共查询到20条相似文献,搜索用时 15 毫秒
1.
Characterization of the iron-sulfur clusters in ferredoxin from acetate-grown Methanosarcina thermophila.
下载免费PDF全文

A P Clements L Kilpatrick W P Lu S W Ragsdale J G Ferry 《Journal of bacteriology》1994,176(9):2689-2693
Ferredoxin from Methanosarcina thermophila is an electron acceptor for the CO dehydrogenase complex which decarbonylates acetyl-coenzyme A and oxidizes the carbonyl group to carbon dioxide in the pathway for conversion of the methyl group of acetate to methane (K. C. Terlesky and J. G. Ferry, J. Biol. Chem. 263:4080-4082, 1988). Resonance Raman spectroscopy and electron paramagnetic resonance spectroelectrochemistry indicated that the ferredoxin contained two [4Fe-4S] clusters per monomer of 6,790 Da, each with a midpoint potential of -407 mV. A [3Fe-4S] species, with a midpoint potential of +103 mV, was also detected in the protein at high redox potentials. Quantitation of the [3Fe-4S] and [4Fe-4S] centers revealed 0.4 and 2.1 spins per monomer, respectively. The iron-sulfur clusters were unstable in the presence of air, and the rate of cluster loss increased with increasing temperature. A ferredoxin preparation, with a low spin quantitation of [4Fe-4S] centers, was treated with Fe2+ and S2-, which resulted in an increase in [4Fe-4S] and a decrease in [3Fe-4S] clusters. The results of these studies suggest the [3Fe-4S] species may be an artifact formed from degradation of [4Fe-4S] clusters. 相似文献
2.
Purification and characterization of acetate kinase from acetate-grown Methanosarcina thermophila. Evidence for regulation of synthesis 总被引:11,自引:0,他引:11
Acetate kinase was purified 102-fold to a specific activity of 656 mumol of ADP formed/min/mg of protein from acetate-grown Methanosarcina thermophila. The enzyme was not intrinsically membrane bound. The native enzyme (Mr 94,000) was an alpha 2 homodimer with a subunit Mr of 53,000. The activity was optimum between pH 7.0 and 7.4. A pI of 4.7 was determined. The enzyme was stable to O2 and stable to heating at 70 degrees C for 15 min but was rapidly inactivated at higher temperatures. The apparent Km for acetate was 22 mM and for ATP was 2.8 mM. The enzyme phosphorylated propionate at 60% of the rate with acetate but was unable to use formate. TTP, ITP, UTP, GTP, and CTP replaced ATP as the phosphoryl donor to acetate. The enzyme required one of several divalent cations for activity; the maximum rate was obtained with Mn2+. Western blots of cell extract proteins showed that acetate grown cells synthesized higher quantities of the acetate kinase than did methanol grown cells. 相似文献
3.
Characterization of a CO: heterodisulfide oxidoreductase system from acetate-grown Methanosarcina thermophila.
下载免费PDF全文

During the methanogenic fermentation of acetate by Methanosarcina thermophila, the CO dehydrogenase complex cleaves acetyl coenzyme A and oxidizes the carbonyl group (or CO) to CO2, followed by electron transfer to coenzyme M (CoM)-S-S-coenzyme B (CoB) and reduction of this heterodisulfide to HS-CoM and HS-CoB (A. P. Clements, R. H. White, and J. G. Ferry, Arch. Microbiol. 159:296-300, 1993). The majority of heterodisulfide reductase activity was present in the soluble protein fraction after French pressure cell lysis. A CO:CoM-S-S-CoB oxidoreductase system from acetate-grown cells was reconstituted with purified CO dehydrogenase enzyme complex, ferredoxin, membranes, and partially purified heterodisulfide reductase. Coenzyme F420 (F420) was not required, and CO:F420 oxidoreductase activity was not detected in cell extracts. The membranes contained cytochrome b that was reduced with CO and oxidized with CoM-S-S-CoB. The results suggest that a novel CoM-S-S-CoB reducing system operates during acetate conversion to CH4 and CO2. In this system, ferredoxin transfers electrons from the CO dehydrogenase complex to membrane-bound electron carriers, including cytochrome b, that are required for electron transfer to the heterodisulfide reductase. The cytochrome b was purified from solubilized membrane proteins in a complex with six other polypeptides. The cytochrome was not reduced when the complex was incubated with H2 or CO, and H2 uptake hydrogenase activity was not detected; however, the addition of CO dehydrogenase enzyme complex and ferredoxin enabled the CO-dependent reduction of cytochrome b. 相似文献
4.
