首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
VPAC2在CHO细胞的表达及鉴定   总被引:1,自引:0,他引:1  
PAC2是垂体腺苷酸环化酶激活多肽(Pituitary adenylate cyclase activating polypeptide,PACAP)和血管活性肠肽(vasoactive intestinal peptide,VIP)的共同受体,介导多种重要生物学功能。为获得稳定特异表达VPAC2的中国仓鼠卵巢(Chinesehamsterovary,CHO)细胞,将pcDNA-VPAC2表达载体转染CHO细胞,G418筛选转染阳性克隆,PACAP38标准品诱导阳性克隆细胞的胞内cAMP生成,筛选出对PACAP38最为敏感的阳性单克隆细胞株(VPAC2-CHO),运用RT-PCR、Westernblot和免疫荧光法检测VPAC2受体表达情况,利用VPAC2受体特异激动剂通过竞争性结合试验和促进胞内第二信使cAMP生成的活性检测实验证实,VPAC2-CHO特异表达有功能的VPAC2。Scatchard作图分析显示VPAC2-CHO的VPAC2受体密度为(1.1±0.2)pmol/mg膜蛋白,PACAP38与VPAC2的解离常数Kd值为(0.55±0.10)nmol/L。特异表达VPAC2受体细胞系的构建为深入研究该受体理化性质、生物学功能以及筛选、开发VPAC2受体新型特异激动剂和拮抗剂等研究奠定了基础。  相似文献   

2.
Distinct roles of the two T cell G protein-coupled receptors for vasoactive intestinal peptide (VIP), termed VPAC1 and VPAC2, in VIP regulation of autoimmune diseases were investigated in the dextran sodium sulfate (DSS)-induced murine acute colitis model for human inflammatory bowel diseases. In mice lacking VPAC2 (VPAC2-KO), DSS-induced colitis appeared more rapidly with greater weight loss and severe histopathology than in wild-type mice. In contrast, DSS-induced colitis in VPAC1-KO mice was milder than in wild-type mice and VPAC2-KO mice. Tissues affected by colitis showed significantly higher levels of myeloperoxidase, IL-6, IL-1β and MMP-9 in VPAC2-KO mice than wild-type mice, but there were no differences for IL-17, IFN-γ, IL-4, or CCR6. Suppression of VPAC1 signals in VPAC2-KO mice by PKA inhibitors reduced the clinical and histological severity of DSS-induced colitis, as well as tissue levels of IL-6, IL-1β and MMP-9. Thus VIP enhancement of the severity of DSS-induced colitis is mediated solely by VPAC1 receptors.  相似文献   

3.
4.
VPAC1是垂体腺苷酸环化酶激活多肽(pituitary adenylate cyclase—activating polypeptide,PACAP)和血管活性肠肽(vasoactive intestinal polypeptide,VIP)的共同受体。VPAC1介导PACAP和VIP抑制食欲和抗炎的生物学功能。本研究体外实验表明,VPAC1在分化成熟的3T3-L1脂肪细胞中表达增高,并且VPAC1激动剂(10—1000nmol/L每1×10^6 cells)可诱导脂肪细胞脂解,因此我们预计VPAC1激动剂具有抗肥胖及肥胖综合征的作用。为研究VAPC1激动剂[Lys15,Arg16,Leu27]-VIP(1—7)GRF(8—27)对营养性肥胖及肥胖综合征的干预作用,本研究又设计了两组体内实验:(1)高脂喂养NIH雄性小鼠4周,同时腹腔注射VPAC1激动剂;以注射生理盐水作为对照;(2)高脂喂养NIH雄性小鼠5周,构建肥胖模型后,再腹腔注射VPAC1激动剂4周,同样以注射生理盐水作为对照。采集摄食、体重、体脂、血糖及血脂等指标。结果显示,VPAC1激动剂显著抑制摄食、抑制高脂饮食诱导的体重及体脂(附睾及背部)重量的增长,并有效改善高脂饮食诱导的高血糖及高血脂,提高机体的糖耐受。高剂量(每天50nmol/kg体重)VPAC1激动剂比低剂量(每天5nmol/kg体重)有更显著的抗肥胖作用,提示VPAC1激动剂的抗肥胖作用具有剂量依赖性。以上结果表明,VPAC1激动剂不仅能抑制高脂诱导的肥胖的发展,而且可有效改善肥胖相关疾病:其抗肥胖作用的机制是复杂整合的,值得进一步深入研究。  相似文献   

