首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:探讨交感神经分泌的神经肽Y(NPY)和感觉神经分泌的钙基因相关肽(CGRP)在体内骨折愈合的不同阶段的变化及意义。方法:选择6-8月龄的雄性大鼠,建立大鼠的股骨闭合骨折模型,术后2、4、8、12周取材。进行扫描电镜,免疫组织荧光染色和血清Elisa检测。结果:1骨折愈合不同时期感觉神经肽类物质CGRP和交感神经肽类物质NPY都有表达,且其含量有先增加后减少的趋势,并在骨折后8周含量达到最高。2骨折愈合不同阶段的大鼠血清感觉神经肽类物质CGRP和交感神经肽类物质NPY均呈上升趋势,差异有统计学意义(P0.05),且NPY的含量比CGRP的含量高。骨折后2-4周,CGRP含量增加较快;骨折后4-8周NPY含量增加较快。结论:骨折愈合的不同阶段,感觉神经肽类物质CGRP和交感神经肽类物质NPY含量先升后降,对不同阶段的骨形成及骨吸收产生影响。  相似文献   

2.
目的:研究咬合创伤大鼠牙周组织中MCP-1、ICAM-1的表达情况。方法:12周龄雄性SD大鼠24只,随机分为4组(1个正常对照组和3个实验组),每组6只。正常对照组不作任何处理,实验组通过在大鼠左上颌第一磨牙颌面粘接树脂并内置不锈钢丝形成高出颌面0.6-0.8 mm的树脂层以建立同侧下颌咬合创伤实验动物模型,分别于建模后3、5、7 d处死各组大鼠,分离大鼠下颌组织,运用HE、Masson染色观察咬合创伤牙周组织形态变化,同时用免疫组织化学染色法检测MCP-1和ICAM-1的表达变化。结果:HE染色显示,正常组牙周膜纤维排列整齐,牙骨质表面较为平整,牙槽骨结构致密。实验组牙周膜纤维排列紊乱,牙周膜血管水肿充血、间隙改变,牙槽骨和牙骨质表面不平整,出现骨吸收。Masson染色显示,正常组牙周组织未见异常表现;实验组牙周膜纤维排列紊乱,可见水解断裂,局部有血流障碍和血管破裂。免疫组织化学显示,各实验组MCP-1和ICAM-1的表达变化均较正常对照组增多,差异有显著性(P0.05)。其中7 d组表达水平最高,与其他2组相比有统计学意义(P0.05)。结论:咬合创伤可引起大鼠牙周组织形态变化,MCP-1、ICAM-1的表达随时间呈现递增的趋势。  相似文献   

3.
Summary The origin and distribution of calcitonin gene-related peptide (CGRP)-like immunoreactivity in feline dental pulp were studied using indirect immunofluorescence. Nerve fibres with varicosities exhibiting CGRP-like immunoreactivity were observed to enter the pulp with blood vessels. Many CGRP-containing nerve fibres were found to extend along blood vessels in the central pulp, and some of these fibres exhibited a network arrangement in the walls of dental pulp blood vessels. However, some of fibres were apparently not associated with blood vessels. Some thin, CGRP-containing nerve fibres formed a part of the nerve plexus in the subodontoblastic area and penetrated into the odontoblastic layer. In animals that had undergone transection of the inferior alveolar nerve, no CGRP-containing nerve fibres were observed. Application of a double-immunofluorescence staining technique also revealed that the distribution of CGRP-containing nerve fibres is very similar to that of substance P-containing nerve fibres.  相似文献   

