首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Forty‐two isolates of Rhizoctonia spp. were obtained from onion in Amasya, Turkey. Of these, 29% were Rhizoctonia solani (AG‐4), 69% were Waitea circinata var. zeae (Rhizoctonia zeae) and 2% were binucleate Rhizoctonia (AG‐B). Most of the isolates were recovered from rhizosphere soil. In pathogenicity tests on onion, R. solani AG‐4 caused the greatest disease severity, those of W. circinata var. zeae were moderately virulent but binucleate Rhizoctonia isolates were of low virulence. This is the first report of binucleate Rhizoctonia AG‐B and W. circinata var. zeae occurring on onion in Turkey.  相似文献   

2.
Isolates of Rhizoctonia spp. associated with stem canker and black scurf disease of potato were examined for their anastomosis group, sequence variations in the ITS‐5.8S rDNA region, pathogenicity and sensitivity to fungicides. A total of 92 isolates were obtained from diseased tuber, stolon and sprouts of the potato plants, collected from five districts of Bolu province, Turkey. Based on the anastomosis group and the similarity of the nucleotide sequence of the ITS‐5.8S rDNA, most of the isolates (81.5%) were identified as AG 3 PT. Other isolates belonged to AG 2‐1 (1.08%), AG 2‐2 IV (1.08%), AG 4 HG II (8.07%), AG 5 (2.17%), binucleate Rhizoctonia AG A (1.08%) and AG K (4.35%). Pathogenicity tests showed that isolates of AG 3 PT, AG 4 HG II and AG 5 caused similar degrees of disease severity on 45‐day‐old potato seedlings, whereas AG 2‐1 was moderately virulent. AG 2‐2 IV and binucleate Rhizoctonia spp. were weakly pathogenic or non‐pathogenic on potato seedlings. In this study, anastomosis groups of Rhizoctonia spp. isolates associated with potato in Turkey were characterized for the first time using molecular techniques and classified at the level of subgroups. Furthermore, the effect of selected fungicides was evaluated on disease development caused by soil‐borne inoculums of different anastomosis groups (AGs). Flutolanil and Bacillus subtilis QST 713 were found to be most effective against the Rhizoctonia isolates tested. These results revealed significant differences among the fungicides on disease development resulted from the different AGs.  相似文献   

3.
G. H. Yang    H. R. Chen    S. Naito    A. Ogoshi 《Journal of Phytopathology》2005,153(3):185-187
During December 2003, stem canker and wirestem were observed on the stems of green amaranth (Amaranthus viridis) and Chinese amaranth (Amaranthus tricolor) in greenhouses at Ximao district in Yunnnan Province, China. Isolates of Rhizoctonia solani obtained from the two amaranths with stem canker and wirestem, were identical to anastomosis group (AG)‐4. The isolates from diseased plant showed high virulence on young seedlings of two amaranths. Results of sequence analysis of 5.8s rDNA‐ITS of Chinese isolates showed 99–100% sequence similarity with AG‐4HG‐III tester isolates. When compared with other subgroups of AG‐4, Chinese isolates showed similarity levels of 94%. This is the first report of stem canker and wirestem of Green amaranth and Chinese amaranth caused by AG‐4HG‐III and AG‐4HG‐III in China.  相似文献   

4.
Sixty isolates of Rhizoctonia spp. were obtained from Cuban bean fields during the period 2004–2007. Isolates were characterized with different techniques, including nuclei staining, pectic zymogram, PCR–RFLP analysis of the rDNA–ITS region and sequencing of the rDNA–ITS region. The majority of the isolates were identified as multinucleate Rhizoctonia solani isolates, representing two different anastomosis groups (AGs), AG 2‐2 WB and AG 4 HGI; the remaining isolates were binucleate Rhizoctonia isolates and belonged to AG F and AG A. AG 4 HGI isolates were equally distributed in all soil types; AG 2‐2 isolates were more frequently isolated from cambisols, whereas AG F isolates were related to calcisols. Pathogenicity experiments in vitro and in the greenhouse, revealed that binucleate isolates only caused root rot, whereas R. solani isolates were able to cause root rot and hypocotyl rot. Furthermore, differences in virulence level were observed between R. solani and binucleate isolates and among different AGs. Isolates of R. solani AG 4 HGI and R. solani AG 2‐2 WB were the most aggressive, binucleate isolates of AG F were intermediate aggressive, whereas a binucleate isolate of AG A was weakly aggressive. In contrast with other reports about R. solani in bean, web blight symptoms were never observed during this study.  相似文献   