5.
Vasoactive intestinal peptide (VIP) has potent antiproliferative and anti-inflammatory functions in the immune system. Two structurally distinct G-protein-associated receptors, VIP receptor type 1 (VPAC1) and VIP receptor type 2 (VPAC2), mediate the biological effects of VIP. The regulation of VIP receptor gene expression and the distribution of these receptors in different compartments of the human immune systems are unknown. This study reports, for the first time, a quantitative analysis of VPAC1 and VPAC2 mRNA expression in resting and activated T cells as well as in resting monocytes. Purified human peripheral blood CD4(+) T cells and CD8(+) T cells were stimulated via the TCR/CD3 receptor complex. Using the novel fluorometric-based kinetic (real-time) RT-PCR, we determined that VPAC1 is constitutively expressed in resting T cells and monocytes; the levels of expression were significantly higher in monocytes and CD4(+) T cells than in CD8(+) T cells. VPAC1 mRNA expression is significantly higher relative to VPAC2 in resting CD4(+) T cells and CD8(+) T cells. VPAC2 is expressed at very low levels in resting T cells but is not detectable in resting monocytes. In vitro stimulation of Th cells with soluble anti-CD3 plus PMA induced a T cell activation-dependent down-regulation of VPAC1. VPAC1 is down-regulated under conditions of optimal T cell stimulation. Our results suggest that selective VIP effects on T cell function may be mediated via selective expression of VPAC1 and VPAC2 on T cells and monocytes. Furthermore, down-regulation of VPAC1 in CD4(+) T cell subpopulations is highly correlated with T cell activation.  相似文献   

6.
After stimulation with agonist, G protein coupled receptors (GPCR) undergo conformational changes that allow activation of G proteins to transduce the signal, followed by phosphorylation by kinases and arrestin binding to promote receptor internalization. Actual paradigm, based on a study of GPCR-A/rhodopsin family, suggests that a network of interactions between conserved residues located in transmembrane (TM) domains (mainly TM3, TM6 and TM7) is involved in the molecular switch leading to GPCR activation.

We evaluated in CHO cells expressing the VPAC1 receptor the role of the third transmembrane helix in agonist signalling by point mutation into Ala of the residues highly conserved in the secretin-family of receptors: Y224, N229, F230, W232, E236, G237, Y239, L240. N229A VPAC1 mutant was characterized by a decrease in both potency and efficacy of VIP stimulated adenylate cyclase activity, by the absence of agonist stimulated [Ca2+]i increase, by a preserved receptor recognition of agonists and antagonist and by a preserved sensitivity to GTP suggesting the importance of that residue for efficient G protein activation. N229D mutant was not expressed at the membrane, and the N229Q with a conserved mutation was less affected than the A mutant. Agonist stimulated phosphorylation and internalization of N229A and N229Q VPAC1 were unaffected. However, the re-expression of internalized mutant receptors, but not that of the wild type receptor, was rapidly reversed after VIP washing. Receptor phosphorylation, internalization and re-expression may be thus dissociated from G protein activation and linked to another active conformation that may influence its trafficking.