4.
The origin and distribution of calcitonin gene-related peptide (CGRP)-like immunoreactivity in feline dental pulp were studied using indirect immunofluorescence. Nerve fibres with varicosities exhibiting CGRP-like immunoreactivity were observed to enter the pulp with blood vessels. Many CGRP-containing nerve fibres were found to extend along blood vessels in the central pulp, and some of these fibres exhibited a network arrangement in the walls of dental pulp blood vessels. However, some of fibres were apparently not associated with blood vessels. Some thin, CGRP-containing nerve fibres formed a part of the nerve plexus in the subodontoblastic area and penetrated into the odontoblastic layer. In animals that had undergone transection of the inferior alveolar nerve, no CGRP-containing nerve fibres were observed. Application of a double-immunofluorescence staining technique also revealed that the distribution of CGRP-containing nerve fibres is very similar to that of substance P-containing nerve fibres.  相似文献   

5.
6.
The structure of the alveolar bone during the tooth eruption in the young dog mandibles was investigated by microradiographic and polarized light techniques. Around the first erupting molar root a trabecular network of primary alveolar bone, less mineralized than the surrounding cortical one, was found. Numerous calcified spicules parallel one to others radiate out the spongiosa near the periodontal ligament. The collagen fiber bundles of the alveolar, woven, bone are continuous with the periodontal ligament ones. This finding indicates that the alveolar bone increases by ossification of the periodontal ligament. Therefore the latter is the forming alveolar bone substratum. The trabeculae of the occlused premolar alveolar bone are ticker and more mineralized. This modification of the occlused tooth alveolar bone could be related to the occlusal stresses.  相似文献   

7.
The distribution of calcitonin gene-related peptide (CGRP) was examined in the periodontal ligament (PDL) after experimental luxation injury of the rat first molar tooth. The luxational injury increased the number of CGRP-immunoreactive (IR) nerve fibers. At 3–7 days, numerous CGRP-IR nerve fibers appeared throughout the injured PDL. These nerve fibers terminated as free nerve endings within resorption cavities. Immunohistochemistry for receptor activity modifying protein 1 (RAMP1) also demonstrated that the subunit of CGRP receptor was expressed by periodontal cells adjacent to the alveolar bone in the intact and injured PDL. RAMP1-IR cells were divided into two types; small cells with single nucleus and large cells with 2–6 nuclei. After the luxational injury, both types of RAMP1-IR cells abundantly appeared within resorption cavities. As a result, the treatment increased the number of large RAMP1-IR cells at 3–7 days and small RAMP1-IR cells at 7 days. In addition, a double immunofluorescence analysis demonstrated that CGRP-IR nerve fibers were seen away from RAMP1-IR cells in the intact PDL. After the traumatic injury, however, CGRP-IR nerve fibers appeared in the close vicinity of small and large RAMP1-IR cells at 5–7 days. The morphology and distribution of RAMP1-IR cells suggest that they contain osteoblasts and osteoclasts. By affecting osteoclasts and osteoblasts, CGRP may have effects on bone remodeling in the luxated PDL.  相似文献   

8.
Human periodontal ligament cells (hPDLCs) are considered as an ideal cell type for periodontal tissue engineering as hPDLCs own mesenchymal stem cell-like properties. Additionally, it is suggested that α-calcitonin gene-related peptide (αCGRP) plays a pivotal role in the pathogenesis of periodontitis. However, the specific role of αCGRP on the regulation of alveolar bone regeneration which is essential for treatment of periodontitis remains unclear. In this study, lentiviral αCGRP expression vector was first transfected into hPDLCs. αCGRP expression and the osteogenesis-related gene (ALP, RUNX2, OCN, and BSP) expressions were detected. The results showed that expressions of osteogenic phenotypes were upregulated in αCGRP-transfected hPDLCs combined with an increased expression of Yes-associated protein (YAP), which is the key downstream effectors of Hippo pathway. Our observations suggest that αCGRP-mediated hPDLCs’ osteogenesis might relate with the activity of YAP signaling. These observations may reflect intrinsic functions of αCGRP in hPDLCs’ osteogenesis and its promising role in the treatment of bone deficiency in periodontal regeneration.  相似文献   

