首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Immunological therapies enhance the ability of the immune system to recognise and destroy cancer cells via selective killing mechanisms. DNA vaccines have potential to activate the immune system against specific antigens, with accompanying potent immunological adjuvant effects from unmethylated CpG motifs as on prokaryotic DNA. We investigated an electroporation driven plasmid DNA vaccination strategy in animal models for treatment of prostate cancer.

Methods

Plasmid expressing human PSA gene (phPSA) was delivered in vivo by intra-muscular electroporation, to induce effective anti-tumour immune responses against prostate antigen expressing tumours. Groups of male C57 BL/6 mice received intra-muscular injections of phPSA plasmid. For phPSA delivery, quadriceps muscle was injected with 50 μg plasmid. After 80 seconds, square-wave pulses were administered in sequence using a custom designed pulse generator and acustom-designed applicator with 2 needles placed through the skin central to the muscle. To determine an optimum treatment regimen, three different vaccination schedules were investigated. In a separate experiment, the immune potential of the phPSA vaccine was further enhanced with co- administration of synthetic CpG rich oligonucleotides. One week after last vaccination, the mice were challenged subcutaneously with TRAMPC1/hPSA (prostate cancer cell line stably expressing human PSA) and tumour growth was monitored. Serum from animals was examined by ELISA for anti-hPSA antibodies and for IFNγ. Histological assessment of the tumours was also carried out. In vivo and in vitro cytotoxicity assays were performed with splenocytes from treated mice.

Results

The phPSA vaccine therapy significantly delayed the appearance of tumours and resulted in prolonged survival of the animals. Four-dose vaccination regimen provided optimal immunological effects. Co - administration of the synthetic CpG with phPSA increased anti-tumour responses, preventing tumour occurrence in 54% of treated animals. Vaccination with phPSA resulted in anti-hPSA Abs production and a significant production of IFNγ was observed in immunised animals (p < 0.05). Immune responses were tumour specific and were transferable in adoptive T cell transfer experiments.

Conclusions

This phPSA plasmid electroporation vaccination strategy can effectively activate tumour specific immune responses. Optimisation of the approach indicated that a four-dose regimen provided highest tumour protection. In vivo electroporation mediated vaccination is a safe and effective modality for the treatment of prostate cancer and has a potential to be used as a neo-adjuvant or adjuvant therapy.  相似文献   

2.
Cancer vaccines as a modality of immune-based cancer treatment offer the promise of a non-toxic and efficacious therapeutic alternative for patients. Emerging data suggest that response to vaccination largely depends on the magnitude of the type I immune response generated, epitope spreading and immunogenic modulation of the tumor. Moreover, accumulating evidence suggests that cancer vaccines will likely induce better results in patients with low tumor burden and less aggressive disease. To induce long-lasting clinical responses, vaccines will need to be combined with immunoregulatory agents to overcome tumor-related immune suppression. Immunotherapy, as a treatment modality for prostate cancer, has received significant attention in the past few years. The most intriguing characteristics that make prostate cancer a preferred target for immune-based treatments are (1) its relative indolence which allows sufficient time for the immune system to develop meaningful antitumor responses; (2) prostate tumor-associated antigens are mainly tissue-lineage antigens, and thus, antitumor responses will preferentially target prostate cancer cells. But, also in the event of eradication of normal prostate epithelium as a result of immune attack, this will have no clinical consequences because the prostate gland is not a vital organ; (3) the use of prostate-specific antigen for early detection of recurrent disease allows for the initiation of vaccine immunotherapy while tumor burden is still minimal. Finally, for improving clinical outcome further to increasing vaccine potency, it is imperative to recognize prognostic and predictive biomarkers of clinical benefit that may guide to select the therapeutic strategies for patients most likely to gain benefit.  相似文献   

3.

Background

In prostate cancer, genes encoding androgen-regulated, Y-chromosome-encoded, and tissue-specific antigens may all be overexpressed. In the adult male host, however, most high affinity T cells targeting these potential tumor rejection antigens will be removed during negative selection. In contrast, the female mature T-cell repertoire should contain abundant precursors capable of recognizing these classes of prostate cancer antigens and mediating effective anti-tumor immune responses.