Mutation of that conserved amino acid in VPAC2 could be investigated only by a conservative mutation (N216Q) and led to a receptor with a low VIP stimulation of adenylate cyclase, receptor phosphorylation and internalization. This indicated the importance of the conserved N residue in the TM3 of that family of receptors.  相似文献   


7.
8.
利用DNA重组、原核表达、Chitin-Beads柱和HPLC纯化、质谱鉴定等技术,制备了一种新型具有抗2型糖尿病功能的VPAC2受体激动剂RD,并初步研究和揭示了其在Ⅱ型糖尿病治疗中有效促进胰岛素信号传导的分子机制。实验结果表明:利用基因重组技术制备的VPAC2受体激动剂RD的分子量为3 785.0 Da,纯度为96%;将重组肽作用于正常或胰岛素抵抗的3T3-L1 脂肪细胞(IR模型细胞),1和5μmol/L 重组肽RD可促进正常3T3-L1脂肪细胞IRS-1 蛋白的表达(分别增加36%和42%),而促进IR模型细胞IRS-1 蛋白的表达增加更为明显(分别增加55%和63%)。IR模型细胞经1,5和10μmol/L重组肽RD处理后,pIRS1(ser307)的表达水平分别比降低了5.9%,10.7%和32.7%。在IR模型细胞中,5和10μmol/L RD处理组,IRS-2蛋白的表达水平分别降低12.8%和40.6%;而1,5和10μmol/L RD各处理组pIRS2蛋白的表达水平分别降低35.1%,40.8%和48.5%。5 and 10μmol/L RD处理的IR模型细胞中Akt蛋白的表达显著增强,表达量分别增加74%和77%。1,5 和10μmol/L的重组肽RD处理的IR模型细胞中,Akt Ser473磷酸化水平分别降低33.9%,64.0%和71.1%;Akt Thr308磷酸化水平分别升高13.5%,78.6%和83.3%。建立了重组VPAC2受体激动剂RD的制备技术,并在体外细胞水平检测了其效果(显著促进正常3T3-L1脂肪细胞及IR模型细胞IRS-1 蛋白的表达;降低IR模型细胞pIRS1(ser307),IRS-2,pIRS2蛋白的表达;促进IR模型细胞Akt蛋白的表达及Akt Thr308磷酸化水平等),为阐明其在2型糖尿病治疗中的分子作用机制及药用研发提供了实验基础。  相似文献   

9.
E M Lutz  S Shen  M Mackay  K West  A J Harmar 《FEBS letters》1999,458(2):197-203
The VPAC(2) (vasoactive intestinal peptide (VIP)(2)) receptor is a seven-transmembrane spanning G protein-coupled receptor which responds similarly to VIP and pituitary adenylate cyclase activating polypeptide (PACAP) in stimulating cAMP production. Recently, we reported the localisation of the human VPAC(2) receptor gene (VIPR2) to chromosome 7q36.3 (Mackay, M. et al. (1996) Genomics 37, 345-353). Here, we describe the characterisation of the VIPR2 gene structure and promoter region. The VIPR2 gene is encoded by 13 exons, the initiator codon of the 438 amino acid open reading frame is located in exon 1 and the termination signal and a poly-adenylation signal sequence are located in exon 13. The 5' untranslated region extends 187 bp upstream of the initiator codon and is extremely GC-rich (80%). The poly-adenylation signal is located 2416 bp downstream of the stop codon. Intron sizes range from 68 bp (intron 11) to 45 kb (intron 4) and the human gene spans 117 kb.  相似文献   

10.
The PAC(1), VPAC(1) and VPAC(2) receptors are members of the secretin (Group II) family of G protein-coupled receptors. All members of this family activate adenylate cyclase and several have also been shown to activate phospholipase C. We have recently reported that the rat VPAC(1), VPAC(2) and PAC(1) receptors activate phospholipase D and that distinct pathways are utilised by two intracellular loop 3 splice variants of PAC(1), one of which is ARF-dependent. Phospholipase D activation by the hop1, but not the null (short), form of the PAC(1) receptor is sensitive to brefeldin A, an inhibitor of GTP exchange at ARF. We have expressed the null and hop1 intracellular loop 3 domains of the human PAC(1) receptor in bacteria as GST-fusion proteins and used them as peptide affinity matrices to determine whether a functional interaction exists between these domains and ARF. Using this GST pull-down assay, we have shown binding of the small G protein ARF6 to the hop1 but not the null domain of this receptor.  相似文献   

