首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tissues from male Wistar rats, fixed with 4% paraformaldehyde and embedded in paraffin, were studied with immunoperoxidase techniques using polyclonal antibodies raised against aldehyde oxidase or xanthine oxidase purified from rat liver. Immunohistochemical studies demonstrated that aldehyde oxidase-bearing cells were strongly stained in renal tubules, esophageal, gastric, intestinal and bronchial epithelium as well as liver cytoplasm. Weak but positive immunoreactivity was observed on the pulmonary alveolar epithelial cells, gastric glands and intestinal goblet cells. In contrast, it was demonstrated that cells with xanthine oxidase were strongly stained in renal tubules, esophageal, gastric, and small and large intestinal and bronchial epithelia etc. Positive immunostaining was also found in adrenal gland, skeletal muscle, spleen and cerebral hippocampus. Immunoreactivity againt aldehyde oxidase was not found in adrenal gland, spleen, mesentery or aorta, while immunoreactivity against xanthine oxidase was not found in mesentery or aorta. Although the significance of this ubiquitous and similar localization of aldehyde and xanthine oxidase seems unclear at present, these results may provide a clue as to the full understanding of the pathophysiological role of these oxidases in tissues.  相似文献   

2.
The localization of xanthine oxidoreductase activity was investigated in unfixed cryostat sections of various rat tissues by an enzyme histochemical method which specifically demonstrates both the dehydrogenase and oxidase forms of xanthine oxidoreductase. High activity was found in epithelial cells from skin, vagina, uterus, penis, liver, oral and nasal cavities, tongue, esophagus, fore-stomach and small intestine. In addition activity was demonstrated in sinusoidal cells of liver and adrenal cortex, endothelial cells in various organs and connective tissue fibroblasts. Xanthine oxidoreductase produces urate which is a scavenger of oxygen-derived radicals. Because the enzyme is found in epithelial and endothelial cells which are subject to relatively high oxidant stress, it is postulated that in these cells xanthine oxidoreductase is involved in the antioxidant enzyme defense system. In addition, a possible role for the enzyme in proliferation and differentiation processes is discussed.  相似文献   

3.
The generation of a monoclonal antibody specific to xanthine oxidase and its use in the distribution of the enzyme in human tissue is described. Xanthine oxidase was purified from human and bovine milk by a rapid method, allowing for minimal proteolytic degradation, and the purified enzyme preparations were used for the immunization of BALB/c mice as well as for the subsequent selection of hybridomas. The hybridoma clone X1–7, IgG (2a, -light chain) was selected for further analysis and demonstrated to precipitate xanthine oxidase from human liver and skeletal muscle extracts. As determined by SDS-polyacrylamide gel electrophoresis of eluates from affinity chromatography, the X1–7 antibody bound to a main protein of 155 kDa, from human milk and skeletal muscle, and to proteins of 155, 143 and 95 kDa from human liver. Immunohistochemical studies, using two of the monoclonal antibodies with differing epitope specificity, revealed xanthine oxidase to be localized mainly in the vascular smooth muscle cells but also in a proportion of endothelial cells of capillaries and smaller vessels in both human cardiac and skeletal muscle. Immunoreactivity was additionally observed in human macrophages and mast cells. The results of the present study confirm previous reports of the presence of xanthine oxidase in capillary endothelial cells, but also demonstrates additional localization of the enzyme in vascular smooth muscle cells, macrophages and mast cells. The current findings verify that the distribution of xanthine oxidase in human tissue includes cardiac and skeletal muscle.  相似文献   