9.
10.
Calcitonin gene-related peptide (CGRP)-immunoreactive afferent nerve fibers are abundant in the rat penis. In addition, NADPH-diaphorase, which stains for nitric oxide synthase, has been localized within both autonomic and sensory dorsal root ganglia (DRG) and may be part of an important biochemical pathway involved in penile tumescence. The purpose of this study was: 1) to examine the circuitry of afferent nerves that are CGRP immunoreactive from the L6 DRG, 2) to examine the possibility that there are NADPH-diaphorase-positive afferent fibers from the L6 DRG to the rat penis, and 3) to examine the localization and colocalization of CGRP and NADPH-diaphorase within L6 DRG afferent perikarya. Calcitonin gene-related peptide immunostaining in the penis was eliminated following a bilateral transection of the pudendal nerves, but was unchanged following a bilateral transection of the pelvic splanchnic or hypogastric nerves. The NADPH-diaphorase staining was not altered by any of the nerve transections. Injection of the retrograde axonal tracer fluorogold (FG) into the dorsum penis labeled perikarya in the L6 DRG. Although the majority of FG-labeled perikarya contained neither CGRP nor NADPH-diaphorase, small subpopulations of perikarya contained either CGRP immunoreactivity, NADPH-diaphorase, or both. A unilateral pudendal nerve transection virtually eliminated (>99%) FG labeling in the ipsilateral L6 DRG. These data suggest that NADPH-diaphorase and CGRP are present, either together or separately, within a subpopulation of penile afferent perikarya. In addition, CGRP-immunoreactive afferent nerve fibers reach the penis primarily via the pudendal nerves. Finally, NADPH-diaphorase-positive penile afferents may be another important source of nitric oxide (NO) for penile tumescence.  相似文献   

11.
Increased expression of the transient receptor potential vanilloid 1 (TRPV1) channels, following nerve injury, may facilitate the entry of QX-314 into nociceptive neurons in order to achieve effective and selective pain relief. In this study we hypothesized that the level of QX-314/capsaicin (QX-CAP) - induced blockade of nocifensive behavior could be used as an indirect in-vivo measurement of functional expression of TRPV1 channels. We used the QX-CAP combination to monitor the functional expression of TRPV1 in regenerated neurons after inferior alveolar nerve (IAN) transection in rats. We evaluated the effect of this combination on pain threshold at different time points after IAN transection by analyzing the escape thresholds to mechanical stimulation of lateral mental skin. At 2 weeks after IAN transection, there was no QX-CAP mediated block of mechanical hyperalgesia, implying that there was no functional expression of TRPV1 channels. These results were confirmed immunohistochemically by staining of regenerated trigeminal ganglion (TG) neurons. This suggests that TRPV1 channel expression is an essential necessity for the QX-CAP mediated blockade. Furthermore, we show that 3 and 4 weeks after IAN transection, application of QX-CAP produced a gradual increase in escape threshold, which paralleled the increased levels of TRPV1 channels that were detected in regenerated TG neurons. Immunohistochemical analysis also revealed that non-myelinated neurons regenerated slowly compared to myelinated neurons following IAN transection. We also show that TRPV1 expression shifted towards myelinated neurons. Our findings suggest that nerve injury modulates the TRPV1 expression pattern in regenerated neurons and that the effectiveness of QX-CAP induced blockade depends on the availability of functional TRPV1 receptors in regenerated neurons. The results of this study also suggest that the QX-CAP based approach can be used as a new behavioral tool to detect dynamic changes in TRPV1 expression, in various pathological conditions.  相似文献   