Methodology/Principal Findings

We find that syngeneic TRAMP-C2 prostatic adenocarcinoma cells are spontaneously rejected in female hosts. Adoptive transfer of naïve female lymphocytes to irradiated male hosts bearing pre-implanted TRAMP-C2 tumor cells slows tumor growth and mediates tumor rejection in some animals. The success of this adoptive transfer was dependent on the transfer of female CD4 T cells and independent of the presence of CD25-expressing regulatory T cells in the transferred lymphocytes. We identify in female CD4 T cells stimulated with TRAMP-C2 a dominant MHC II-restricted response to the Y-chromosome antigen DBY. Furthermore, CD8 T cell responses in female lymphocytes to the immunodominant MHC I-restricted antigen SPAS-1 are markedly increased compared to male mice. Finally, we find no exacerbation of graft-versus-host disease in either syngeneic or minor-antigen mismatched allogeneic lymphocyte adoptive transfer models by using female into male versus male into male cells.

Conclusions/Significance

This study shows that adoptively transferred female lymphocytes, particularly CD4 T cells, can control the outgrowth of pre-implanted prostatic adenocarcinoma cells. This approach does not significantly worsen graft-versus-host responses suggesting it may be viable in the clinic. Further, enhancing the available immune repertoire with female-derived T cells may provide an excellent pool of prostate cancer reactive T cells for further augmentation by combination with either vaccination or immune regulatory blockade strategies.  相似文献   

4.
Lactobacillus rhamnosus GG (LGG) has been used to successfully induce tumor regression in an orthotopic model of bladder cancer. Increased infiltration of neutrophils and macrophages into the tumor mass was observed after therapy. This study evaluates the potential of LGG to induce a directed anti-tumor response. Lactobacilli were modified to secrete the prostate specific antigen (PSA) or IL15 and PSA (IL-15-PSA). Neutrophils and DC were exposed to LGG for 2 h as in clinical therapy for bladder cancer. Recombinant LGG activated neutrophils (elevated MHC class I expression) induced DC maturation (increased expression of CD86, CD80, CD40, MHC II and CD83), T cell proliferation and PSA specific cytotoxic T lymphocytes (CTL) activity. IL15 enhanced direct DC activation of CTL. Thus LGG secreting tumor antigens may activate antigen specific immune responses when instilled intravesically and IL15 could enhance this response.  相似文献   

5.
6.
This study was conducted in prostate cancer patients in biochemical relapse after radical prostatectomy, to assess the feasibility, safety, and immunogenicity of therapeutic vaccination with autologous dendritic cells (DCs) pulsed with human recombinant prostate-specific antigen (PSA) (Dendritophage-rPSA). Twenty-four patients with histologically proven prostate carcinoma and an isolated postoperative rise of serum PSA (>1 ng/ml to 10 ng/ml) after radical prostatectomy were included. The patients received nine administrations of PSA-loaded DCs by combined intravenous, subcutaneous, and intradermal routes over 21 weeks. Postbaseline blood tests were performed at months 1, 3, 6, 9, and 12 (PSA levels), at months 6 and 12 (circulating prostate cancer cells), at month 6 (anti-PSA IgG and IgM antibodies), and at up to eight time points before, during, and after immunization (PSA-specific T cells). Circulating prostate cancer cells detected in six patients at baseline were undetectable at 6 months and remained undetectable at 12 months. Eleven patients had a postbaseline transient PSA decrease on one to three occasions, predominantly occurring at month 1 (7 patients) or month 3 (2 patients). Maximum PSA decrease ranged from 6% to 39%. PSA decrease on at least one occasion was more frequent in patients with low Gleason score (p=0.016) at prostatectomy and with positive skin tests at study baseline (p=0.04). PSA-specific T cells were detected ex vivo by ELISpot for IFN- in 7 patients before vaccination and in 11 patients after vaccination. Of the latter 11 patients, 5 had detectable T cells both before and during the vaccination period, 4 only during the vaccination period, while 2 patients could for technical reasons not be assessed prevaccination. No induction of anti-PSA IgG or IgM antibodies was detected. There were no serious adverse events or otherwise severe toxicities observed during the trial. Immunization with Dendritophage-rPSA was feasible and safe in this cohort of patients. An immune response specific for PSA could be detected in some patients. A notable effect was the disappearance of circulating prostate cells in all patients who were RT-PCR positive before vaccination.Scientific correspondence should be addressed to B. Barrou; editorial correspondence to M.L. Ericson.  相似文献   