5.
The necrotrophic fungus Thanatephorus cucumeris (anamorph Rhizoctonia solani) is among the most important soil‐borne pathogens which causes tomato foot and root rot worldwide. We investigated virulence and genetic relationships among and within different taxonomic groups of R. solani from the tomato‐growing regions in the north‐east of Iran. Characterization of R. solani taxonomic groups revealed that, of 56 isolates, four were AG‐2‐1, 16 were AG‐3 PT, 21 were AG‐4 HG‐I and 15 were AG‐4 HG‐II. Because interprimer binding site (iPBS), which is based on amplification of retrotransposons, is known as novel and powerful DNA fingerprinting technology, we selected four iPBS primers, which can detect polymorphisms of tomato foot root and root rot pathogen, for investigating genotypic variability of the isolates. The iPBS analyses separated various taxonomic groups of R. solani and showed great diversity among the isolates, demonstrating that the R. solani isolates obtained from tomato were not a clonal population. Crop rotation strategies and geographic location seem to be important factors affecting genetic structure of the isolates. Pathogenicity tests on tomato cultivar ‘Mobil’ showed significant differences in the virulence of various isolates. The overall results indicated that isolates of AG‐3 and AG‐4 were more virulent than AG‐2‐1. There was no significant correlation between genetic diversity and virulence of the isolates. This is the first report of R. solani AG‐4 HG‐II, causing tomato foot and root rot. Also, our research is the first in assessment of genetic diversity in fungal populations using iPBS molecular markers.  相似文献   

6.
A total of 434 isolates of Rhizoctonia belonging to 10 anastomosis groups were obtained from the roots and rhizosphere soils of bean and soybean plants grown in Samsun, Turkey. AG-4 was found to be the most common group on bean and soybean plants and AG-5, AG-6, binucleate AG-A, AG-B and R. zeae were other groups isolated from the both plant species. AG-1, AG-7 and AG-K from bean and AG-E from soybean were other groups obtained in the study. The pathogenicity tests on bean and soybean seedlings showed that the highest disease severities were caused by AG-4 isolates, whereas AG-1 and AG-6 isolates were moderately pathogenic. Binucleate Rhizoctonia AG-B isolates were also moderately pathogenic, while other binucleate Rhizoctonia were found to be weakly pathogenic. Rhizoctonia zeae isolates caused moderate disease symptoms on bean, but soybean plants were slightly affected by this group of isolates. This is the first reported observation of R. solani AG-6 and AG-7 and binucleate Rhizoctonia AG-B on bean, and R. solani AG-5 and AG-6 and binucleate Rhizoctonia AG-A, AG-B and AG-E on soybean, in Turkey.  相似文献   

7.
Rhizoctonia solani is a destructive fungal pathogen with a wide host range. The R. solani complex species includes several divergent groups delimited by affinities for hyphal anastomosis. In this study, genetic variation among 20 isolates of R. solani anastomosis group 1 (AG1) subgroups (AG1‐IA and AG1‐IB) collected from Mâzandaran province, Iran, and standard isolates of these subgroups, was determined by isozyme analysis and total soluble protein profile. Mycelial protein pattern and isozyme analysis were studied using denaturing and non‐denaturing polyacrylamide gel electrophoresis, respectively. A total of 15 enzyme systems were tested, among which six enzymes including esterase, alkaline phosphatase, superoxide dismutase, octanol dehydrogenase, lactate dehydrogenase and mannitol dehydrogenase generated distinct and reproducible results. The soluble protein patterns were similar among the R. solani isolates examined; however, minor differences in banding pattern were observed between the two subgroups. In isozyme analysis, a total of 64 electrophoretic phenotypes were detected for all six enzymes used. Based on cluster analysis and similarity matrix, the fungal isolates were divided into two genetically distinct groups of I and II consistent with the previously reported AG1‐IA and AG1‐IB subgroups in AG1. Group I represented all isolates belonging to AG1‐IA subgroup, whereas group II represented all isolates belonging to AG1‐IB subgroup. Results from isozyme analysis suggest that the subgrouping concept within AGs is genetically based.  相似文献   

8.