12.
Large changes in neuronal gene expression occur in adult peripheral neurons after axonal transection. In the rat superior cervical ganglion, for example, neurons that do not normally express vasoactive intestinal peptide (VIP) or galanin do so after postganglionic nerve transection. These effects of axotomy could result from a number of aspects of the surgical procedure. To test the idea that the important variable might be the disconnection of axotomized neuronal cell bodies from their target tissues, we examined the effects of producing such a disconnection by means of the compound 6-hydroxydopamine (6-OHDA), a neurotoxin that causes degeneration of sympathetic varicosities and avoids many of the complications of surgery. Two days after 6-OHDA treatment, VIP and galanin immunoreactivities had increased two- and 40-fold, respectively. Nevertheless, these increases were substantially smaller than the 30- and 300-fold changes seen after surgical axotomy. When expression of VIP and galanin was examined at the mRNA level, however, comparable increases were found after either procedure. The results indicate that chemical destruction of sympathetic varicosities produces an equivalent signal for increasing VIP and galanin mRNA as does axonal transection. The differences in the neuropeptide levels achieved suggests that peptide expression after nerve transection is regulated both at the mRNA and protein levels. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
Tooth eruption is a multifactorial process involving movement of existing tissues and formation of new tissues coordinated by a complex set of genetic events. We have used the model of the unopposed rodent molar to study morphological and genetic mechanisms involved in axial movement of teeth. Following extraction of opposing upper molars, lower molars supererupted by 0.13 mm. Labeled tissue sections revealed significant amounts of new bone and cementum apposition at the root apex of the unopposed side following supereruption for 12 days. Newly apposited cementum and alveolar bone layers were approximately 3-fold thicker in the experimental vs the control group, whereas periodontal ligament width was maintained. Tartrate-resistant acid phosphatase staining indicated bone resorption at the mesial alveolar walls of unopposed molars and provided in tandem with new bone formation at the distal alveolar walls an explanation for the distal drift of molars in this model. Microarray analysis and semiquantitative RT-PCR demonstrated a significant increase in collagen I, integrin beta5, and SPARC gene expression as revealed by comparison between the unopposed molar group and the control group. Immunohistochemical verification revealed increased levels of integrin beta5 and SPARC labeling in the periodontal ligament of the unopposed molar. Together our findings suggest that posteruptive axial movement of teeth was accomplished by significant formation of new root cementum and alveolar bone at the root apex in tandem with upregulation of collagen I, integrin beta5, and SPARC gene expression.  相似文献   

14.
Periodontal ligament width is precisely maintained throughout the lifetime of adult mammals but the biological mechanisms that inhibit ingrowth of bone into this soft connective tissue are unknown. As bone morphogenic proteins strongly stimulate osteogenesis and can induce ectopic bone formation in vivo, we tested the hypothesis that topical application of this powerful osteogenic agent will overwhelm the osteogenic inhibitory mechanisms of periodontal ligament cells and induce ankylosis. Wounds through the alveolar bone and periodontal ligament were created in 45 male Wistar rats. Defects were filled with either a collagen implant or collagen plus bone morphogenic protein (BMP-7), or were left unfilled (controls). Three animals per time period were killed on days 2, 5, 10, 21 and 60 after surgery for each wound type. Cellular proliferation and clonal growth in periodontal tissues were assessed by 3H-thymidine labeling 1 h before death, followed by radioautography. Cellular differentiation of soft and mineralizing connective tissue cell populations was determined by immunohistochemical staining of α-smooth muscle actin, osteopontin and bone sialoprotein. In regenerating periodontium, BMP-7 induced abundant bone formation by 21 days (2.5-fold greater than controls or collagen implant only; P<0.001), but by day 60 the volume of the newly formed bone had returned to baseline levels and was similar for all groups. Independent of the type of treatment, periodontal ligament width was unchanged throughout the experimental period (P>0.05). Animals treated with BMP-7 implants showed greatly increased cellular proliferation in the periodontal ligament adjacent to the wound site and in the regenerating alveolar bone at days 5 and 10 after wounding compared to the other treatment groups (P<0.005). Animals in the BMP-7 group exhibited similar spatial and temporal staining patterns for α-smooth muscle actin, osteopontin and bone sialoprotein as controls. Collectively, these data show that BMP-7 promoted the proliferation of precursor cells in the periodontal ligament but did not induce osteogenic differentiation in this compartment. Consequently a powerful osteogenic stimulus like BMP-7 cannot significantly perturb the mechanisms that regulate periodontal ligament width and maintain periodontal homeostasis. Received: 2 March 1998 / Accepted: 16 June 1998  相似文献   