7.
Tumor protein D52 (TPD52) is involved in cellular transformation, proliferation and metastasis. TPD52 over expression has been demonstrated in several cancers including prostate, breast, and ovarian carcinomas. Murine TPD52 (mD52) has been shown to induce anchorage independent growth in vitro and metastasis in vivo, and mirrors the function and normal tissue expression patterns of the human orthologue of TPD52. We believe TPD52 represents a self, non-mutated tumor associated antigen (TAA) important for maintaining a transformed and metastatic cellular phenotype. The transgenic adeno-carcinoma of the mouse prostate (TRAMP) model was employed to study mD52 as a vaccine antigen. Naïve mice were immunized with either recombinant mD52 protein or plasmid DNA encoding the full-length cDNA of mD52. Following immunization, mice were challenged with a subcutaneous, tumorigenic dose of mD52 positive, autochthonous TRAMP-C1 tumor cells. Sixty percent of mice were tumor free 85 days post challenge with TRAMP-C1 when immunized with mD52 as a DNA-based vaccine admixed with soluble granulocyte-macrophage colony stimulating factor (GM-CSF). Survivors of the initial tumor challenge rejected a second tumor challenge given in the opposite flank approximately 150 days after the first challenge, and remained tumor free for more than an additional 100 days. The T cell cytokine secretion patterns from tumor challenge survivors indicated that a TH1-type cellular immune response was involved in tumor protection. These data suggest that mD52 vaccination induced a memory, cellular immune response that resulted in protection from murine prostate tumors that naturally over express mD52 protein.  相似文献   

8.
A Wilms tumor gene WT1 is expressed at high levels not only in most types of leukemia but also in various types of solid tumors, including lung and breast cancer. WT1 protein has been reported to serve as a target antigen for tumor-specific immunotherapy both in vitro in human systems and in vivo in murine models. We have shown that mice immunized with WT1 peptide or WT1 cDNA could reject a challenge from WT1-expressing tumor cells (a prophylactic model). However, it was not examined whether WT1 peptide vaccination had the potency to reject tumor cells in a therapeutic setting. In the present study, we demonstrated for the first time that WT1 peptide vaccination combined with Mycobacterium bovis bacillus Calmette-Guérin cell wall skeleton (BCG-CWS) was more effective for eradication of WT1-expressing tumor cells that had been implanted into mice before vaccination (a therapeutic model) compared with WT1 peptide vaccination alone. An intradermal injection of BCG-CWS into mice, followed by that of WT1 peptide at the same site on the next day, generated WT1-specific cytotoxic T lymphocytes (CTLs) and led to rejection of WT1-expressing leukemia or lung cancer cells. These results showed that BCG-CWS, which was well known to enhance innate immunity, could enhance WT1-specific immune responses (acquired immunity) in combination with WT1 peptide vaccination. Therefore, WT1 peptide vaccination combined with BCG-CWS may be applied to cancer immunotherapy in clinical settings.H. Nakajima and K. Kawasaki contributed equally to this study.  相似文献   

9.

Background

Therapeutic vaccination against disseminated prostate cancer (PCa) is partially effective in some PCa patients. We hypothesized that the efficacy of treatment will be enhanced by individualized vaccination regimens tailored by simple mathematical models.

Methodology/Principal Findings

We developed a general mathematical model encompassing the basic interactions of a vaccine, immune system and PCa cells, and validated it by the results of a clinical trial testing an allogeneic PCa whole-cell vaccine. For model validation in the absence of any other pertinent marker, we used the clinically measured changes in prostate-specific antigen (PSA) levels as a correlate of tumor burden. Up to 26 PSA levels measured per patient were divided into each patient''s training set and his validation set. The training set, used for model personalization, contained the patient''s initial sequence of PSA levels; the validation set contained his subsequent PSA data points. Personalized models were simulated to predict changes in tumor burden and PSA levels and predictions were compared to the validation set. The model accurately predicted PSA levels over the entire measured period in 12 of the 15 vaccination-responsive patients (the coefficient of determination between the predicted and observed PSA values was R 2 = 0.972). The model could not account for the inconsistent changes in PSA levels in 3 of the 15 responsive patients at the end of treatment. Each validated personalized model was simulated under many hypothetical immunotherapy protocols to suggest alternative vaccination regimens. Personalized regimens predicted to enhance the effects of therapy differed among the patients.

