首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure and dynamics of the urea-denatured B1 immunoglobulin binding domain of streptococcal protein G (GB1) has been investigated by multidimensional heteronuclear NMR spectroscopy. Complete 1H, 15N, and 13C assignments are obtained by means of sequential through-bond correlations. The nuclear Overhauser enhancement, chemical shift, and 3JHN alpha coupling constant data provide no evidence for the existence of any significant population of residual native or nonnative ordered structure. 15N relaxation measurements at 500 and 600 MHz, however, provide evidence for conformationally restricted motions in three regions of the polypeptide that correspond to the second beta-hairpin, the N-terminus of the alpha-helix, and the middle of the alpha-helix in the native protein. The time scale of these motions is longer than the apparent overall correlation time (approximately 3 ns) and could range from about 6 ns in the case of one model to between 4 microseconds and 2 ms in another; it is not possible to distinguish between these two cases with certainty because the dynamics are highly complex and hence the analysis of the time scale of this slower motion is highly model dependent. It is suggested that these three regions may correspond to nucleation sites for the folding of the GB1 domain. With the exception of the N- and C-termini, where end effects predominate, the amplitude of the subnanosecond motions, on the other hand, are fairly uniform and model independent, with an overall order parameter S2 ranging from 0.4 to 0.5.  相似文献   

2.
The contributions of backbone NH group dynamics to the conformational heat capacity of the B1 domain of Streptococcal protein G have been estimated from the temperature dependence of 15N NMR-derived order parameters. Longitudinal (R1) and transverse (R2) relaxation rates, transverse cross-relaxation rates (eta(xy)), and steady state [1H]-15N nuclear Overhauser effects were measured at temperatures of 0, 10, 20, 30, 40, and 50 degrees C for 89-100% of the backbone secondary amide nitrogen nuclei in the B1 domain. The ratio R2/eta(xy) was used to identify nuclei for which conformational exchange makes a significant contribution to R2. Relaxation data were fit to the extended model-free dynamics formalism, incorporating an axially symmetric molecular rotational diffusion tensor. The temperature dependence of the order parameter (S2) was used to calculate the contribution of each NH group to conformational heat capacity (Cp) and a characteristic temperature (T*), representing the density of conformational energy states accessible to each NH group. The heat capacities of the secondary structure regions of the B1 domain are significantly higher than those of comparable regions of other proteins, whereas the heat capacities of less structured regions are similar to those in other proteins. The higher local heat capacities are estimated to contribute up to approximately 0.8 kJ/mol K to the total heat capacity of the B1 domain, without which the denaturation temperature would be approximately 9 degrees C lower (78 degrees C rather than 87 degrees C). Thus, variation of backbone conformational heat capacity of native proteins may be a novel mechanism that contributes to high temperature stabilization of proteins.  相似文献   

3.
A low resolution solution structure of the cytokine interleukin-1 beta, a 153 residue protein of molecular weight 17,400, has been determined on the basis of 446 nuclear Overhauser effect (NOE) derived approximate interproton distance restraints involving solely NH, C alpha H and C beta H protons, supplemented by 90 distance restraints for 45 hydrogen bonds, and 79 phi torsion angle restraints. With the exception of 27 C alpha H-C alpha H NOEs, all the NOEs were assigned from a three-dimensional 1H-1H NOE 15N-1H heteronuclear multiple quantum coherence (HMQC) spectrum. The torsion angle restraints were obtained from accurate 3JHN alpha coupling constants measured from a HMQC-J spectrum, while the hydrogen bonds were derived from a qualitative analysis of the NOE, coupling constant and amide exchange data. A total of 20 simulated annealing (SA) structures was computed using the hybrid distance geometry-dynamical simulated annealing method. The solution structure of IL-1 beta comprises 12 beta-strands arranged in three pseudo-symmetrical topological units (each consisting of 5 anti-parallel beta-strands), joined by turns, short loops and long loops. The core of the structure, which is made up of the 12 beta-strands, together with the turns joining strands I and II, strands VIII and IX and strands X and XI, is well determined with a backbone atomic root-mean-square (r.m.s.) distribution about the mean co-ordinate positions of 1.2(+/- 0.1) A. The loop conformations, on the other hand, are poorly determined by the current data. A comparison of the core of the low resolution solution structure of IL-1 beta with that of the X-ray structure indicates that they are similar, with a backbone atomic r.m.s. difference of only 1.5 A between the co-ordinates of the restrained minimized mean of the SA structures and the X-ray structure.  相似文献   