4.
Hyperthermia is under intensive investigation as a treatment for tumors both alone and in combination with other therapeutic agents. Hyperthermia has a profound effect on the function and structural integrity of tumor microvasculature; this has often been cited as a reason for its effectiveness in treatment of tumors. To test the role of hyperthermia in cytotoxic effects of active oxygen species, Chinese hamster, V79, and bovine endothelial cells were treated by the active oxygens, O not equal to 2 and H2O2, generated from the hypoxanthine/purine and xanthine oxidase reactions. It was found that cytotoxicity to V79 cells depends on the concentrations of purine and xanthine oxidase. A high level of cytotoxicity may be initiated in hyperthermia-treated tumors because high xanthine oxidase activity is known to be associated with tumors and endothelial cells, and degradation processes produce high concentrations of xanthine oxidase substrates in tumors. Since the cytotoxic effect can be reduced by the xanthine oxidase inhibitor, allopurinol, and the H2O2 removal enzyme, catalase, the cytotoxic effect in this experimental system is dependent on xanthine oxidase and H2O2. Adding erythrocytes at the same time as purine and xanthine oxidase could also prevent the cytotoxicity. Elevated temperatures stimulated the reaction of purine and xanthine oxidase and resulted in an increased cytotoxic effect. A similar effect is observed in growth inhibition and colony formation in endothelial cells without adding xanthine oxidase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The distribution of aldehyde oxidase activity was evaluated in unfixed cryostat sections from tissues of male Wistar rats using a tissue protectant, polyvinyl alcohol, with Tetranitro BT as a final electron acceptor. The distribution of aldehyde oxidase activity was compared with that of xanthine oxidoreductase. The enzyme histochemical method demonstrated aldehyde oxidase activity in the epithelium of the tongue, renal tubules and bronchioles, as well as in the cytoplasm of liver cells. Such activity was not detected in oesophagus, stomach, spleen, adrenal glands, small or large intestine or skeletal and heart muscle fibres. In contrast, xanthine oxidoreductase activity was demonstrated in the tongue, renal tubules, bronchioles, oesophageal, gastric, small and large intestinal epithelial cells, adrenal glands, spleen and liver cytoplasm but not in skeletal and heart muscle fibres. The significance of the ubiquitous distribution of aldehyde oxidase activity, especially in surface epithelial cells from various tissues, except for the gastrointestinal tract, is unclear. However, aldehyde oxidase may possess some physiological activity other than in the metabolism of N-heterocyclics or of certain drugs. © 1998 Chapman & Hall  相似文献   

6.
Xanthine oxidase, isolated from bovine milk, exhibited an A280:A450 nm ratio of 5.0. This ratio is reported to be indicative of highly purified enzyme preparations. Serum from a rabbit hyperimmunized against this enzyme fraction exhibited two precipitation lines when incubated with the protein in agarose double diffusion plates. Serum albumin, beta-lactoglobulin, alpha-lactalbumin, lactoferrin, casein, chymosin, and immunoglobulin were tested for reactivity. The second antigen was identified as bovine immunoglobulin. Commercial preparations of xanthine oxidase also contained immunoglobulin as a contaminant. IgG and IgA were present in Sigma (Grade III) fractions and IgM was identified in Boehringer Mannheim preparations. Immunofluorescent studies indicated that xanthine oxidase antiserum reacted with the capillary endothelium of bovine heart. Absorption of this antiserum with bovine IgG abrogated this reaction. These findings may explain apparent discrepancies between reported immunohistological association of xanthine oxidase in heart capillary endothelial cells and the absence of detectable enzymatic activity.  相似文献   

7.
We have detected xanthine oxidoreductase activity in unfixed cryostat sections of rat and chicken liver, rat duodenum, and bovine mammary gland using the tissue protectant polyvinyl alcohol, the electron carrier 1-methoxyphenazine methosulfate, the final electron acceptor Tetranitro BT, and hypoxanthine as a substrate. Enzyme activity was localized in rat duodenum at lateral membranes and brush borders of enterocytes and in goblet cells and mucus. Hepatocytes in pericentral areas and especially sinusoidal cells showed high activity in rat liver. Xanthine oxidoreductase was also detected in epithelial cells and milk lipid globules of lactating bovine mammary gland, which is known to contain large quantities of the oxidase form of the enzyme. Chicken liver, which contains an inconvertible dehydrogenase form, also showed high activity in sinusoidal cells. Therefore, we conclude that the tetrazolium reaction demonstrates both the dehydrogenase and the oxidase form of xanthine oxidoreductase. Control activity, in the absence of hypoxanthine or in the presence of the competitive inhibitor allopurinol, was low in all tissues studied. Addition of O2 or NAD to the incubation medium did not change the specific reaction in bovine mammary gland or chicken liver, implying that the dehydrogenase and the oxidase form are not dependent on their natural electron acceptors in this tetrazolium salt reaction. We conclude that the present light microscopic method gives specific and precise localization of xanthine oxidoreductase activity in situ.  相似文献   

