contains Mg.ADP bound to the active site, yet the structure resembles an ATP-bound state. By comparison with structures of the Kinesin-3 motor Kif1A in different nucleotide states (Kikkawa, M. et al. (2001) Nature (London, U.K.) 411, 439-445), the NcKin3 structure corresponds to the AMPPCP complex of Kif1A rather than the AMPPNP complex. NcKin3-specific differences in the coordination of the nucleotide and asymmetric interactions between adjacent molecules in the crystal are discussed in the context of the unusual kinetics of the dimeric wild-type motor and the monomeric construct used for crystal structure analysis. The NcKin3 motor decorates microtubules at a stoichiometry of one head per alphabeta-tubulin heterodimer, thereby forming an axial periodicity of 8 nm. In spite of unusual extensions at the N-terminus and within flexible loops L2, L8a, and L12 (corresponding to the K-loop of monomeric kinesins), the microtubule binding geometry is similar to that of other members of the kinesin family.  相似文献   

5.
We studied the fluctuation in the translational sliding movement of microtubules driven by kinesin in a motility assay in vitro. By calculating the mean-square displacement deviation from the average as a function of time, we obtained motional diffusion coefficients for microtubules and analyzed the dependence of the coefficients on microtubule length. Our analyses suggest that 1) the motional diffusion coefficient consists of the sum of two terms, one that is proportional to the inverse of the microtubule length (as the longitudinal diffusion coefficient of a filament in Brownian movement is) and another that is independent of the length, and 2) the length-dependent term decreases with increasing kinesin concentration. This latter term almost vanishes within the length range we studied at high kinesin concentrations. From the length-dependence relationship, we evaluated the friction coefficient for sliding microtubules. This value is much larger than the solvent friction and thus consistent with protein friction. The length independence of the motional diffusion coefficient observed at sufficiently high kinesin concentrations indicates the presence of correlation in the sliding movement fluctuation. This places significant constraint on the possible mechanisms of the sliding movement generation by kinesin motors in vitro.  相似文献   

6.
Single kinesin motor molecules were observed to buckle the microtubules along which they moved in a modified in vitro gliding assay. In this assay a central portion of the microtubule was clamped to the glass substrate via biotin-streptavidin bonds, while the plus end of the microtubule was free to interact with motors adsorbed at low density to the substrate. A statistical analysis of the length of microtubules buckled by single motors showed a decreasing probability of buckling for loads greater than 4-6 pN parallel to the filament. This is consistent with kinesin stalling forces found in other experiments. A detailed analysis of some buckling events allowed us to estimate both the magnitude and direction of the loading force as it developed a perpendicular component tending to pull the motor away from the microtubule. We also estimated the motor speed as a function of this changing vector force. The kinesin motors consistently reached unexpectedly high speeds as the force became nonparallel to the direction of motor movement. Our results suggest that a perpendicular component of load does not hinder the kinesin motor, but on the contrary causes the motor to move faster against a given parallel load. Because the perpendicular force component speeds up the motor but does no net work, perpendicular force acts as a mechanical catalyst for the reaction. A simple explanation is that there is a spatial motion of the kinesin molecule during its cycle that is rate-limiting under load; mechanical catalysis results if this motion is oriented away from the surface of the microtubule.  相似文献   

7.
Polarized growth in filamentous fungi requires the integrity of the microtubule (MT) cytoskeleton. We found that growing MTs in Aspergillus nidulans merge at the center of fast growing tips and discovered that a kinesin motor protein, KipA, related to Tea2p of Schizosaccharomyces pombe, is required for this process. In a DeltakipA strain, MT plus ends reach the tip but show continuous lateral movement. Hyphae lose directionality and grow in curves, apparently due to mislocalization of the vesicle supply center (Spitzenk?rper) in the apex. Green fluorescent protein (GFP)-KipA accumulates at MT plus ends, whereas a KipA rigor mutant protein, GFP-KipA(G223E), coated MTs evenly. These findings suggest that KipA requires its intrinsic motor activity to reach the MT plus end. Using KipA as an MT plus-end marker, we found bidirectional organization of MTs and determined the locations of microtubule organizing centers at nuclei, in the cytoplasm, and at septa.  相似文献   

8.

Background

Neurons require precise cytoskeletal regulation within neurites, containing microtubule tracks for cargo transport in axons and dendrites or within synapses containing organized actin. Due to the unique architecture and specialized function of neurons, neurons are particularly susceptible to perturbation of the cytoskeleton. Numerous actin-binding proteins help maintain proper cytoskeletal regulation.