4.
5.
The backbone dynamics of a 15N-labeled recombinant PAK pilin peptide spanning residues 128–144 in the C-terminal receptor binding domain of Pseudomonas aeruginosa pilin protein strain PAK (Lys128-Cys-Thr-Ser-Asp-Gln-Asp-Glu-Gln-Phe-Ile-Pro-Lys-Gly-Cys-Ser-Lys144) were probed by measurements of 15N NMR relaxation. This PAK(128–144) sequence is a target for the design of a synthetic peptide vaccine effective against multiple strains of P. aeruginosa infection. The 15N longitudinal (T1) and transverse (T2) relaxation rates and the steady-state heteronuclear {1H}-15N NOE were measured at three fields (7.04, 11.74 and 14.1 Tesla), five temperatures (5, 10, 15, 20, and 25°C ) and at pH 4.5 and 7.2. Relaxation data was analyzed using both the `model-free' formalism [Lipari, G. and Szabo, A. (1982) J. Am. Chem. Soc., 104, 4546–4559 and 4559–4570] and the reduced spectral density mapping approach [Farrow, N.A., Szabo, A., Torchia, D.A. and Kay, L.E. (1995) J. Biomol. NMR, 6, 153–162]. The relaxation data, spectral densities and order parameters suggest that the type I and type II -turns spanning residues Asp134-Glu-Gln-Phe137 and Pro139-Lys-Gly-Cys142, respectively, are the most ordered and structured regions of the peptide. The biological implications of these results will be discussed in relation to the role that backbone motions play in PAK pilin peptide immunogenicity, and within the framework of developing a pilin peptide vaccine capable of conferring broad immunity across P. aeruginosa strains.  相似文献   

6.
Complete 13C and 15N assignments of the B3 IgG-binding domain of protein G (GB3) in the microcrystalline solid phase, obtained using 2D and 3D MAS NMR, are presented. The chemical shifts are used to predict the protein backbone conformation and compared with solution-state shifts. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
M J Bogusky  G C Leo  S J Opella 《Proteins》1988,4(2):123-130
Solid-state and solution 15N nuclear magnetic resonance experiments on uniformly and specifically 15N labeled coat protein in phospholipid bilayers and in detergent micelles are used to describe the dynamics of the membrane-bound form of the protein. The residues in the N- and C-terminal portions of the coat protein in both phospholipid bilayers and in detergent micelles are mobile, while those in the hydrophobic midsection are immobile. There is evidence for a gradient of mobility in the C-terminal region of the coat protein in micelles; at 25 degrees C only the last two residues are mobile on the 10(9)-Hz timescale, while the last six to eight residues appear to be mobile on slower timescales and highly mobile at higher temperatures. Since all of the C-terminal residues are immobile in the virus particles, the mobility of these residues in the membrane-bound form of the protein may be important for the formation of protein-DNA interactions in the assembly process.  相似文献   

8.
9.
The 39 kDa receptor associated protein (RAP) is a modular protein consisting of multiple domains. There has been no x-ray crystal structure of RAP available and the full-length protein does not behave well in a NMR tube. To elucidate the 3D structure of the RAP, we undertook structure determination of individual domains of the RAP. As the first step, here we report the nearly complete assignments of the 1H, 13C and 15N chemical shift signals of domain 1 of the RAP.  相似文献   

10.
11.
A new strategy for the sequential assignment of backbone proton resonances in larger proteins involving a unique combination of four types of heteronuclear three-dimensional (3D) NMR spectroscopies is reported. This method relies on the uniform labeling of amide nitrogens with 15N and of alpha-carbons with 13C. Heteronuclear 1H-15N TOCSY-HMQC and NOESY-HMQC experiments can reveal connections between cross-peaks arising from the NHi-C alpha Hi-1 and NHi-C alpha Hi connectivities in the finger-print region in in general. They also specifically reveal the sequential amide-amide connectivities among the amide cross-peaks for the alpha-helices. Heteronuclear 1H-13C HMQC-TOCSY and HMQC-NOESY experiments can reveal connections between cross-peaks arising from the NHi-C alpha Hi and NHi+1-C alpha Hi connectivities in the finger-print region in general. The combination of the two sets of results reveals the complete unambiguous sequential connection of cross-peaks for the proton resonances in the peptide backbone. The application of the new strategy is reported for a protein, ribonuclease H, with a molecular weight of 17.6 kDa.  相似文献   