8.
Localization of the activity of both the dehydrogenase and oxidase forms of xanthine oxidoreductase were studied in biopsy and postmortem specimens of various human tissues with a recently developed histochemical method using unfixed cryostat sections, poly-(vinyl alcohol) as tissue stabilizator, 1-methoxyphenazine methosulphate as intermediate electron acceptor and Tetranitro BT as final electron acceptor. High enzyme activity was found only in the liver and jejunum, whereas all the other organs studied showed no activity. In the liver, enzyme activity was found in sinusoidal cells and both in periportal and pericentral hepatocytes. In the jejunum, enterocytes and goblet cells, as well as the lamina propria beneath the basement membrane showed activity. The oxidase activity and total dehydrogenase and oxidase activity of xanthine oxidoreductase, as determined biochemically, were found in the liver and jejunum, but not in the kidney and spleen. This confirmed the histochemical results for these organs. Autolytic rat livers several hours after death were studied to exclude artefacts due to postmortem changes in the human material. These showed loss of activity both histochemically and biochemically. However, the percentage activity of xanthine oxidase did not change significantly in these livers compared with controls. The findings are discussed with respect to the possible function of the enzyme. Furthermore, the low conversion rate of xanthine dehydrogenase into xanthine oxidase during autolysis is discussed in relation to ischemia-reperfusion injury.  相似文献   

9.
The pathogenesis of reexpansion pulmonary edema is not yet fully understood. We therefore studied its mechanism in a rat model in which the left lung was collapsed by bronchial occlusion for 1 h and then reexpanded and ventilated for an additional 3 h. We then evaluated the production of reactive oxygen species in the lungs using fluorescent imaging and cerium deposition electron microscopic techniques and the incidence of apoptosis using the TdT-mediated dUTP-digoxigenin nick end labeling (TUNEL) method. We found that pulmonary reexpansion induced production of reactive oxygen species and then apoptosis, mainly in endothelial and alveolar type II epithelial cells. Endothelial cells and alveolar type I and II epithelial cells in the reexpanded lung were positive for TUNEL and cleaved caspase-3. DNA fragmentation was also observed in the reexpanded lung. In addition, wet-dry ratios obtained with reexpanded lungs were significantly higher than those obtained with control lungs, indicating increased fluid content. All of these effects were attenuated by pretreating rats with a specific xanthine oxidase inhibitor, sodium (-)-8-(3-methoxy-4-phenylsulfinylphenyl) pyrazolo[1,5-a]-1,3,5-triazine-4(1H)-one. It thus appears that pulmonary reexpansion activates xanthine oxidase in both endothelial and alveolar type II epithelial cells and that the reactive oxygen species produced by the enzyme induce apoptosis among the endothelial and alveolar type I and II epithelial cells that make up the pulmonary water-air barrier, leading to reexpansion pulmonary edema.  相似文献   