Conclusions/Significance

Using a few initial measurements, we constructed robust patient-specific models of PCa immunotherapy, which were retrospectively validated by clinical trial results. Our results emphasize the potential value and feasibility of individualized model-suggested immunotherapy protocols.  相似文献   

10.
The roles of humoral and cellular antitumor immune responses induced by immunization with tumor-derived idiotypic IgM were studied in a syngeneic, transplantable B cell lymphoma (38C13) of C3H mice. Id vaccination with keyhole limpet hemocyanin-conjugated Id induced protection against a subsequent lethal tumor challenge. Such immunizations elicited anti-idiotypic antibodies that were cytotoxic in in vitro antibody-dependent cellular cytotoxicity assays as well as in vivo passive transfer experiments. L3T4+ T cells, which proliferated in vitro in response to the specific Id protein, were also induced. However, cells mediating direct cytotoxicity, either in vitro or in vivo, were not observed in the lymph nodes, spleens, or peritoneal cavity of immune mice or at the site of tumor regression as demonstrated by using a tumor sponge implantation model. In addition, in vitro sensitization of immune lymphocytes against 38C13 tumor cells failed to induce cytotoxicity. Immunization with lipid conjugated Id also elicited a T cell proliferative response but failed to induce anti-idiotypic antibodies and did not confer resistance to tumor growth. These results suggest that anti-idiotypic antibodies play the major role in the destruction of 38C13 tumor cells. However, in vivo depletion of L3T4+ or Lyt-2+ cells from 38C-Id-keyhole limpet hemocyanin-immunized mice resulted in diminished protection against a tumor challenge. Thus, although humoral responses appear to play the predominant part in tumor destruction, cellular responses are also required for the full expression of antitumor immunity in this system.  相似文献   

11.
Due to their capacity to induce primary immune responses, dendritic cells (DC) are attractive vectors for immunotherapy of cancer. Yet the targeting of tumor Ags to DC remains a challenge. Here we show that immature human monocyte-derived DC capture various killed tumor cells, including Jurkat T cell lymphoma, malignant melanoma, and prostate carcinoma. DC loaded with killed tumor cells induce MHC class I- and class II-restricted proliferation of autologous CD8+ and CD4+ T cells, demonstrating cross-presentation of tumor cell-derived Ags. Furthermore, tumor-loaded DC elicit expansion of CTL with cytotoxic activity against the tumor cells used for immunization. CTL elicited by DC loaded with the PC3 prostate carcinoma cell bodies kill another prostate carcinoma cell line, DU145, suggesting recognition of shared Ags. Finally, CTL elicited by DC loaded with killed LNCap prostate carcinoma cells, which express prostate specific Ag (PSA), are able to kill PSA peptide-pulsed T2 cells. This demonstrates that induced CTL activity is not only due to alloantigens, and that alloantigens do not prevent the activation of T cells specific for tumor-associated Ags. This approach opens the possibility of using allogeneic tumor cells as a source of tumor Ag for antitumor therapies.  相似文献   

12.

Background

Studies of patients with paraneoplastic neurologic disorders (PND) have revealed that apoptotic tumor serves as a potential potent trigger for the initiation of naturally occurring tumor immunity. The purpose of this study was to assess the feasibility, safety, and immunogenicity of an apoptotic tumor-autologous dendritic cell (DC) vaccine.

Methods and Findings

We have modeled PND tumor immunity in a clinical trial in which apoptotic allogeneic prostate tumor cells were used to generate an apoptotic tumor-autologous dendritic cell vaccine. Twenty-four prostate cancer patients were immunized in a Phase I, randomized, single-blind, placebo-controlled study to assess the safety and immunogenicity of this vaccine. Vaccinations were safe and well tolerated. Importantly, we also found that the vaccine was immunogenic, inducing delayed type hypersensitivity (DTH) responses and CD4+ and CD8+ T cell proliferation, with no effect on FoxP3+ regulatory T cells. A statistically significant increase in T cell proliferation responses to prostate tumor cells in vitro (p = 0.002), decrease in prostate specific antigen (PSA) slope (p = 0.016), and a two-fold increase in PSA doubling time (p = 0.003) were identified when we compared data before and after vaccination.