Methodology/Principal Findings

From a Drosophila forward genetic screen, we identified a mutation in capulet-encoding a conserved actin-binding protein-that causes abnormal aggregates of actin within dendrites. Through interaction studies, we demonstrate that simultaneous genetic inactivation of capulet and kinesin heavy chain, a microtubule motor protein, produces elongate cofilin-actin rods within dendrites but not axons. These rods resemble actin-rich structures induced in both mammalian neurodegenerative and Drosophila Alzheimer''s models, but have not previously been identified by loss of function mutations in vivo. We further demonstrate that mitochondria, which are transported by Kinesin, have impaired distribution along dendrites in a capulet mutant. While Capulet and Cofilin may biochemically cooperate in certain circumstances, in neuronal dendrites they genetically antagonize each other.

Conclusions/Significance

The present study is the first molecularly defined loss of function demonstration of actin-cofilin rods in vivo. This study suggests that simultaneous, seemingly minor perturbations in neuronal dendrites can synergize producing severe abnormalities affecting actin, microtubules and mitochondria/energy availability in dendrites. Additionally, as >90% of Alzheimer''s and Parkinson''s cases are sporadic this study suggests mechanisms by which multiple mutations together may contribute to neurodegeneration instead of reliance on single mutations to produce disease.  相似文献   

9.
Mitotic chromosome segregation is orchestrated by the dynamic interaction of spindle microtubules with the kinetochore. Although previous studies show that the mitotic kinesin CENP-E forms a link between attachment of the spindle microtubule to the kinetochore and the mitotic checkpoint signaling cascade, the molecular mechanism underlying dynamic kinetochore-microtubule interactions in mammalian cells remains elusive. Here, we identify a novel interaction between CENP-E and SKAP that functions synergistically in governing dynamic kinetochore-microtubule interactions. SKAP binds to the C-terminal tail of CENP-E in vitro and is essential for an accurate kinetochore-microtubule attachment in vivo. Immunoelectron microscopic analysis indicates that SKAP is a constituent of the kinetochore corona fibers of mammalian centromeres. Depletion of SKAP or CENP-E by RNA interference results in a dramatic reduction of inter-kinetochore tension, which causes chromosome mis-segregation with a prolonged delay in achieving metaphase alignment. Importantly, SKAP binds to microtubules in vitro, and this interaction is synergized by CENP-E. Based on these findings, we propose that SKAP cooperates with CENP-E to orchestrate dynamic kinetochore-microtubule interaction for faithful chromosome segregation.  相似文献   

10.
Chromosome segregation is an essential process for nuclear and cell division. The microtubule cytoskeleton, molecular motors and protein complexes at the microtubule plus ends and at kinetochores play crucial roles in the segregation process. Here we identified KatA (KipAtarget protein, homologue of CENP-H) as a kinesin-7 (KipA, homologue of human CENP-E) interacting protein in Aspergillus nidulans. KatA located at the kinetochore during the whole cell cycle and colocalized with KipA and partially with the putative microtubule polymerase AlpA (XMAP215) during mitosis. Deletion of katA was lethal at 37°C and caused severe growth and morphology defects at room temperature. KipA was shown before to play an important role in growth directionality determination and our new results suggest a second function of KipA in the interaction between the microtubule plus ends and the kinetochores during mitosis.  相似文献   

11.
DNA-loaded microtubules (MTs) moving on a kinesin motor protein-coated substrate can selectively hybridize with a target fully matched DNA over single-base mismatched DNA and transport it. This technique is capable of collecting target biomolecules toward one point site to design new methodology of DNA analysis.  相似文献   

12.
The structure of an ATP-bound kinesin motor domain is predicted and conformational differences relative to the known ADP-bound form of the protein are identified. The differences should be attributed to force-producing ATP hydrolysis. Candidate ATP-kinesin structures were obtained by simulated annealing, by placement of the ATP gamma-phosphate in the crystal structure of ADP-kinesin, and by interatomic distance constraints. The choice of such constraints was based on mutagenesis experiments, which identified Gly-234 as one of the gamma-phosphate sensing residues, as well as on structural comparison of kinesin with the homologous nonclaret disjunctional (ncd) motor and with G-proteins. The prediction of nucleotide-dependent conformational differences reveals an allosteric coupling between the nucleotide pocket and the microtubule binding site of kinesin. Interactions of ATP with Gly-234 and Ser-202 trigger structural changes in the motor domain, the nucleotide acting as an allosteric modifier of kinesin's microtubule-binding state. We suggest that in the presence of ATP kinesin's putative microtubule binding regions L8, L12, L11, alpha4, alpha5, and alpha6 form a face complementary in shape to the microtubule surface; in the presence of ADP, the microtubule binding face adopts a more convex shape relative to the ATP-bound form, reducing kinesin's affinity to the microtubule.  相似文献   