Background  

The soil borne fungus Rhizoctonia is one of the most important plant pathogenic fungi, with a wide host range and worldwide distribution. In cauliflower (Brassica oleracea var. botrytis), several anastomosis groups (AGs) including both multinucleate R. solani and binucleate Rhizoctonia species have been identified showing different levels of aggressiveness. The infection and colonization process of Rhizoctonia during pathogenic interactions is well described. In contrast, insights into processes during interactions with weak aggressive or non-pathogenic isolates are limited. In this study the interaction of cauliflower with seven R. solani AGs and one binucleate Rhizoctonia AG differing in aggressiveness, was compared. Using microscopic and histopathological techniques, the early steps of the infection process, the colonization process and several host responses were studied.  相似文献   

9.
Fungi with Rhizoctonia-like mycelia were isolated from the foliage, stem-base and roots of ericaceous plants collected from nurseries in Scotland. Isolated fungi were identified as either binucleate Rhizoctonia spp. or Rhizoctonia solani on the basis of hyphal characteristics and nuclear number. The optimum temperature range for growth of binucleate Rhizoctonia spp. and R. solani was 20 and 25 C, resepctively. All isolates tested for pathogenicity caused foliar browning, and webs of mycelial growth were observed on dead and dying foliage. Binucleate Rhizoctonia spp. and R. solani are recorded for the first time on container-grown ericaceous plants in Scotland.  相似文献   

10.
A survey was conducted in Ankara and Eskisehir provinces of Turkey for determining anastomosis groups and pathogenicity of Rhizoctonia species associated with root and crown rot of wheat. Pathogenicity tests revealed that Rhizoctonia solani AG 8 caused the common symptoms of damping‐off and stunting.  相似文献   

11.
G. H. Yang    H. R. Chen    S. Naito    A. Ogoshi    Y. L. Deng 《Journal of Phytopathology》2005,153(6):333-336
Twenty binucleate Rhizoctonia (BNR) isolates were collected from roots of soya bean, pea, snap bean and pak choy with root rot symptoms in Yunnan Province, China. Chinese isolates anastomosed with the tester isolate of anastomosis group‐A (AG‐A; C‐517) with a high C2 fusion rate (>70%). Chinese isolates were pathogenic to soya bean, pea, snap bean and pak choy and had 97% similarity sequence of 5.8S rDNA‐internal transcribed spacer with AG‐A tester isolates SN‐2 and C‐662. When compared with other groups, AG‐Ba and AG‐Bb, Chinese isolates showed 77% sequence similarity. These results show that Chinese isolates belong to AG‐A of BNR. Growth rate, hyphal diameter, cultural characteristics and pathogenicity of the Chinese isolates differed significantly from the tester isolate of AG‐A. This is the first report on AG‐A in China.  相似文献   

12.
M. Matsumoto 《Mycoscience》2002,43(2):0185-0189
Specifically primed polymerase chain reaction (PCR) analysis was used for direct detection and identification of Rhizoctonia solani isolates belonging to AG 1 subgroups (IA, IB, and IC) and AG 2 subgroups (2-1 and 2-2). A rapid DNA extraction method with a solution of sodium hydroxide was conducted to extract PCR templates. PCR-specific primer sets for each group were designed from sequences in the regions of the 28S ribosomal DNA of this fungus. The results of specifically primed PCR analysis showed that AG 1-IA, AG 1-IB, AG 1-IC, AG 2-1, and AG 2-2 primers sets contributed detection from the same AG isolates and could escape detection from different AG isolates at a high level of frequency. In this experiment, we suggested that our synthesized primer sets might provide a method for the direct detection and identification of AGs of R. solani. Received: June 28, 2001 / Accepted: November 14, 2001  相似文献   