10.
Milk lipid globules of various species are surrounded by a membrane structure that is separated from the triglyceride core of the globule by a densely staining fuzzy coat layer of 10- to 50-nm thickness. This internal coat structure remains attached to the membrane during isolation and extraction with low- and high-salt buffers, is insoluble in nondenaturing detergents, and is enriched in an acidic glycoprotein (butyrophilin) with an apparent Mr of 67,000. Guinea pig antibodies against this protein, which show cross-reaction with the corresponding protein in some (goat) but not other (human, rat) species, have been used for localization of butyrophilin on frozen sections of various tissues from cow by immunofluorescence and electron microscopy. Significant reaction is found only in milk-secreting epithelial cells and not in other cell types of mammary gland and various epithelial tissues. In milk-secreting cells, the staining is restricted to the apical cell surface, including budding milk lipid globules, and to the periphery of the milk lipid globules contained in the alveolar lumina. These findings indicate that butyrophilin, which is constitutively secreted by surface budding in coordination with milk lipid production, is located at the apical surface and is not detected at basolateral surfaces, in endoplasmic reticulum, and in Golgi apparatus. This protein structure represents an example of a cell type-specific cytoskeletal component in a cell apex. It is suggested that this antigen provides a specific marker for the apical surface of milk- secreting cells and that butyrophilin is involved in the vectorial discharge of milk lipid globules.  相似文献   

11.
The milk-fat-globule membrane (MFGM) was isolated from guinea-pig milk and the membrane-associated proteins and glycoproteins characterized by electrophoretic techniques. Major components of the membrane included PAS-I, a sialoglycoprotein of Mr greater than or equal to 200000, the redox enzyme xanthine oxidase and the glycoprotein, butyrophilin. Membrane preparations also contained two other glycoproteins, GP-80 and GP-55, of Mr 80000 and 55000, respectively. Comparison of guinea-pig xanthine oxidase and butyrophilin with proteins from bovine MFGM by peptide mapping procedures, showed that the two proteins in both species were similar, but not identical. GP-55 may also be related to glycoproteins of Mr 45000 and 48000 in the bovine membrane. The integral and peripheral components of guinea-pig MFGM were identified by treating membrane preparations with sodium carbonate solutions at high pH and by partitioning the membrane proteins in solutions of Triton X-114. By these criteria xanthine oxidase and GP-55 appeared to be peripheral components and GP-80 an integral protein of the membrane. PAS-I and butyrophilin displayed hydrophilic properties in Triton X-114 solutions, but could not be removed from membrane preparations with sodium carbonate. Possible reasons for these ambiguous data are discussed. The observed similarity between several of the proteins of guinea-pig and bovine MFGM implies that these proteins may have specific functions related to milk secretion in mammary tissue, e.g. in the budding of milk-fat globules or the exocytosis of milk protein and lactose at the apical surface.  相似文献   

12.
Abstract. Guinea pig antibodies against desmoplakins from bovine muzzle epidermis showed specific reaction in several epithelial tissues with desmoplakin I (Mr 250,000) and desmoplakin II (Mr 215,000). By immunofluorescence microscopy, prominent punctate staining was observed in various lines of cultured epithelial cells, revealing desmosomal junctions at sites of established cell-to-cell contacts as well as hemidesmosomes and internalized desmosome-derived membrane domains. On frozen tissue sections punctate staining was observed along plasma membranes of epithelial cells, and electron microscopy using the immunoperoxidase technique revealed that the antibodies were specifically localized at the plaques associated with desmosomes and hemidesmosomes. Of a large number of non-epithelial cells examined positive staining was only observed on desmosome-like junctions of myocardial cells and Purkinje fiber cells. In both epithelial and myocardial tissues the antibodies showed a broad range of cross-reactivity between diverse vertebrate species such as man, cow, rodent, and chicken, indicating that desmoplakins contain determinants strongly conserved during evolution. When binding of these antibodies to cytoskeletal polypeptides separated by gel electrophoresis and blotted on nitrocellulose paper sheets was examined, specific reaction was noted with desmoplakin I and, to a variable degree, also desmoplakin II from various epithelial cells. Reaction was also observed with a myocardial polypeptide from bovine and human hearts which had a similar Mr value (250,000) and isoelectric pH range as desmoplakin I. We conclude that desmoplakins are the major proteins present in the desmosomal plaques of both epithelial and myocardial cells and that the desmoplakin polypeptides present in these two different cell types are very similar, if not identical.  相似文献   