13.
Kinesin and dynein are motor proteins that move in opposite directions along microtubules. In this study, we examine the consequences of having kinesin and dynein (ciliary outer arm or cytoplasmic) bound to glass surfaces interacting with the same microtubule in vitro. Although one might expect a balance of opposing forces to produce little or no net movement, we find instead that microtubules move unidirectionally for several microns (corresponding to hundreds of ATPase cycles by a motor) but continually switch between kinesin-directed and dynein-directed transport. The velocities in the plus-end (0.2-0.3 microns/s) and minus-end (3.5-4 microns/s) directions were approximately half those produced by kinesin (0.5 microns/s) and ciliary dynein (6.7 microns/s) alone, indicating that the motors not contributing to movement can interact with and impose a drag upon the microtubule. By comparing two dyneins with different duty ratios (percentage of time spent in a strongly bound state during the ATPase cycle) and varying the nucleotide conditions, we show that the microtubule attachment times of the two opposing motors as well as their relative numbers determine which motor predominates in this assay. Together, these findings are consistent with a model in which kinesin-induced movement of a microtubule induces a negative strain in attached dyneins which causes them to dissociate before entering a force-generating state (and vice versa); reversals in the direction of transport may require the temporary dissociation of the transporting motor from the microtubule. The bidirectional movements described here are also remarkably similar to the back-and-forth movements of chromosomes during mitosis and membrane vesicles in fibroblasts. These results suggest that the underlying mechanical properties of motor proteins, at least in part, may be responsible for reversals in microtubule-based transport observed in cells.  相似文献   

14.
《The Journal of cell biology》1993,123(6):1811-1820
One of the major functions of cytoplasmic microtubules is their involvement in maintenance of asymmetric cell shape. Microtubules were considered to perform this function working as rigid structural elements. At the same time, microtubules play a critical role in intracellular organelle transport, and this fact raises the possibility that the involvement of microtubules in maintenance of cell shape may be mediated by directed transport of certain cellular components to a limited area of the cell surface (e.g., to the leading edge) rather than by their functioning as a mechanical support. To test this hypothesis we microinjected cultured human fibroblasts with the antibody (called HD antibody) raised against kinesin motor domain highly conserved among the different members of kinesin superfamily. As was shown before this antibody inhibits kinesin-dependent microtubule gliding in vitro and interferes with a number of microtubule-dependent transport processes in living cells. Preimmune IgG fraction was used for control experiments. Injections of fibroblasts with HD antibody but not with preimmune IgG significantly reduced their asymmetry, resulting in loss of long processes and elongated cell shape. In addition, antibody injection suppressed pseudopodial activity at the leading edge of fibroblasts moving into an experimentally made wound. Analysis of membrane organelle distribution showed that kinesin antibody induced clustering of mitochondria in perinuclear region and their withdrawal from peripheral parts of the cytoplasm. HD antibody does not affect either density or distribution of cytoplasmic microtubules. The results of our experiments show that many changes of phenotype induced in cells by microtubule-depolymerizing agents can be mimicked by the inhibition of motor proteins, and therefore microtubule functions in maintaining of the cell shape and polarity are mediated by motor proteins rather than by being provided by rigidity of tubulin polymer itself.  相似文献   

15.
Kinesin is an ATP-driven molecular motor protein that moves processively along microtubules. Despite considerable research, the detailed mechanism of kinesin motion remains elusive. We applied an enhanced suite of single- and multiple-molecule fluorescence polarization microscopy assays to report the orientation and mobility of kinesin molecules bound to microtubules as a function of nucleotide state. In the presence of analogs of ATP, ADP-Pi or in the absence of nucleotide, the kinesin head maintains a rigid orientation. In the presence of ADP, the motor domain of kinesin, still bound to the microtubule, adopts a previously undescribed, highly mobile state. This state may be general to the chemomechanical cycle of motor proteins; in the case of kinesin, the transition from a highly mobile to a rigid state after ADP release may contribute to the generation of the 8 nm step.  相似文献   

16.
Interaction of kinesin-coated latex beads with a single microtubule (MT) was directly observed by fluorescence microscopy. In the presence of ATP, binding of a kinesin bead to the MT facilitated the subsequent binding of other kinesin beads to an adjacent region on the MT that extended for micrometers in length. This cooperative binding was not observed in the presence of ADP or 5′-adenylylimidodiphosphate (AMP-PNP), where binding along the MT was random. Cooperative binding also was induced by an engineered, heterodimeric kinesin, WT/E236A, that could hydrolyze ATP, yet remained fixed on the MT in the presence of ATP. Relative to the stationary WT/E236A kinesin on a MT, wild-type kinesin bound preferentially in close proximity, but was biased to the plus-end direction. These results suggest that kinesin binding and ATP hydrolysis may cause a long-range state transition in the MT, increasing its affinity for kinesin toward its plus end. Thus, our study highlights the active involvement of MTs in kinesin motility.  相似文献   

