首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
《The Journal of cell biology》1996,133(6):1277-1291
The organization of the actin cytoskeleton plays a critical role in cell physiology in motile and nonmotile organisms. Nonetheless, the function of the actin based motor molecules, members of the myosin superfamily, is not well understood. Deletion of MYO3, a yeast gene encoding a "classic" myosin I, has no detectable phenotype. We used a synthetic lethality screen to uncover genes whose functions might overlap with those of MYO3 and identified a second yeast myosin 1 gene, MYO5. MYO5 shows 86 and 62% identity to MYO3 across the motor and non- motor regions. Both genes contain an amino terminal motor domain, a neck region containing two IQ motifs, and a tail domain consisting of a positively charged region, a proline-rich region containing sequences implicated in ATP-insensitive actin binding, and an SH3 domain. Although myo5 deletion mutants have no detectable phenotype, yeast strains deleted for both MYO3 and MYO5 have severe defects in growth and actin cytoskeletal organization. Double deletion mutants also display phenotypes associated with actin disorganization including accumulation of intracellular membranes and vesicles, cell rounding, random bud site selection, sensitivity to high osmotic strength, and low pH as well as defects in chitin and cell wall deposition, invertase secretion, and fluid phase endocytosis. Indirect immunofluorescence studies using epitope-tagged Myo5p indicate that Myo5p is localized at actin patches. These results indicate that MYO3 and MYO5 encode classical myosin I proteins with overlapping functions and suggest a role for Myo3p and Myo5p in organization of the actin cytoskeleton of Saccharomyces cerevisiae.  相似文献   

2.
A high molecular-weight protein from Escherichia coli sharing structural homology at the protein level with a yeast heavy-chain myosin encoded by the MYO1 gene is described. This 180 kD protein (180-HMP) can be enriched in cell fractions following the procedure normally utilized for the purification of non-muscle myosins. In Western blots this protein cross-reacts with a monoclonal antibody against yeast heavy-chain myosin. Moreover, antibodies raised against the 180 kD protein cross-react with the yeast myosin and with a myosin heavy chain from chicken. Recognition by anti-180-HMP antibodies of an overexpressed fragment of yeast myosin encoded by MYO1 allows the localization of one of the shared epitopes to a specific region around the ATP binding site of the yeast myosin heavy chain. The existence of a high molecular-weight protein with structural similarity to myosin in E. coli raises the possibility that such a protein might generate the force required for movement in processes such as nucleoid segregation and cell division.  相似文献   

3.
Temperature-sensitive yeast mutants defective in gene CDC24 continued to grow (i.e., increase in cell mass and cell volume) at restrictive temperature (36 degrees C) but were unable to form buds. Staining with the fluorescent dye Calcofluor showed that the mutants were also unable to form normal bud scars (the discrete chitin rings formed in the cell wall at budding sites) at 36 degrees C; instead, large amounts of chitin were deposited randomly over the surfaces of the growing unbudded cells. Labeling of cell-wall mannan with fluorescein isothiocyanate-conjugated concanavalin A suggested that mannan incorporation was also delocalized in mutant cells grown at 36 degrees C. Although the mutants have well-defined execution points just before bud emergence, inactivation of the CDC24 gene product in budded cells led both to selective growth of mother cells rather than of buds and to delocalized chitin deposition, indicating that the CDC24 gene product functions in the normal localization of growth in budded as well as in unbudded cells. Growth of the mutant strains at temperatures less than 36 degrees C revealed allele-specific differences in behavior. Two strains produced buds of abnormal shape during growth at 33 degrees C. Moreover, these same strains displayed abnormal localization of budding sites when growth at 24 degrees C (the normal permissive temperature for the mutants); in each case, the abnormal pattern of budding sites segregated with the temperature sensitivity in crosses. Thus, the CDC24 gene product seems to be involved in selection of the budding site, formation of the chitin ring at that site, the subsequent localization of new cell wall growth to the budding site and the growing bud, and the balance between tip growth and uniform growth of the bud that leads to the normal cell shape.  相似文献   