13.
1. Xanthine oxidase (EC 1.2.3.2) was found to represent more than 8% of the intrinsic protein of the bovine milk-fat-globule membranes. 2. Less than 25% of the xanthine oxidase activity of the fat-globule membrane was solubilized with 0.1 M-sodium pyrophosphate buffer or 2M-NaCl. Of the particulate activity remaining 56% was solubilized with Triton X-100. 3. The xanthine oxidase activity solubilized with buffer, 2M-NaCl or Triton X-100 was not liberated as the free enzyme. Only tryptic digestion was found to release the free enzyme from the fat-globule membrane. Tryptic digestion also liberated free xanthine oxidase from those fractions solubilized by buffer or NaCl, but not from those fractions solubilized with Triton X-100 or by sonication. 4. The effect of membrane association on the catalytic properties of the enzyme could be mimicked by low pH or by the presence in the assay mixture of certain concentrations of 2-methyl-propan-2-ol, but not 1,4-dioxan, suggesting that hydrogen-bonding rather than low dielectric constant may be involved. 5. The origin of the milk-fat-globule membrane is discussed with reference to the intrinsic nature of the associated xanthine oxidase activity.  相似文献   

14.
Xanthine oxidase is a commercially-important enzyme. Several biochemical compounds have been quantitated by xanthine oxidase. Xanthine oxidase has been used as an auxiliary enzyme in the staining of several enzymes or tissues, however, there is no direct staining method available for it, on polyacrylamide gels. Partially-purified xanthine oxidase from cow milk was used as the enzyme source for the development of an activity-staining method on polyacrylamide gels. Staining was very sensitive. Detection of 0.02 μU of the enzyme on polyacrylamide gels was possible. Staining of 0.05 μU takes about 1 min whereas staining of 0.5 μU will take less than 5 s. Addition of TEMED is not essential for activity staining but it did increase both the rate and the intensity of the staining. The stained gels must be washed with distilled water, extensively, in order to remove excess unoxidized nitroblue tetrazolium, and must be protected from light, for a clear background and sharp activity-band staining. This method might be useful for quality control of xanthine oxidase obtained from different sources.  相似文献   

15.
Commercial, but not pure, preparations of xanthine oxidase in the absence of an aldehyde or xanthine were observed to inhibit Ca-uptake by the subcellular membranes isolated from the smooth muscle of the pig coronary artery. This inhibition was not due to xanthine oxidase but a contaminant in the preparation. The commercial preparation caused a greater relaxation of the PGF2 alpha contracted coronary artery than the pure enzyme. The tissues treated with the commercial xanthine oxidase partially lost the ability to contract subsequently to PGF2 alpha.  相似文献   

16.
Xanthine oxidase may be isolated from various mammalian tissues as one of two interconvertible forms, viz., a dehydrogenase (NAD+ dependent, form D) or an oxidase (O2 utilizing, form O). A crude preparation of rat liver xanthine dehydrogenase (form D) was treated with an immobilized preparation of crude bovine sulfhydryl oxidase. Comparison of the rates of conversion of xanthine dehydrogenase to the O form in the presence and absence of the immobilized enzyme indicated that sulfhydryl oxidase catalyzes such conversion. These results were substantiated in a more definitive study in which purified bovine milk xanthine oxidase, which had been converted to the D form by treatment with dithiothreitol, was incubated with purified bovine milk sulfhydryl oxidase. Comparison of measured rates of conversion (in the presence and absence of active sulfhydryl oxidase and in the presence of thermally denatured sulfhydryl oxidase) revealed that sulfhydryl oxidase enzymatically catalyzes the conversion of type D activity to type O activity in xanthine oxidase with the concomitant disappearance of its sulfhydryl groups. It is possible that the presence or absence of sulfhydryl oxidase in a given tissue may be an important factor in determining the form of xanthine-oxidizing activity found in that tissue.  相似文献   