17.
《The Journal of cell biology》1988,107(6):2647-2656
The twofold purpose of the study was (a) to determine if a MAP-1-like protein was expressed in human prostatic DU 145 cells and (b) to demonstrate whether a novel antimicrotubule drug, estramustine, binds the MAP-1-like protein to disrupt microtubules. SDS-PAGE and Western blots showed that a 330-kD protein was associated with microtubules isolated in an assembly buffer containing 10 microM taxol and 10 mM adenylylimidodiphosphate. After purification to homogeneity on an A5m agarose column, the 330-kD protein was found to promote 6 S tubulin assembly. Turbidimetric (A350), SDS-PAGE, and electron microscopic studies revealed that micromolar estramustine inhibited assembly promoted by the 330-kD protein. Similarly, estramustine inhibited binding of the 330-kD protein to 6-S microtubules independently stimulated to assemble with taxol. Immunofluorescent studies with beta- tubulin antibody (27B) and MAP-1 antibody (MI-AI) revealed that 60 microM estramustine (a) caused disassembly of MAP-1 microtubules in DU 145 cells and (b) removed MAP-1 from the surfaces of microtubules stabilized with 0.1 microM taxol. Taken together the data suggested that estramustine binds to a 330-kD MAP-1-like protein to disrupt microtubules in tumor cells.  相似文献   

18.
KinI kinesins are important in regulating the complex dynamics of the microtubule cytoskeleton. They are unusual in that they depolymerize, rather than move along microtubules. To determine the attributes of KinIs that distinguish them from translocating kinesins, we examined the ATPase activity, microtubule affinity, and three-dimensional microtubule-bound structure of a minimal KinI motor domain. Together, the kinetic, affinity, and structural data lead to the conclusion that on binding to the microtubule lattice, KinIs release ADP and enter a stable, low-affinity, regulated state, from which they do not readily progress through the ATPase cycle. This state may favor detachment, or diffusion of the KinI to its site of action, the microtubule ends. Unlike conventional translocating kinesins, which are microtubule lattice-stimulated ATPases, it seems that with KinIs, nucleotide-mediated modulation of tubulin affinity is only possible when it is coupled to protofilament deformation. This provides an elegant mechanistic basis for their unique depolymerizing activity.  相似文献   

19.
《The Journal of cell biology》1989,109(6):3095-3103
To investigate whether neural adhesion molecules are involved in neuron- induced Schwann cell differentiation, cocultures of pure dorsal root ganglion neurons, and Schwann cells were maintained in the presence of antibodies to evaluate possible perturbing effects. Several parameters characteristic of differentiating Schwann cells were studied, such as transition of spindle-shaped to flattened, i.e., more epithelioid morphology, association with neuronal cell bodies, ensheathment of neurites, production of basal lamina and collagen fibrils, and expression of the myelin associated glycoprotein (MAG). A complete ablation of Schwann cell differentiation in all features studied was seen with antibodies to the neural adhesion molecule L1. Antibodies to N-CAM did not reduce the association of Schwann cells with neurites but abolished the interdigitation of Schwann cell processes into neurite bundles, while leaving the other parameters studied unaffected. Fab fragments of antibodies to J1, MAG, and mouse liver membranes did not interfere with the manifestation of any of these parameters. None of the antibodies changed incorporation of [3H]thymidine into Schwann cells.  相似文献   

20.
Invasion by the malaria merozoite depends on recognition of specific erythrocyte surface receptors by parasite ligands. Plasmodium falciparum uses multiple ligands, including at least two gene families, reticulocyte binding protein homologues (RBLs) and erythrocyte binding proteins/ligands (EBLs). The combination of different RBLs and EBLs expressed in a merozoite defines the invasion pathway utilized and could also play a role in parasite virulence. The binding regions of EBLs lie in a conserved cysteine-rich domain while the binding domain of RBL is still not well characterized. Here, we identify the erythrocyte binding region of the P. falciparum reticulocyte binding protein homologue 1 (PfRH1) and show that antibodies raised against the functional binding region efficiently inhibit invasion. In addition, we directly demonstrate that changes in the expression of RBLs can constitute an immune evasion mechanism of the malaria merozoite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号