11.
The three receptor activity-modifying proteins (RAMPs1, -2, and -3) associate with a wide variety of G protein-coupled receptors (GPCRs), including calcitonin receptor-like receptor (CRLR). In this study, we used flow cytometry to measure RAMP translocation to the cell surface as a marker of RAMP-receptor interaction. Because VPAC2 does not interact with RAMPs, although, like CRLR, it is a Family B peptide hormone receptor, we constructed a set of chimeric CRLR/VPAC2 receptors to evaluate the trafficking interactions between CRLR domains and each RAMP. We found that CRLR regions extending from transmembrane domain 1 (TM1) through TM5 are necessary and sufficient for the transport of RAMPs to the plasma membrane. In addition, the extracellular N-terminal domain of CRLR, its 3rd intracellular loop and/or TM6 were also important for the cell-surface translocation of RAMP2, but not RAMP1 or RAMP3. Other regions within CRLR were not involved in trafficking interactions with RAMPs. These findings provide new insight into the trafficking interactions between accessory proteins such as RAMPs and their receptor partners.  相似文献   

12.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide originally purified from ovine hypothalamus for its potent activity to stimulate cAMP production. However, its presence and action have also been demonstrated in various peripheral tissues including the ovary. In the zebrafish, two forms of PACAP (PACAP(38)-1, adcyap1a; and PACAP(38)-2, adcyap1b) and three PACAP receptors (PAC(1)-R, adcyap1r1; VPAC(1)-R, vipr1; and VPAC(2)-R, vipr2) were all expressed in the ovary. Interestingly, although both follicle cells and oocytes express adcyap1b, the expression of adcyap1a was restricted to the oocytes only. Among the three receptors, adcyap1r1 and vipr2 were expressed in the oocytes, whereas the expression of vipr1 was exclusively located in the follicle cells. Temporal expression analysis of PACAP ligands and receptors during folliculogenesis suggested that PACAP might play differential roles in regulating follicle growth and maturation through different receptors. The two receptors that are expressed in the oocyte (adcyap1r1 and vipr2) showed a significant increase in expression at the transition from the primary growth (PG) stage to previtellogenic (PV) stage and their levels maintained high during follicle growth. However, when the follicle development approached full-grown (FG) stage, these two receptors both decreased significantly in expression. In contrast, vipr1, the receptor expressed in the follicle cells, showed little change in expression at the PG-PV transition and afterwards during follicle growth; however, its expression surged dramatically at the FG stage prior to oocyte maturation. Based on these results, we hypothesized that PACAP might play dual roles in regulating follicle growth and maturation through different receptors located in different compartments. PACAP may stimulate oocyte growth but block its maturation in early follicles by acting directly on the oocyte via PAC1-R and VPAC2-R, whose expression is dominant in growth phase; however, PACAP may promote oocyte maturation in the maturation phase via VPAC1-R on the follicle cells, whose expression surges in FG follicles prior to maturation and is consistently high in the follicles undergoing final maturation. This hypothesis was further supported by the observation that PACAP promoted maturation of follicle-enclosed oocytes but suppressed spontaneous maturation of denuded oocytes in vitro. This study provides strong evidence for a PACAP-mediated signaling network in the zebrafish ovarian follicle, which may play roles in orchestrating follicle growth and maturation via different types of receptors located in different compartments of the follicle.  相似文献   