12.
13.
Li Q  Du HN  Hu HY 《Biopolymers》2003,72(2):116-122
The protein-protein interaction system often contains many fluorophores that may significantly interfere with the quantitative determination of the binding abilities. To solve this perplexing problem, we biosynthetically incorporated the two tryptophan analogs, 5-hydroxytryptophan and 7-azatryptophan, into the immunoglobulin G (IgG) binding domain of streptococcal protein G (PGBD). The exclusive excitation and novel fluorescence changes in both the intensity and anisotropy are beneficial to reporting the details of the interactions between PGBD and the IgG fragments and enable assessment of the binding abilities. The dissociation constants are estimated to be 0.28 microM for the binding of human Fc and 8.0 microM for mouse Fc. The results clearly demonstrate that labeling of tryptophan analogs has very little effect on the binding abilities and is broadly applicable to quantitatively studying protein-protein interactions in a whole biomolecular complex.  相似文献   

14.
The backbone dynamics of uniformly 15N-labeled interleukin-1 beta are investigated by using two-dimensional inverse detected heteronuclear 15N-1H NMR spectroscopy. 15N T1, T2, and NOE data at a spectrometer frequency of 600 MHz are obtained for 90% of the backbone amide groups. The data provide evidence for motions on three time scales. All the residues exhibit very fast motions on a time scale of approximately less than 20-50 ps that can be characterized by a single-order parameter with an average value of 0.82 +/- 0.05. For a model comprising free diffusion within a cone, these residue-specific order parameters translate to an average cone semiangle of 20.7 +/- 3.3 degrees. Thirty-two residues also display motions on a time scale of 0.5-4 ns, slightly less than the overall rotational correlation time of the protein (8.3 ns). These additional motions must be invoked to account for the discrepancy between experiment and the simplest theoretical formulation in which the internal motions are described by only two parameters, a generalized order parameter and an effective correlation time [Lipari, G., & Szabo, A. (1982a) J. Am. Chem. Soc. 104, 4546-4559]. In particular, while the simple formulation can account for the 15N T1 and T2 data, it fails to account for the 15N-1H NOE data and yields calculated values for the NOEs that are either too small or negative, whereas the observed NOEs are positive. With the introduction of two internal motions that are faster than the rotational correlation time and differ in time scales by at least 1-2 orders of magnitude [Clore, G. M., Szabo, A., Bax, A., Kay, L. E., Driscoll, P. C., & Gronenborn, A. M. (1990) J. Am. Chem. Soc. 112, 4989-4991], all the relaxation data for these 32 residues can be fitted by two order parameters and an effective correlation time for the slower of the two internal motions. A simple model for these two motions is one in which the very fast motion involves axially symmetric diffusion within a cone, while the slower motion comprises jumps between two different orientations of the NH vector. For such a model the jump angle (excluding the C-terminal residue) ranges from 15 degrees to 69 degrees with a mean value of 28.6 +/- 14.0 degrees. Another 42 residues are characterized by some sort of motion on the 30-ns-10-ms time scale, which results in 15N line broadening due to chemical exchange between different conformational substates with distinct 15N chemical shifts.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The dsRNA-dependent protein kinase (PKR) is a key mediator of the anti-viral and anti-proliferative effects of interferon. Unphosphorylated PKR is characterized by inhibitory interactions between the kinase and RNA binding domains (RBDs), but the structural details of the latent state and its unraveling during activation are not well understood. To study PKR regulation by NMR we assigned a large portion of the backbone resonances of the catalytically inactive K296R kinase domain, and performed (15)N-heteronuclear single quantum coherence (HSQC) titrations of this kinase domain with the RBDs. Chemical shift perturbations in the kinase indicate that RBD2 binds to the substrate eIF2alpha docking site in the kinase C-lobe. Consistent with these results, a mutation in the eIF2alpha docking site, F495A, displays weaker interactions with the RBD. The full-length RBD1+2 binds more strongly to the kinase domain than RBD2 alone. The observed chemical shift changes extend from the eIF2alpha binding site into the kinase N-lobe and inside the active site, consistent with weak interactions between the N-terminal part of the RBD and the kinase.  相似文献   