Protein content and enzyme activities in methanol- and acetate-grown Methanosarcina thermophila. 总被引:3,自引:7,他引:3
下载免费PDF全文

P E Jablonski A A DiMarco T A Bobik M C Cabell J G Ferry 《Journal of bacteriology》1990,172(3):1271-1275
The cell extract protein content of acetate- and methanol-grown Methanosarcina thermophila TM-1 was examined by two-dimensional polyacrylamide gel electrophoresis. More than 100 mutually exclusive spots were present in acetate- and methanol-grown cells. Spots corresponding to acetate kinase, phosphotransacetylase, and the five subunits of the carbon monoxide dehydrogenase complex were identified in acetate-grown cells. Activities of formylmethanofuran dehydrogenase, formylmethanofuran:tetrahydromethanopterin formyltransferase, 5,10-methenyltetrahydromethanopterin cyclohydrolase, methylene tetrahydromethanopterin:coenzyme F420 oxidoreductase, formate dehydrogenase, and carbonic anhydrase were examined in acetate- and methanol-grown Methanosarcina thermophila. Levels of formyltransferase in either acetate- or methanol-grown Methanosarcina thermophila were approximately half the levels detected in H2-CO2-grown Methanobacterium thermoautotrophicum. All other enzyme activities were significantly lower in acetate- and methanol-grown Methanosarcina thermophila. 相似文献
5.
Synthesis of acetyl coenzyme A by carbon monoxide dehydrogenase complex from acetate-grown Methanosarcina thermophila. 总被引:3,自引:4,他引:3
下载免费PDF全文

The carbon monoxide dehydrogenase (CODH) complex from Methanosarcina thermophila catalyzed the synthesis of acetyl coenzyme A (acetyl-CoA) from CH3I, CO, and coenzyme A (CoA) at a rate of 65 nmol/min/mg at 55 degrees C. The reaction ended after 5 min with the synthesis of 52 nmol of acetyl-CoA per nmol of CODH complex. The optimum temperature for acetyl-CoA synthesis in the assay was between 55 and 60 degrees C; the rate of synthesis at 55 degrees C was not significantly different between pHs 5.5 and 8.0. The rate of acetyl-CoA synthesis was independent of CoA concentrations between 20 microM and 1 mM; however, activity was inhibited 50% with 5 mM CoA. Methylcobalamin did not substitute for CH3I in acetyl-CoA synthesis; no acetyl-CoA or propionyl coenzyme A was detected when sodium acetate or CH3CH2I replaced CH3I in the assay mixture. CO could be replaced with CO2 and titanium(III) citrate. When CO2 and 14CO were present in the assay, the specific activity of the acetyl-CoA synthesized was 87% of the specific activity of 14CO, indicating that CO was preferentially incorporated into acetyl-CoA without prior oxidation to free CO2. Greater than 100 microM potassium cyanide was required to significantly inhibit acetyl-CoA synthesis, and 500 microM was required for 50% inhibition; in contrast, oxidation of CO by the CODH complex was inhibited 50% by approximately 10 microM potassium cyanide. 相似文献
6.
Activation of acetate by Methanosarcina thermophila. Purification and characterization of phosphotransacetylase 总被引:12,自引:0,他引:12
Phosphotransacetylase (EC 2.3.1.8) was purified 83-fold to a specific activity of 2.5 mmol of acetyl-CoA synthesized per min/mg of protein from Methanosarcina thermophila cultivated on acetate. This rate was 10-fold greater than the rate of acetyl phosphate synthesis. The native enzyme (Mr 42,000-52,000) was a monomer and was not integral to the membrane. Activity was optimum at pH 7.0, and 35-45 degrees C. The enzyme was stable to air and to temperatures up to 70 degrees C, but was inactivated at higher temperatures. Phosphate and sulfate partially protected against heat inactivation. Potassium or ammonium ion concentrations above 10 mM were required for maximum activity of the purified enzyme; the intracellular potassium concentration of M. thermophila approximated 175 mM. Sodium, phosphate, sulfate, and arsenate ions were inhibitory to enzyme activity. Western blots of cell extracts showed that phosphotransacetylase was synthesized in higher quantity in acetate-grown cells than in methanol-grown cells. 相似文献
7.