13.
The discovery of a series of novel, potent, and selective blockers of the cyclic nucleotide-modulated channel HCN1 is disclosed. Here we report an SAR study around a series of selective blockers of the HCN1 channel. Utilization of a high-throughput VIPR assay led to the identification of a novel series of 2,2-disubstituted indane derivatives, which had moderate selectivity and potency at HCN1. Optimization of this hit led to the identification of the potent, 1,1-disubstituted cyclohexane HCN1 blocker, 2-ethoxy-N-((1-(4-isopropylpiperazin-1-yl)cyclohexyl)methyl)benzamide. The work leading to the discovery of this compound is described herein.  相似文献   

14.
15.
The stimulatory effect of vasoactive intestinal peptide (VIP) on the intracellular calcium concentration ([Ca(2+)](i)) has been investigated in Chinese hamster ovary cells stably transfected with the reporter gene aequorin, and expressing human VPAC(1), VPAC(2), chimaeric VPAC(1)/VPAC(2) or mutated receptors. The VIP-induced increase in [Ca(2+)](i) was linearly correlated with receptor density, and was higher in cells expressing VPAC(1) receptors than in cells expressing a similar density of VPAC(2) receptors. The study was performed to establish the receptor sequence responsible for this difference. VPAC(1)/VPAC(2) chimaeric receptors were first used for broad positioning: those receptors having the third intracellular loop (IC3) of the VPAC(1) or the VPAC(2) receptor behaved, in this respect, phenotypically like VPAC(1) and VPAC(2) receptors respectively. Replacement in the VPAC(2) receptor of the sequence comprising residues 315-318 (VGGN) within IC3 by its VPAC(1) receptor counterpart (residues 328-331; IRKS) and the introduction of VGGN instead of IRKS into VPAC(1) was sufficient to mimic VPAC(1) and VPAC(2) receptor characteristics respectively. Thus a small sequence in the IC3 domain of the VPAC(1) receptor is responsible for the efficient agonist-stimulated increase in [Ca(2+)](i).  相似文献   

16.
To better understand the mechanism of interactions between G-protein-coupled melatonin receptors and their ligands, our previously reported homology model of human MT2 receptor with docked 2-iodomelatonin was further refined and used to select residues within TM3, TM6, and TM7 potentially important for receptor-ligand interactions. Selected residues were mutated and radioligand-binding assay was used to test the binding affinities of hMT2 receptors transiently expressed in HEK293 cells. Our data demonstrate that residues N268 and A275 in TM6 as well as residues V291 and L295 in TM7 are essential for 2-iodomelatonin binding to the hMT2 receptor, while TM3 residues M120, G121, V124, and I125 may participate in binding of other receptor agonists and/or antagonists. Presented data also hint at possible specific interaction between the side-chain of Y188 in second extracellular loop and N-acetyl group of 2-iodomelatonin.  相似文献   

17.
The stimulatory effect of VIP on intracellular calcium concentration ([Ca(2+)](i)) has been investigated in Chinese hamster ovary cells stably transfected with the reporter gene aequorin, and expressing human VPAC(1), VPAC(2), chimeric VPAC(1)/VPAC(2), or mutated receptors. The VIP-induced [Ca(2+)](i) increase was linearly correlated with receptor density and was higher in cells expressing VPAC(1) receptors than in cells expressing a similar VPAC(2) receptor density. The study was performed to establish the receptor sequence responsible for that difference. VPAC(1)/VPAC(2) chimeric receptors were first used for a broad positioning: those having the third intracellular loop (IC(3)) of the VPAC(1) or of the VPAC(2) receptor behaved, in that respect, phenotypically like VPAC(1) and VPAC(2) receptor, respectively. Replacement in the VPAC(2) receptor of the sequence 315-318 (VGGN) within the IC(3) by its VPAC(1) receptor counterpart 328-331 (IRKS) and the introduction of VGGN in state of IRKS in VPAC(1) was sufficient to mimic the VPAC(1) and VPAC(2) receptor characteristics, respectively. Thus, a small sequence in the IC(3) of the VPAC(1) receptor, probably through interaction with G(alphai) and G(alphaq) proteins, is responsible for the efficient agonist-stimulated [Ca(2+)](i) increase.  相似文献   