17.
The species distribution of xanthine oxidase   总被引:18,自引:0,他引:18       下载免费PDF全文
1. The distribution of xanthine oxidase in blood and tissues of various animals was studied by means of a radioactive assay capable of detecting 10(-7) unit of enzyme. The method was shown to be applicable to tissues with a high uricase content. 2. Of 16 mammalian species examined, six had low concentrations of xanthine oxidase in the serum. In six non-mammalian species, no activity was detected in the serum. 3. The enzyme was not found in the blood cells of any mammals, but was present in the nucleated red blood corpuscles of chicken, turtle and tortoise. 4. Studies of the tissue distribution in four species demonstrated high activities in the liver and intestinal mucosa and consistently low activities in skeletal muscle, heart and brain. 5. There is a rough correlation between the activity of enzyme in serum and its activity in lung tissue in 12 mammalian species. In the dog, left-atrial blood had higher concentrations of xanthine oxidase than right-atrial blood.  相似文献   

18.
A method to purify bovine liver xanthine oxidase in described, with which samples of 256-fold specific activity with respect to the initial homogenate are obtained. Bovine liver xanthine oxidase and chicken liver xanthine dehydrogenase with oxygen as electron acceptor exhibit similar profile in pKM and log V versus pH plots. With NAD+ as electron acceptor a different profile in the pKM xanthine plot is obtained for chicken liver xanthine dehydrogenase. However three inflection points at the same pH values appear in all plots. Both enzymes are irreversibly inhibited by pCMB and reversibly by N-ethylmaleimide and by iodoacetamide, with competitive and uncompetitive type inhibitions respectively. These results suggest that NAD+ alters the enzymatic action since its binding to the enzyme antecedes the binding of xanthine to the xanthine oxidase molecule, without undergoing itself any modification. 0.15 M DDT of DTE treatment of bovine liver xanthine oxidase gives to the enzyme a permanent activity with NAD+ without modifying its activity with oxygen. The enzyme thus treated produces parallel straight lines in Lineweaver-Burk plots.  相似文献   

19.
We recently described the tissue distribution of PAS IV (periodic acid/Schiff-positive Band IV), a hydrophobic glycoprotein isolated from bovine milk-fat-globule membrane [Greenwalt & Mather (1985) J. Cell Biol. 100, 397-408]. By using immunofluorescence techniques, PAS IV was detected in mammary epithelial cells, the bronchiolar epithelium of lung, and the capillary endothelium of several tissues, including heart, salivary gland, pancreas, spleen and intestine. In the present paper we describe the specificity of the antibodies used for these studies. Two monoclonal antibodies, E-1 and E-3, were shown by solid-phase immunoassay and immunoaffinity chromatography to be specific for PAS IV (of Mr 76000) in milk-fat-globule membrane and recognize a glycoprotein of slightly higher Mr (85000) in heart. Affinity-purified rabbit antibodies to PAS IV were also shown to recognize components of Mr 76000 and 85000 in fat-globule membrane and heart respectively, by using immunoblotting procedures after sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Additionally, an immunoreactive protein in lung of Mr 85000 was detected. Despite these differences in molecular size, the fat-globule membrane and heart forms of PAS IV were shown to be very similar by peptide-mapping techniques. The possible significance of the expression of similar forms of PAS IV in both epithelial and capillary endothelial cells is briefly discussed.  相似文献   

20.
Xanthine oxidase in man is confined to but a few tissues and is absent from cultured cell strains. In rodents, however, the enzyme is more widely distributed among the tissues and can be demonstrated in most cell lines. Rodents possess the enzyme uricase and are therefore able to carry purine catabolism one step further than man. Preliminary results suggest that uricase is restricted to but a few rodent tissues and is absent from cultured rodent cells. Hence it may be that in each species only the final enzyme of purine catabolism is tissue restricted. In other experiments, mammalian cells were grown in the presence of compounds known to induce xanthine oxidase in a eukaryotic fungus (Aspergillus nidulans). These compounds did not induce the enzyme in mammalian cells.Supported by program project grants 1-PO-GM 15419 and GM 18153-01, National Institutes of Health, United States Public Health Service.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号