Cell extracts from acetate-grown Methanosarcina thermophila contained CO-oxidizing:H2-evolving activity 16-fold greater than extracts from methanol-grown cells. Following fractionation of cell extracts into soluble and membrane components, CO-dependent H2 evolution and CO-dependent methyl-coenzyme M methylreductase activities were only present in the soluble fraction, but addition of the membrane fraction enhanced both activities. A b-type cytochrome(s), present in the membrane fraction, was linked to a membrane-bound hydrogenase. CO-oxidizing:H2-evolving activity was reconstituted with: (i) CO dehydrogenase complex, (ii) a ferredoxin, and (iii) purified membranes with associated hydrogenase. The ferredoxin was a direct electron acceptor for the CO dehydrogenase complex. The ferredoxin also coupled CO oxidation by CO dehydrogenase complex to metronidazole reduction. 相似文献
8.
The electron donor (component B) to the methyl coenzyme M methylreductase system from Methanosarcina thermophila was isolated as the 7-methyl derivative and characterized. Gas chromatography-mass spectrometry and 1H NMR analyses identified this derivative as 7-methylthioheptanoylthreonine phosphate (CH3-S-HTP), indicating that the original component B had the same structure (HS-HTP) as previously determined for component B from Methanobacterium thermoautotrophicum. The heterodisulfide of HS-HTP and coenzyme M (HS-CoM, 2-mercaptoethanesulfonate) was enzymatically reduced in cell extracts using electrons supplied by either H2 or CO, confirming that HS-HTP was a functional molecule in M. thermophila. 相似文献
9.
10.
Cysteine is the major source of fixed sulfur for the synthesis of sulfur-containing compounds in organisms of the Bacteria and Eucarya domains. Though pathways for cysteine biosynthesis have been established for both of these domains, it is unknown how the Archaea fix sulfur or synthesize cysteine. None of the four archaeal genomes sequenced to date contain open reading frames with identities to either O-acetyl-L-serine sulfhydrylase (OASS) or homocysteine synthase, the only sulfur-fixing enzymes known in nature. We report the purification and characterization of OASS from acetate-grown Methanosarcina thermophila, a moderately thermophilic methanoarchaeon. The purified OASS contained pyridoxal 5'-phosphate and catalyzed the formation of L-cysteine and acetate from O-acetyl-L-serine and sulfide. The N-terminal amino acid sequence has high sequence similarity with other known OASS enzymes from the Eucarya and Bacteria domains. The purified OASS had a specific activity of 129 micromol of cysteine/min/mg, with a K(m) of 500 +/- 80 microM for sulfide, and exhibited positive cooperativity and substrate inhibition with O-acetyl-L-serine. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single band at 36 kDa, and native gel filtration chromatography indicated a molecular mass of 93 kDa, suggesting that the purified OASS is either a homodimer or a homotrimer. The optimum temperature for activity was between 40 and 60 degrees C, consistent with the optimum growth temperature for M. thermophila. The results of this study provide the first evidence for a sulfur-fixing enzyme in the Archaea domain. The results also provide the first biochemical evidence for an enzyme with the potential for involvement in cysteine biosynthesis in the Archaea. 相似文献
11.