16.
The mechanism of beta-sheet formation remains a fundamental issue in our understanding of the protein folding process, but is hampered by the often encountered kinetic competition between folding and aggregation. The role of local versus nonlocal interactions has been probed traditionally by mutagenesis of both turn and strand residues. Recently, rigid organic molecules that impose a correct chain reversal have been introduced in several small peptides to isolate the importance of the long-range interactions. Here, we present the incorporation of a well-studied beta-turn mimic, designated as the dibenzofuran-based (DBF) amino acid, in the B1 domain of streptococcal protein G (B1G), and compare our results with those obtained upon insertion of the same mimic into the N-terminal beta-hairpin of B1G (O Melnyk et al., 1998, Lett Pept Sci 5:147-150). The DBF-B1G domain conserves the structure and the functional and thermodynamical properties of the native protein, whereas the modified peptide does not adopt a native-like conformation. The nature of the DBF flanking residues in the modified B1G domain prevents the beta-turn mimic from acting as a strong beta-sheet nucleator, which reinforces the idea that the native beta-hairpin formation is not driven by the beta-turn formation, but by tertiary interactions.  相似文献   

17.
13C and 15N chemical shift anisotropy and 15N1H dipolar powder patterns from backbone sites of the coat protein in fd bacteriophage are not averaged by motion. This means that the polypeptide backbone of the protein has no large amplitude motions rapid compared to 104 Hz. Relaxation studies on the 13Cα and 15N amide resonances indicate the presence of motions on the 109 Hz timescale. These results are reconciled with a model where an otherwise rigid backbone undergoes small amplitude, rapid motions.  相似文献   

18.
19.
Nuclear magnetic resonance is used to investigate the backbone dynamics in 6-phosphogluconolactonase from Trypanosoma brucei (Tb6PGL) with (holo-) and without (apo-) 6-phosphogluconic acid as ligand. Relaxation data were analyzed using the model-free approach and reduced spectral density mapping. Comparison of predictions, based on 77 ns molecular dynamics simulations, with the observed relaxation rates gives insight into dynamical properties of the protein and their alteration on ligand binding. Data indicate dynamics changes in the vicinity of the binding site. More interesting is the presence of perturbations located in remote regions of this well-structured globular protein in which no large-amplitude motions are involved. This suggests that delocalized changes in dynamics that occur upon binding could be a general feature of protein-target interactions.  相似文献   

20.
The structural and dynamical behavior of the 41-56 beta-hairpin from the protein G B1 domain (GB1) has been studied at different temperatures using molecular dynamics (MD) simulations in an aqueous environment. The purpose of these simulations is to establish the stability of this hairpin in view of its possible role as a nucleation site for protein folding. The conformation of the peptide in the crystallographic structure of the protein GB1 (native conformation) was lost in all simulations. The new equilibrium conformations are stable for several nanoseconds at 300K (>10 ns), 350 K (>6.5 ns), and even at 450 K (up to 2.5 ns). The new structures have very similar hairpin-like conformations with properties in agreement with available experimental nuclear Overhauser effect (NOE) data. The stability of the structure in the hydrophobic core region during the simulations is consistent with the experimental data and provides further evidence for the role played by hydrophobic interactions in hairpin structures. Essential dynamics analysis shows that the dynamics of the peptide at different temperatures spans basically the same essential subspace. The main equilibrium motions in this subspace involve large fluctuations of the residues in the turn and ends regions. Of the six interchain hydrogen bonds, the inner four remain stable during the simulations. The space spanned by the first two eigenvectors, as sampled at 450 K, includes almost all of the 47 different hairpin structures found in the database. Finally, analysis of the hydration of the 300 K average conformations shows that the hydration sites observed in the native conformation are still well hydrated in the equilibrium MD ensemble.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号