13.
In the Province of Aydin‐Turkey most frequently Fusarium spp. and secondly Rhizoctonia solani Kühn were isolated from the roots and crown of tomato plants. Based on affinities for hyphal fusion with test isolates, all R. solani isolates were identified as AG‐4. The tomato cultivars which were grown in soil infested with R. solani AG‐4 exhibited different reactions. From the point of symptom expression and the rate of seedling emergence Sunny 6066 F1 was found to be the most resistant cultivar, whereas Rio Grande, Rio Fuego, NDM 725, Interpeel and Konia were the most susceptible cultivars.  相似文献   

14.
Ninety seven Rhizoctonia isolates were collected from different Brassica species with typical Rhizoctonia symptoms in different provinces of Vietnam. The isolates were identified using staining of nuclei and sequencing of the rDNA-ITS barcoding gene. The majority of the isolates were multinucleate R. solani and four isolates were binucleate Rhizoctonia belonging to anastomosis groups (AGs) AG-A and a new subgroup of A-F that we introduce here as AG-Fc on the basis of differences in rDNA-ITS sequence. The most prevalent multinucleate AG was AG 1-IA (45.4% of isolates), followed by AG 1-ID (17.5%), AG 1-IB (13.4%), AG 4-HGI (12.4%), AG 2-2 (5.2%), AG 7 (1.0%) and an unknown AG related to AG 1-IA and AG 1-IE that we introduce here as AG 1-IG (1.0%) on the basis of differences in rDNA-ITS sequence. AG 1-IA and AG 1-ID have not been reported before on Brassica spp. Pathogenicity tests revealed that isolates from all AGs, except AG-A, induced symptoms on detached leaves of several cabbage species. In in vitro tests on white cabbage and Chinese cabbage, both hosts were severely infected by AG 1-IB, AG 2-2, AG 4-HGI, AG 1-IG and AG-Fc isolates, while under greenhouse conditions, only AG 4-HGI, AG 2-2 and AG-Fc isolates could cause severe disease symptoms. The occurrence of the different AGs seems to be correlated with the cropping systems and cultural practices in different sampling areas suggesting that agricultural practices determine the AGs associated with Brassica plants in Vietnam.  相似文献   

15.
Restriction fragment length polymorphism (RFLP) analysis for DNA products amplified by the polymerase chain reaction (PCR) was used for the direct detection ofRhizoctonia solani AG 1 IA and AG 2-2 IIIB,R. oryzae, R. oryzae-sativae andR. fumigata from the diseased rice sheaths. A rapid DNA extraction method with a solution of sodium hydroxide was conducted to extract parasite DNA from diseased rice sheaths. 28S ribosomal DNA (rDNA) derived from fungal genomic DNA extracted by the alkaline method was specifically PCR-amplified. The results of PCR-RFLP analysis for DNA samples from artificially inoculated rice sheath tissues with eachRhizoctonia spp. and the corresponding culture on the medium using two restriction enzymes.HhaI andMspI, showed identical polymorphisms. PCR-RFLP analysis using DNA samples from naturally infected rice sheath tissues also revealed the possibility of direct diagnosis ofR. solani AG 1 IA,R. oryzae andR. oryzae-sativae.  相似文献   

16.
Two isolates of Laetisaria arvalis and 10 of binucleate Rhizoctonia spp. (BNR) from the Ohio sugar beet production area, were tested in the greenhouse and field for biocontrol of Rhizoctonia crown and root rot of sugar beet, caused by Rhizoctonia solani anastomosis group 2, type 2. L. arvalis was ineffective in standard greenhouse tests, and the single isolate used in the field was generally ineffective. Seven of 10 BNR isolates effectively controlled crown and root rot in greenhouse tests. Delayed application of biocontrol agents to plants 5 – 10 wk old was generally more effective than applications made at planting. A BNR isolate significantly reduced % plant loss and disease ratings and increased yield in a 1985 field test as compared with the control infested with R. solani alone. Two BNR isolates were effective in a 1986 field test and increased yields c. 22% in comparison to a L. arvalis treatment, which did not differ from the R. solani-infested control. The Ohio binucleate Rhizoctonia isolates appear to have considerable potential as applied biocontrol agents and may play a role in the natural ecology of R. solani in the sugar beet production area of Ohio.  相似文献   