Isolation of an enzyme complex with carbon monoxide dehydrogenase activity containing corrinoid and nickel from acetate-grown Methanosarcina thermophila. 总被引:4,自引:15,他引:4
下载免费PDF全文

Fast protein liquid chromatography of cell extract from methanol- or acetate-grown Methanosarcina thermophila resolved two peaks of CO dehydrogenase activity. The activity of one of the CO dehydrogenases was sixfold greater in acetate-grown compared with methanol-grown cells. This CO dehydrogenase was purified to apparent homogeneity (70 mumol of methyl viologen reduced per min per mg of protein) and made up greater than 10% of the cellular protein of acetate-grown cells. The native enzyme (Mr 250,000) formed aggregates with an Mr of approximately 1,000,000. The enzyme contained five subunits (Mrs 89,000, 71,000, 60,000, 58,000, and 19,000), suggesting a multifunctional enzyme complex. Nickel, iron, cobalt, zinc, inorganic sulfide, and a corrinoid were present in the complex. The UV-visible spectrum suggested the presence of iron-sulfur centers. The electron paramagnetic resonance spectrum contained g values of 2.073, 2.049, and 2.028; these features were broadened in enzyme that was purified from cells grown in the presence of medium enriched with 61Ni, indicating the involvement of this metal in the spectrum. The pattern of potassium cyanide inhibition indicated that cyanide binds at or near the CO binding site. The properties of the enzyme imply an involvement in the dissimilation of acetate to methane, possibly by cleavage of acetate or activated acetate. 相似文献
12.
Purification and characterization of a ferredoxin from Rhizobium japonicum bacteroids 总被引:6,自引:0,他引:6
K R Carter J Rawlings W H Orme-Johnson R R Becker H J Evans 《The Journal of biological chemistry》1980,255(9):4213-4223
An eight-iron, eight-sulfur ferredoxin from Rhizobium japonicum bacteroids of soybean root nodules has been purified to apparent homogeneity as judged by disc gel electrophoresis. The purification procedure included chromatography on DEAE-cellulose, Bio-Gel P-60, and hydroxylapatite. Specific activities of several purified preparations of bacteroid ferredoxin ranged from 1700 to 1900 nmol of C2H4 produced . min-1 . mg-1 in the reaction mediating electron transfer between illuminated chloroplasts and bacteroid nitrogenase. A molecular weight of 6740 for the protein was determined by low speed sedimentation equilibrium and a molecular weight of 6500 was estimated from the mobility of bacteroid ferredoxin relative to the mobility of standard proteins during sodium dodecyl sulfate disc gel electrophoresis. All of the common amino acids were present except arginine, methionine, and tryptophan. The absorbance spectrum of the oxidized protein exhibited maxima at 285 nm and 380 nm with a shoulder near 305 nm. The A380/A285 ratio was 0.76 and the extinction coefficient at 380 nm for the oxidized protein was found to be 30,800 M-1. Equilibration of bacteroid ferredoxin with methyl viologen at various potentials revealed a midpoint oxidation-reduction potential of -484 mV. Spectrophotometric examination of iron-sulfur clusters extruded from bacteroid ferredoxin with benzenethiol and the transfer of its iron-sulfur clusters to other ferredoxins established the presence of two [4Fe-4S] clusters in a molecule of bacteroid ferredoxin. The EPR spectrum of oxidized ferredoxin consisted of a small signal at g = 2.02 integrating to 0.19 spin/molecule. The EPR spectrum of ferredoxin reduced with 5-deazaflavin exhibited a signal with features at g values of 1.88, 1.94, 2.01, and 2.07, and integrated to 1.7 spins/molecule. The EPR properties of bacteroid ferredoxin are characteristic of a ferredoxin operating between the 1+ and 2+ oxidation levels. Bacteroid ferredoxin mediated electron transfer to clostridial hydrogenase, but was not reduced by the clostridial phosphoroclastic system in the presence of pyruvate. Bacteroid ferredoxin reduced by illuminated 5-deazariboflavin also supported a high rate of C2H2 reduction by bacteroid nitrogenase which was free of Na2S2O4. It was concluded, on this basis, that bacteroid ferredoxin has the capability of functioning as the electron donor for nitrogenase in R. japonicum. 相似文献
13.
Two ferredoxins, Fd I and Fd II, were isolated and purified from Desulfovibrio vulgaris Miyazaki. The major component, Fd I, is an iron-sulfur protein of Mr 12,000, composed of two identical subunits. The absorption spectra of Fd I and Fd II have a broad absorption shoulder near 400 nm characteristic of iron-sulfur proteins. The purity index, A400/A280, of Fd I is 0.69, and its millimolar absorption coefficient at 400 nm is 3.73 per Fe. It contains two redox centers with discrete redox behaviors. The amino acid composition and the N-terminal sequence of Fd I are similar to those of Fd III of Desulfovibrio africanus Benghazi and Fd II of Desulfovibrio desulfuricans Norway. Fd I does not serve as an electron carrier for the hydrogenase of D. vulgaris Miyazaki, but it serves as a carrier for pyruvate dehydrogenase of this bacterium. The evolution of H2 from pyruvate was observed by a reconstructed system containing purified hydrogenase, cytochrome C3, Fd I, partially purified pyruvate dehydrogenase, and CoA. The H2-sulfite reducing system can be reconstructed from the purified hydrogenase, cytochrome C3, Fd I and desulfoviridin (sulfite reductase), but the reaction rate is very slow compared to that of the crude extract at the same molar ratio of the components. 相似文献
14.