15.
In this study we examined the presence and localization of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) activity in the dental pulp, periodontal tissues and alveolar bone of the rat. The presence of NADPH-d activity was also examined in cat pulp. The rat histochemical analysis revealed the presence of prominent NADPH-d activity both in cells of the sub-odontoblastic cell layer and in the odontoblasts, in the root as well as in the coronal pulp regions. In the pulpal horns, odontoblasts often had long processes with a high level of labelling indicating NADPH-d activity extending through the predentin and dentin. Moreover, endothelial cells of pulpal blood vessels were positive for NADPH-d in both species. However, no clearcut examples were found of pulpal nerve fibres positive for NADPH-d in the rat or cat and denervation performed in rats did not alter the enzyme staining patterns. In the periodontal tissue, NADPH-d activity was localized to cells on the alveolar bone surface of the periodontal ligament and, in addition, alveolar bone marrow crypts were filled with intensely labelled cells. In the gingival papillae, NADPH-d activity was observed in the basal cell layer of the epithelium. Endothelial cells of periodontal and gingival blood vessels showing positive staining for NADPH-d were occasionally noted.  相似文献   

16.
Estrogens and their receptors are important factors involved in periodontal ligament (PDL) tissue health. As a regulator of estrogen receptors (ER), the proline-, glutamic acid-, and leucine-rich protein 1 (PELP1) may play a role in alveolar bone formation and PDL homeostasis. The aim of the present study was to observe PELP1 expression in rat PDL tissue during estrogen levels manipulations. Twenty-one 8-week old normal female Sprague–Dawley rats were randomly divided into three equal groups: sham-operated controls, ovariectomized (OVX) group, and OVX given 17β-estradiol intraperitoneally (OVX + E2) for 16 weeks. PELP1 expression was down-regulated in the OVX group and was up-regulated in the OVX + E2 group. Periodontal ligament fibroblast cells (PDLFCs) were isolated from PDL tissue, and characterized by immunohistochemical staining. Estradiol treatment of PDLFCs induced PELP1 protein level compared to untreated cells. PELP1 mRNA expression in estradiol-treated cells was relatively low at the beginning of treatment and then steadily increased from hour 4. In conclusion, results indicate that PELP1 is expressed in rat PDL tissue and PDLFCs, and that its expression is up-regulated during estrogen treatment.  相似文献   

17.
Tumour necrosis factor α (TNF-α) and interleukin 6 (IL-6) are potent inflammatory cytokines produced by osteoblasts and whose contribution to bone loss occurring in oestrogen deficiency is well documented. Calcitonin gene-related peptide (CGRP) is a neuropeptide abundantly concentrated in sensory nerve endings innervating bone metaphyses and periosteum suggesting that it controls bone homeostasis locally. Since CGRP was shown to inhibit TNF-α production by T cells and stimulate IL-6 expression by fibroblasts, this study was designed to investigate whether CGRP regulated TNF-α and IL-6 production by osteoblasts. We show that CGRP inhibits the production of TNF-α by both lipopolysaccharide (LPS)- and IL-1-stimulated fetal rat osteoblasts. Like CGRP, the cAMP agonists prostaglandin E2(PGE2), dibutyryl cAMP (Bt2cAMP) and forskolin inhibit TNF-α production by osteoblasts. Exposure of osteoblasts to a high dose of phorbol myristoyl acetate (PMA) to deplete PKC activity abolished CGRP-mediated TNF-α suppression. In contrast with its potent inhibition of TNF-α production, we show that CGRP is a weak inducer of IL-6 when compared to PGE2, Bt2cAMP and forskolin. However, in presence of isobutylmethylxanthine (IBMX) CGRP stimulates the production of IL-6. Collectively, these data suggest that the inhibition of TNF-α CGRP is cAMP dependent and PMA sensitive and that the concentration of intracellular cAMP may be a regulatory mechanism for IL-6 expression in osteoblasts.  相似文献   