18.
G protein-coupled receptors (GPCRs) are seven-transmembrane (TM) helical proteins that bind extracellular molecules and transduce signals by coupling to heterotrimeric G proteins in the cytoplasm. The human D4 dopamine receptor is a particularly interesting GPCR because the polypeptide loop linking TM helices 5 and 6 (loop i3) may contain from 2 to 10 similar direct hexadecapeptide repeats. The precise role of loop i3 in D4 receptor function is not known. To clarify the role of loop i3 in G protein coupling, we constructed synthetic genes for the three main D4 receptor variants. D4-2, D4-4, and D4-7 receptors contain 2, 4, and 7 imperfect hexadecapeptide repeats in loop i3, respectively. We expressed and characterized the synthetic genes and found no significant effect of the D4 receptor polymorphisms on antagonist or agonist binding. We developed a cell-based assay where activated D4 receptors coupled to a Pertussis toxin-sensitive pathway to increase intracellular calcium concentration. Studies using receptor mutants showed that the regions of loop i3 near TM helices 5 and 6 were required for G protein coupling. The hexadecapeptide repeats were not required for G protein-mediated calcium flux. Cell membranes containing expressed D4 receptors and receptor mutants were reconstituted with purified recombinant G protein alpha subunits. The results show that each D4 receptor variant is capable of coupling to several G(i)alpha subtypes. Furthermore, there is no evidence of any quantitative difference in G protein coupling related to the number of hexadecapeptide repeats in loop i3. Thus, loop i3 is required for D4 receptors to activate G proteins. However, the polymorphic region of the loop does not appear to affect the specificity or efficiency of G(i)alpha coupling.  相似文献   

19.
In order to identify the receptor domains responsible for the VPAC1 selectivity of the VIP1 agonist, [Lys15, Arg16, Leu27] VIP (1-7)/GRF (8-27) and VIP1 antagonist, Ac His1 [D-Phe2, Lys15, Arg16, Leu27] VIP (3-7)/GRF (8-27), we evaluated their binding and functional properties on chimeric VPAC1/VPAC2 receptors. Our results suggest that the N-terminal extracellular domain is responsible for the selectivity of the VIP1 antagonist. Selective recognition of the VIP1 agonist was supported by a larger receptor area: in addition to the N-terminal domain, the first extracellular loop, as well as additional determinants in the distal part of the VPAC1 receptor were involved. Furthermore, these additional domains were critical for an efficient receptor activation, as replacement of EC1 in VPAC1 by its counter part in the VPAC2 receptor markedly reduced the maximal response.  相似文献   

20.
To explore the structural mechanisms underlying the assembly and activation of family A GPCR dimers, we used the rat M(3) muscarinic acetylcholine receptor (M3R) as a model system. Studies with Cys-substituted mutant M3Rs expressed in COS-7 cells led to the identification of several mutant M3Rs that exclusively existed as cross-linked dimers under oxidizing conditions. The cross-linked residues were located at the bottom of transmembrane domain 5 (TM5) and within the N-terminal portion of the third intracellular loop (i3 loop). Studies with urea-stripped membranes demonstrated that M3R disulfide cross-linking did not require the presence of heterotrimeric G proteins. Molecular modeling studies indicated that the cross-linking data were in excellent agreement with the existence of a low-energy M3R dimer characterized by a TM5-TM5 interface. [(35)S]GTPγS binding/Gα(q/11) immunoprecipitation assays revealed that an M3R dimer that was cross-linked within the N-terminal portion of the i3 loop (264C) was functionally severely impaired (~50% reduction in receptor-G-protein coupling, as compared to control M3R). These data support the novel concept that agonist-induced activation of M3R dimers requires a conformational change of the N-terminal segment of the i3 loop. Given the high degree of structural homology among family A GPCRs, these findings should be of broad significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号