Hydrogenase was solubilized from the membrane of acetate-grown Methanosarcina barkeri MS and purification was carried out under aerobic conditions. The enzyme was reactivated under reducing conditions in the presence of H2. The enzyme showed a maximal activity of 120±40 mol H2 oxidized · min–1 · min–1 with methyl viologen as an electron acceptor, a maximal hydrogen production rate of 45±4 mol H2 · min–1 · mg–1 with methyl viologen as electron donor, and an apparent K
m for hydrogen oxidation of 5.6±1.7 M. The molecular weight estimated by gel filtration was 98,000. SDS-PAGE showed the enzyme to consist of two polypeptides of 57,000 and 35,000 present in a 1:1 ratio. The native protein contained 8±2 mol Fe, 8±2 mol S2–, and 0.5 mol Ni/mol enzyme. Cytochrome b was reduced by hydrogen in a solubilized membrane preparation. The hydrogenase did not couple with autologous F420 or ferredoxin, nor with FAD, FMN, or NAD(P)+. The physiological function of the membrane-bound hydrogenase in hydrogen consumption is discussed.Abbreviation CoM-S-S-HTP
the heterodisulfide of 7-mercaptoheptanoylthrconine phosphate and coenzyme M (mercaptoethanesulfonic acid) 相似文献
15.
B E Alber C M Colangelo J Dong C M St?lhandske T T Baird C Tu C A Fierke D N Silverman R A Scott J G Ferry 《Biochemistry》1999,38(40):13119-13128
The zinc and cobalt forms of the prototypic gamma-carbonic anhydrase from Methanosarcina thermophila were characterized by extended X-ray absorption fine structure (EXAFS) and the kinetics were investigated using steady-state spectrophotometric and (18)O exchange equilibrium assays. EXAFS results indicate that cobalt isomorphously replaces zinc and that the metals coordinate three histidines and two or three water molecules. The efficiency of either Zn-Cam or Co-Cam for CO(2) hydration (k(cat)/K(m)) was severalfold greater than HCO(3-) dehydration at physiological pH values, a result consistent with the proposed physiological function for Cam during growth on acetate. For both Zn- and Co-Cam, the steady-state parameter k(cat) for CO(2) hydration was pH-dependent with a pK(a) of 6.5-6.8, whereas k(cat)/K(m) was dependent on two ionizations with pK(a) values of 6.7-6.9 and 8.2-8.4. The (18)O exchange assay also identified two ionizable groups in the pH profile of k(cat)/K(m) with apparent pK(a) values of 6.0 and 8.1. The steady-state parameter k(cat) (CO(2) hydration) is buffer-dependent in a saturable manner at pH 8. 2, and the kinetic analysis suggested a ping-pong mechanism in which buffer is the second substrate. The calculated rate constant for intermolecular proton transfer is 3 x 10(7) M(-1) s(-1). At saturating buffer concentrations and pH 8.5, k(cat) is 2.6-fold higher in H(2)O than in D(2)O, suggesting that an intramolecular proton transfer step is at least partially rate-determining. At high pH (pH > 8), k(cat)/K(m) is not dependent on buffer and no solvent hydrogen isotope effect was observed, consistent with a zinc hydroxide mechanism. Therefore, at high pH the catalytic mechanism of Cam appears to resemble that of human CAII, despite significant structural differences in the active sites of these two unrelated enzymes. 相似文献
16.