17.
A modified baiting technique was conducted for selective isolation, fungal DNA diagnosis and fungal cell lipid assay derived from Myanmar isolates of Rhizoctonia spp., causal agents of rice sheath diseases by trapping selective plant stem segments. Bait plant materials of rice, mat rush and cotton were successfully used to isolate R. solani AG1-IA, R. oryzae and R. oryzae-sativae. Moreover, the three plant materials were also effectively used to detect genomic DNA derived from all Rhizoctonia spp. obtained from Myanmar. Rice segment was the most successful materials for detection of fungal cell lipids including palmitic, stearic and linoleic acids. The results of this experiment demonstrate that bait plant materials of rice, mat rush and cotton were the best useful tools for not only direct isolation, but also fungal DNA diagnosis and cell lipid assay of Myanmar soil environmental conditions.  相似文献   

18.
19.
The rRNA cistron (18S–ITS1–5.8S–ITS2–28S) is used widely for phylogenetic analyses. Recent studies show that compensatory base changes (CBC) in the secondary structure of ITS2 correlate with genetic incompatibility between organisms. Rhizoctonia solani consists of genetically incompatible strain groups (anastomosis groups, AG) distinguished by lack of anastomosis between hyphae of strains. Phylogenetic analysis of internal transcribed spacer (ITS) sequences shows a strong correlation with AG determination. In this study, ITS sequences were reannotated according to the flanking 5.8S and 28S regions which interact during ribogenesis. One or two CBCs were detected between the ITS2 secondary structure of AG-3 potato strains as compared to AG-3 tobacco strains, and between these two strains and all other AGs. When a binucleate Rhizoctonia species related to Ceratobasidiaceae was compared to the AGs of R. solani, which were multinucleate (3–21 nuclei per cell), 1–3 CBCs were detected. The CBCs in potato strains of AG-3 distinguish them from AG-3 tobacco strains and other AGs yielding further evidence that the potato strains of AG-3 originally described as R. solani are a species distinct from other AGs. The ITS1–5.8S–ITS2 sequences were analyzed by direct sequencing of PCR products from 497 strains of AG-3 isolated from potato. The same 10 and 4 positions in ITS1 and ITS2, respectively, contained variability in 425 strains (86%). Nine different unambiguous ITS sequences (haplotypes) could be detected in a single strain by sequencing cloned PCR products indicating that concerted evolution had not homogenized the rRNA cistrons in many AG-3 strains. Importantly, the sequence variability did not affect the secondary structure of ITS2 and CBCs in AG-3. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
The impact of continuous cropping of lettuce on the disease dynamics of bottom rot and genotypic diversity of the causal pathogen Rhizoctonia solani AG 1‐IB was studied over 3 years with two crops per year within a field naturally infested with R. solani the pathogen. This field had not had lettuce cultivated in it for 7 years. The disease incidence (DI) and disease severity (DS) were assessed at each harvest and mapped. Surprisingly, a high DI was already observed in the first crop of year one of this field study. In addition, the pathogen was also found to be evenly distributed. Severely infected plants occurred mainly in patches, and the position varied between crops. A significant increase in DS was already observed in the second year, and both temperature conditions and continuous cropping influenced the DS on average over time. Rhizoctonia isolates were randomly collected from the first crop in 1999 and the sixth crop in 2001. The genotypic diversity within the subgroup of R. solani AG 1‐IB was analysed by BOX‐PCR genomic fingerprinting and the aggressiveness of isolates by bioassay. The fingerprints revealed a high level of genotypic diversity within the AG 1‐IB field population. However, continuous cropping was found not to have an impact on genotypic diversity and aggressiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号