18.
Regeneration of mineralized tissues affected by chronic diseases comprises a major scientific and clinical challenge. Periodontitis, one such prevalent disease, involves destruction of the tooth-supporting tissues, alveolar bone, periodontal-ligament and cementum, often leading to tooth loss. In 1997, it became clear that, in addition to their function in enamel formation, the hydrophobic ectodermal enamel matrix proteins (EMPs) play a role in the regeneration of these periodontal tissues. The epithelial EMPs are a heterogeneous mixture of polypeptides encoded by several genes. It was not clear, however, which of these many EMPs induces the regeneration and what mechanisms are involved. Here we show that a single recombinant human amelogenin protein (rHAM+), induced in vivo regeneration of all tooth-supporting tissues after creation of experimental periodontitis in a dog model. To further understand the regeneration process, amelogenin expression was detected in normal and regenerating cells of the alveolar bone (osteocytes, osteoblasts and osteoclasts), periodontal ligament, cementum and in bone marrow stromal cells. Amelogenin expression was highest in areas of high bone turnover and activity. Further studies showed that during the first 2 weeks after application, rHAM+ induced, directly or indirectly, significant recruitment of mesenchymal progenitor cells, which later differentiated to form the regenerated periodontal tissues. The ability of a single protein to bring about regeneration of all periodontal tissues, in the correct spatio-temporal order, through recruitment of mesenchymal progenitor cells, could pave the way for development of new therapeutic devices for treatment of periodontal, bone and ligament diseases based on rHAM+.  相似文献   

19.
The distribution of calcitonin gene-related peptide (CGRP)- and substance P (SP)-immunoreactive (IR) nerve fibers and their correlation in the periodontal ligament of mouse incisors were examined by indirect immunofluorescence. Both CGRP-IR and SP-IR thin nerve fibers were abundant in the apical and middle third of the periodontal ligament. In the lingual portion of the incisal periodontal ligament, these nerve fibers were localized in the alveolar half of the periodontal ligament and were observed as free nerve endings. No CGRP-IR and SP-IR specialized nerve endings, such as Ruffini-like corpuscles, were observed. In the labial periodontal ligament, CGRP-IR and SP-IR nerve fibers ran along the incisal axis. The distribution of CGRP-IR nerve fibers was very similar to that of SP-IR nerve fibers.  相似文献   

20.
A combination of neuroanatomic techniques was used to examine the origin and neuropeptide content of nerve fibers in the airway epithelium of adult cats. By the use of immunocytochemical methods, the peptides substance P (SP) and calcitonin gene-related peptide (CGRP) were colocalized in airway epithelial nerve fibers. Two days after wheat germ agglutinin (WGA) was injected into the nodose ganglion, fibers containing WGA immunoreactivity (IR) were detected in the airway epithelium. SP-like immunoreactivity (LI) and CGRP-LI were demonstrated separately in the WGA-IR fibers, establishing their origin from nerve cell bodies of nodose ganglion. Vagal transection inferior to the nodose ganglion reduced the number of SP- and CGRP-IR fibers by greater than 90% in ipsilateral airways. In contralateral airways, SP-IR fibers were substantially reduced, whereas the effect on CGRP-IR fibers was not statistically significant. Vagotomy superior to the nodose ganglion did not alter the density of peptide-IR fibers. The results prove that SP- and CGRP-IR nerve fibers of cat airway epithelium originate from nerve cell bodies in the nodose ganglion and that SP- and CGRP-like peptides may be stored together in some nerve fibers of the airway epithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号