A ferredoxin (Fd) was purified from the extremely halophilic archaeon, Haloarcula japonica strain TR- 1, to electrophoretic homogeneity. The apparent molecular weight (M
r) of the Fd was estimated to be 24,000 on SDS-polyacrylamide gel electrophoresis. The amino acid composition analysis revealed that the Fd composed of a number of acidic amino acids (uncorrected for amides). The N-terminal amino acid sequence (30 residues) was determined to be: PTVEYLNYEVVDDNGWDMYDDDVFAEASDM. The iron content was 3.42±0.04 mol/mol-Fd on the basis of the apparent M
r value. The absorption and ESR spectra of the Fd showed similarity to those of Fds from plant and Halobacterium halobium. These results led us to conclude that the H. japonica Fd contained a [2Fe-2S] cluster. 相似文献
17.
Purification and characterization of renal ferredoxin from bovine renal mitochondria 总被引:1,自引:0,他引:1
A renal ferredoxin was purified from bovine renal mitochondria to electrophoretic purity. The molecular weight of the renal ferredoxin was estimated by gel filtration and SDS-polyacrylamide gel electrophoresis to be 12,500 and 13,000, respectively. The optical absorption spectrum of renal ferredoxin in the oxidized form showed two peaks at 416 and 457 nm in the visible region, and the EPR absorption spectrum showed peaks at gx = gy =1.94 and gz = 2.02 in the reduced form at 13K. These spectra were typical of the 2S-2Fe type ferredoxins. Dissimilarities were recognized in the amino acid composition and isoelectric point between bovine renal ferredoxin and bovine adrenodoxin, but not in the optical, magnetic, and immunochemical properties. The reconstitution of 25-hydroxyvitamin D3-1 alpha-hydroxylase system was performed with the three components of NADPH-adrenodoxin reductase from bovine adrenal mitochondria, renal ferredoxin, and cytochrome P-450(1) alpha from bovine renal mitochondria. The results showed that the renal ferredoxin was essential for the 1 alpha-hydroxylase activity of 25-hydroxyvitamin D3. 相似文献
18.
Phosphotransacetylase (EC 2.3.1.8) catalyzes the reversible transfer of the acetyl group from acetyl phosphate to coenzyme A (CoA), forming acetyl-CoA and inorganic phosphate. A steady-state kinetic analysis of the phosphotransacetylase from Methanosarcina thermophila indicated that there is a ternary complex kinetic mechanism rather than a ping-pong kinetic mechanism. Additionally, inhibition patterns of products and a nonreactive substrate analog suggested that the substrates bind to the enzyme in a random order. Dynamic light scattering revealed that the enzyme is dimeric in solution. 相似文献
19.
Suresh Bhosale Deepa Kshirsagar Prashant Pawar Tulsiram Yeole Dilip Ranade 《FEMS microbiology letters》1995,127(1-2):151-155
Abstract 5-Aminolevulinic acid dehydratase from the archaebacterium Methanosarcina barken resembles the mammalian and yeast enzymes in its activation by Zn2+ , whereas its activation by K+ resembles the characteristic of bacterial enzymes. This enzyme is activated with Ni2+ which is a component of F430 , a cofactor present mainly in methanogens. The M r of 280000 for the native enzyme and 30 000 ± 2000 for the individual subunit suggest that the enzyme is composed of eight apparently indentical subunits similar to mammalian and yeast enzymes. The enzyme has two pH optima, at 8.5 and 9.4. Higher levels of 5-aminolevulinic acid dehydratase in acetate-grown cells suggest the possibility that regulation and control of this enzyme could be different on various growth substrates. 相似文献
20.
Purification and characterization of human placental ferredoxin 总被引:1,自引:0,他引:1
A ferredoxin-type iron-sulfur protein was isolated from human placenta mitochondria. The properties of the purified protein were very similar to those of adrenal ferredoxin (adrenodoxin), and immunological cross-reactivity with polyclonal antibodies to bovine adrenodoxin was observed. The N-terminal amino acid sequence and the visible absorption spectrum were identical to bovine adrenodoxin. The molecular mass as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Mr approximately 13,500), however, is slightly smaller than that of adrenodoxin, and the C-terminal sequence is different. Human placental ferredoxin can substitute for bovine adrenodoxin in reactions reconstituted with bovine adrenal enzymes which catalyze the side chain cleavage of cholesterol to pregnenolone and the 11 beta-hydroxylation of deoxycorticosterone to corticosterone. 相似文献