4.
The morphology of three Saccharomyces cerevisiae strains, all lacking chitin synthase 1 (Chs1) and two of them deficient in either Chs3 (calR1 mutation) or Chs2 was observed by light and electron microscopy. Cells deficient in Chs2 showed clumpy growth and aberrant shape and size. Their septa were very thick; the primary septum was absent. Staining with WGA-gold complexes revealed a diffuse distribution of chitin in the septum, whereas chitin was normally located at the neck between mother cell and bud and in the wall of mother cells. Strains deficient in Chs3 exhibited minor abnormalities in budding pattern and shape. Their septa were thin and trilaminar. Staining for chitin revealed a thin line of the polysaccharide along the primary septum; no chitin was present elsewhere in the wall. Therefore, Chs2 is specific for primary septum formation, whereas Chs3 is responsible for chitin in the ring at bud emergence and in the cell wall. Chs3 is also required for chitin synthesized in the presence of alpha-pheromone or deposited in the cell wall of cdc mutants at nonpermissive temperature, and for chitosan in spore walls. Genetic evidence indicated that a mutant lacking all three chitin synthases was inviable; this was confirmed by constructing a triple mutant rescued by a plasmid carrying a CHS2 gene under control of a GAL1 promoter. Transfer of the mutant from galactose to glucose resulted in cell division arrest followed by cell death. We conclude that some chitin synthesis is essential for viability of yeast cells.  相似文献   

5.
Two different Dictyostelium discoideum cell lines that lack myosin heavy chain protein (MHC A) have been previously described. One cell line (mhcA) was created by antisense RNA inactivation of the endogenous mRNA and the other (HMM) by insertional mutagenesis of the endogenous myosin gene. The two cell lines show similar developmental defects; they are delayed in aggregation and become arrested at the mound stage. However, when cells that lack myosin heavy chain are mixed with wild-type cells, some of the mutant cells are capable of completing development to form mature spores. The pattern of expression of a number of developmentally regulated genes has been examined in both mutant cell lines. Although morphogenesis becomes aberrant before aggregation is completed, all of the markers that we have examined are expressed normally. These include genes expressed prior to aggregation as well as prespore genes expressed later in development. It appears that the signals necessary for cell-type differentiation are generated in the aborted structures formed by cells lacking MHC A. The mhcA cells have negligible amounts of MHC A protein while the HMM cells express normal amounts of a fragment of the myosin heavy chain protein similar to heavy meromyosin (HMM). The expression of myosin light chain was examined in these two cell lines. HMM cells accumulate normal amounts of the 18,000-D light chain, while the amount of light chain in mhcA cells is dramatically reduced. It is likely that the light chains assemble normally with the HMM fragment in HMM cells, while in cells lacking myosin heavy chain (mhcA) the light chains are unstable.  相似文献   

6.
F Z Watts  G Shiels    E Orr 《The EMBO journal》1987,6(11):3499-3505
A yeast gene MYO1 that contains regions of substantial sequence homology with the nematode muscle myosin gene (unc54) has been isolated and sequenced. Although the disruption of MYO1 is not lethal, it leads to aberrant nuclear migration and cytokinesis. The 200-kd myosin heavy chain-like protein, the product of MYO1, cross-reacts with anti-nematode myosin heavy chain IgG and is present in wild-type strains but not in strains carrying the disrupted gene. Instead, a truncated polypeptide with a molecular mass of 120 kd can be detected in some myo1 mutants.  相似文献   

7.
Cytokinesis is essential for proliferative growth but also plays equally important roles during morphogenesis and development. The human pathogen Penicillium marneffei is capable of dimorphic switching in response to temperature, growing in a multicellular filamentous hyphal form at 25°C and in a unicellular yeast form at 37°C. P. marneffei also undergoes asexual development at 25°C to produce multicellular differentiated conidiophores. Thus, P. marneffei exhibits cell division with and without cytokinesis and division by budding and fission, depending on the cell type. The type II myosin gene, myoB, from P. marneffei plays important roles in the morphogenesis of these cell types. Deletion of myoB leads to chitin deposition defects at sites of cell division without perturbing actin localization. In addition to aberrant hyphal cells, distinct conidiophore cell types are lacking due to malformed septa and nuclear division defects. At 37°C, deletion of myoB prevents uninucleate yeast cell formation, instead producing long filaments resembling hyphae at 25°C. The ΔmyoB cells also often lyse due to defects in cell wall biogenesis. Thus, MyoB is essential for correct morphogenesis of all cell types regardless of division mode (budding or fission) and defines differences between the different types of growth.  相似文献   

8.
9.
10.
11.
Dictyostelium amebae have been engineered by homologous recombination of a truncated copy of the myosin heavy chain gene (heavy meromyosin (HMM) cells) and by transformation with a vector encoding an antisense RNA to myosin heavy chain mRNA (mhcA cells) so that they lack native myosin heavy chain protein. In the former case, cells synthesize only the heavy meromyosin portion of the protein and in the latter case they synthesize negligible amounts of the protein. Surprisingly, it was demonstrated that both cell lines are viable and motile. In order to compare the motility of these cells with normal cells, the newly developed computer-assisted Dynamic Morphology System (DMS) was employed. The results demonstrate that the average HMM or mhcA ameba moves at a rate of translocation less than half that of normal cells. It is rounder and less polar than a normal cell, and exhibits a rate of cytoplasmic expansion and contraction roughly half that of normal cells. In a spatial gradient of cAMP, the average ameba of HMM or mhcA exhibits a chemotactic index of +0.10 or less, compared to the chemotactic index of +0.50 exhibited by normal cells. Finally, the initial area, rate of expansion, and final area of pseudopods are roughly half that of normal cells. The five fastest HMM amebae (out of 35 analyzed in detail) moved at an average rate of translocation equal to that of normal amebae, and exhibited an average chemotactic index of +0.34. In addition, the average rate of cytoplasmic flow in fast HMM cells was equal to that of the average normal ameba. However, fast HMM amebae still exhibited the same defects in pseudopod formation that were exhibited by the entire HMM cell population. These results suggest that myosin heavy chain is involved in the "fine tuning" and efficiency of pseudopod formation, but is not essential for the basic behavior of pseudopod expansion.  相似文献   

12.
In the nematode Caenorhabditis elegans, animals mutant in the gene encoding the protein product of the unc-45 gene (UNC-45) have disorganized muscle thick filaments in body wall muscles. Although UNC-45 contains tetratricopeptide repeats (TPR) as well as limited similarity to fungal proteins, no biochemical role has yet been found. UNC-45 reporters are expressed exclusively in muscle cells, and a functional reporter fusion is localized in the body wall muscles in a pattern identical to thick filament A-bands. UNC-45 colocalizes with myosin heavy chain (MHC) B in wild-type worms as well as in temperature-sensitive (ts) unc-45 mutants, but not in a mutant in which MHC B is absent. Surprisingly, UNC-45 localization is also not seen in MHC B mutants, in which the level of MHC A is increased, resulting in near-normal muscle thick filament structure. Thus, filament assembly can be independent of UNC-45. UNC-45 shows a localization pattern identical to and dependent on MHC B and a function that appears to be MHC B-dependent. We propose that UNC-45 is a peripheral component of muscle thick filaments due to its localization with MHC B. The role of UNC-45 in thick filament assembly seems restricted to a cofactor for assembly or stabilization of MHC B.  相似文献   

13.
A mutant affecting the heavy chain of myosin in Caenorhabditis elegans   总被引:41,自引:0,他引:41  
A set of non-complementing, closely linked, ethyl methanesulphonate-induced mutations in Caenorhabditis elegans specifically affects the structure and function of body-wall muscle cells but not the pharyngeal musculature. One of these mutations, e675, is semidominant and results in the production of a new protein of about 203,000 molecular weight in addition to normal myosin at about 210,000 Mr. The abnormal polypeptide chain is structurally very similar to normal myosin heavy chain when maps of iodinated peptides are compared.The E675 mutant shows a clear relation between defective movement, disruption of the body-wall muscle structure, and the molecular defect in the myosin heavy chains. The altered chain is synthesized in heterozygotes, suggesting that the e675 mutation is either in a structural gene for the heavy chain or in a cis acting control element. The hypothesis that there are two classes of myosin heavy chain within the same cells is discussed.  相似文献   

14.
15.
Phosphorylation of the Dictyostelium myosin II heavy chain (MHC) has a key role in regulating myosin localization in vivo and drives filament disassembly in vitro. Previous molecular analysis of the Dictyostelium myosin II heavy chain kinase (MHCK A) gene has demonstrated that the catalytic domain of this enzyme is extremely novel, showing no significant similarity to the known classes of protein kinases (Futey, L. M., Q. G. Medley, G. P. Cote, and T. T. Egelhoff. 1995. J. Biol. Chem. 270:523-529). To address the physiological roles of this enzyme, we have analyzed the cellular consequences of MHCK A gene disruption (mhck A- cells) and MHCK A overexpression (MHCK A++ cells). The mhck A- cells are viable and competent for tested myosin-based contractile events, but display partial defects in myosin localization. Both growth phase and developed mhck A- cells show substantially reduced MHC kinase activity in crude lysates, as well as significant overassembly of myosin into the Triton-resistant cytoskeletal fractions. MHCK A++ cells display elevated levels of MHC kinase activity in crude extracts, and show reduced assembly of myosin into Triton-resistant cytoskeletal fractions. MHCK A++ cells show reduced growth rates in suspension, becoming large and multinucleated, and arrest at the mound stage during development. These results demonstrate that MHCK A functions in vivo as a protein kinase with physiological roles in regulating myosin II localization and assembly in Dictyostelium cells during both growth and developmental stages.  相似文献   

16.
17.
Calmodulin, regulatory, and essential myosin light chain are evolutionary conserved proteins that, by binding to IQ motifs of target proteins, regulate essential intracellular processes among which are efficiency of secretory vesicles release at synapsis, intracellular signaling, and regulation of cell division. The yeast Saccharomyces cerevisiae calmodulin Cmd1 and the essential myosin light chain Mlc1p share the ability to interact with the class V myosin Myo2p and Myo4 and the class II myosin Myo1p. These myosins are required for vesicle, organelle, and mRNA transport, spindle orientation, and cytokinesis. We have used the budding yeast model system to study how calmodulin and essential myosin light chain selectively regulate class V myosin function. NMR structural analysis of uncomplexed Mlc1p and interaction studies with the first three IQ motifs of Myo2p show that the structural similarities between Mlc1p and the other members of the EF-hand superfamily of calmodulin-like proteins are mainly restricted to the C-lobe of these proteins. The N-lobe of Mlc1p presents a significantly compact and stable structure that is maintained both in the free and complexed states. The Mlc1p N-lobe interacts with the IQ motif in a manner that is regulated both by the IQ motifs sequence as well as by light chain structural features. These characteristic allows a distinctive interaction of Mlc1p with the first IQ motif of Myo2p when compared with calmodulin. This finding gives us a novel view of how calmodulin and essential light chain, through a differential binding to IQ1 of class V myosin motor, regulate this activity during vegetative growth and cytokinesis.  相似文献   

18.
Cytokinesis in fission yeast involves the coordination of septum deposition with the contraction of a cytokinetic actomyosin ring. We have examined the role of the type V myosin Myo52 in the coupling of these two events by the construction of a series of deletion mutants of the Myo52 tail and a further mutant within the ATP binding domain of the head. Each mutant protein was ectopically expressed in fission yeast cells. Each truncation was assayed for the ability to localize to the cell poles and septum (the normal cellular locations of Myo52) and to rescue the morphology defects and temperature sensitivity of a myo52Delta strain. A region within the Myo52 tail (amino acids 1320-1503), with a high degree of similarity to the vesicle-binding domain of the budding yeast type V myosin Myo2p, was essential for Myo52's role in the maintenance of growth polarity and cell division. A separate region (amino acids 1180-1320) was required for Myo52 foci to move throughout the cytoplasm; however, constructs lacking this region, but which retained the ability to dimerize still associated with actin at sites of cell growth. Not all of the Myo52 truncations which localized rescued the morphological defects of myo52Delta, demonstrating that loss of function was not simply brought about by an inability of mutant proteins to target the correct cellular location. By contrast, Myo52 motor activity was required for both localization and cellular function. myo52Delta cells were unable to efficiently localize the beta-1,3-glucan synthase, Bgs1, either at the cell poles or at the division septum, regions of cell wall deposition. Bgs1 and Myo52 localized to vesicle-like dots at the poles in interphase and these moved together to the septum at division. These data have led to the formulation of a model in which Myo52 is responsible for the delivery of Bgs1 and associated molecules to polar cell growth regions during interphase. On the commencement of septum formation, Myo52 transports Bgs1 to the cell equator, thus ensuring the accurate deposition of beta-1,3-glucan at the leading edge of the primary septum.  相似文献   

19.
Gene replacement in Dictyostelium: generation of myosin null mutants.   总被引:30,自引:3,他引:27       下载免费PDF全文
The eukaryotic slime mold Dictyostelium discoideum has a single conventional myosin heavy chain gene (mhcA). The elimination of the mhcA gene was achieved by homologous recombination. Two gene replacement plasmids were constructed, each carrying the G418 resistance gene as a selective marker and flanked by either 0.7 kb of 5' coding sequence and 0.9 kb of 3' coding sequence or 1.5 kb of 5' flanking sequence and 1.1 kb of 3' flanking sequence. Myosin null mutants (mhcA- cells) were obtained after transformation with either of these plasmids. The mhcA- cells are genetically stable and are capable of a variety of motile processes. Our results provide genetic proof that in Dictyostelium the conventional myosin gene is required for growth in suspension, normal cell division and sporogenesis, and illustrate how gene targeting can be used as a tool in Dictyostelium.  相似文献   

20.
Myosin V motors regulate secretion and cell division in eukaryotes. How MyoV activity is differentially regulated by essential and calmodulin light chain binding remains unclear. We have used NMR spectroscopy to compare the dynamic behavior of Mlc1p, a budding yeast essential light chain, with that of the Xenopus laevis calmodulin. Both proteins have a similar structure and bind similar target proteins but differ in the mechanism by which they interact with the myosin V IQ1. This interaction is essential for MyoV activity. Here, we show that the rigid conformation of the loop connecting the two EF-hand motifs of the Mlc1p N-lobe explains its differential ability to interact with myosin V IQ1. Moreover, we show that the maintenance of the N-lobe structure is required for the essential function of Mlc1p in vivo. These data show that the core characteristics of myosin light chain N-lobes differentiate Mlc1p and calmodulin binding capability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号