Conclusions

An apoptotic cancer cell vaccine modeled on naturally occurring tumor immune responses in PND patients provides a safe and immunogenic tumor vaccine. (ClinicalTrials.gov number NCT00289341).

Trial Registration

ClinicalTrials.gov NCT00289341  相似文献   

13.
The FDA approval of bevacizumab (Avastin®, Genentech/Roche), a monoclonal antibody raised against human VEGF-A, as second-line therapy for colon and lung carcinoma validated the approach of targeting human tumors with angiogenesis inhibitors. While the VEGF/VEGFR pathway is a viable target for anti-angiogenesis tumor therapy, additional targets involved in tumor neovascularization have been identified. One promising target present specifically on tumor vasculature is endoglin (CD105), a member of the TGF-β receptor complex expressed on vascular endothelium and believed to play a role in angiogenesis. Monoclonal antibody therapy and preventive vaccination against CD105 has met with some success in controlling tumor growth. This report describes the in vivo proof-of-concept studies for two novel therapeutic vaccines, Lm-LLO-CD105A and Lm-LLO-CD105B, directed against CD105 as a strategy to target neovascularization of established tumors. Listeria-based vaccines directed against CD105 lead to therapeutic responses against primary and metastatic tumors in the 4T1-Luc and NT-2 mouse models of breast cancer. In a mouse model for autochthonous Her-2/neu-driven breast cancer, Lm-LLO-CD105A vaccination prevented tumor incidence in 20% of mice by week 58 after birth while all control mice developed tumors by week 40. In comparison with previous Listeria-based vaccines targeting tumor vasculature, Lm-LLO-CD105A and Lm-LLO-CD105B demonstrated equivalent or superior efficacy against two transplantable mouse models of breast cancer. Support is provided for epitope spreading to endogenous tumor antigens and reduction in tumor vascularity after vaccination with Listeria-based CD105 vaccines. Reported here, these CD105 therapeutic vaccines are highly effective in stimulating anti-angiogenesis and anti-tumor immune responses leading to therapeutic efficacy against primary and metastatic breast cancer.  相似文献   

14.
For active specific immunotherapy of cancer patients, we designed the autologous virus–modified tumor cell vaccine ATV-NDV. The rationale of this vaccine is to link multiple tumor-associated antigens (TAAs) from individual patient-derived tumor cells with multiple danger signals (DS) derived from virus infection (dsRNA, HN, IFN-). This allows activation of multiple innate immune responses (monocytes, dendritic cells, and NK cells) as well as adaptive immune responses (CD4 and CD8 memory T cells). Preexisting antitumor memory T cells from cancer patients could be activated by antitumor vaccination with ATV-NDV as seen by augmentation of antitumor memory delayed-type hypersensitivity (DTH) responses. In a variety of phase II vaccination studies, an optimal formulation of this vaccine could improve long-term survival beyond what is seen in conventional standard therapies. A new concept is presented which proposes that a certain threshold of antitumor immune memory plays an important role (1) in the control of residual tumor cells which remain after most therapies and (2) for long-term survival of treated cancer patients. This immune memory is T-cell based and most likely maintained by persisting TAAs from residual dormant tumor cells. Such immune memory was prominent in the bone marrow in animal tumor models as well as in cancer patients. Immunization with a tumor vaccine in which individual TAAs are combined with DS from virus infection appears to have a positive effect on antitumor immune memory and on patient survival.  相似文献   

15.
BACKGROUND: The purpose of this vaccine study was to determine the safety and feasibility of vaccination with an allogeneic prostate carcinoma cell line, LNCaP, expressing recombinant interleukin-2 (IL-2) and interferon-gamma (IFN-gamma) and to evaluate the efficacy of inducing tumor-specific immune responses in HLA-A2-matched patients with hormone refractory prostate cancer (HRPC). METHODS: In a dose-escalating phase I study, HLA-A2-matched HRPC patients received four vaccinations of irradiated allogeneic LNCaP cells retrovirally transduced to secrete IL-2 and IFN-gamma at study day 1, 15, 29 and 92 and subsequently every 91 days unless tumor progression was evident. RESULTS: Three patients receiving the first dose level (7.5 million cells) showed no evidence of dose-limiting toxicity or vaccine-related adverse events including autoimmunity. One of three patients receiving the second dose level (15 million cells) developed a transient self-limiting grade 3 local injection site reaction (ulceration) after the eighth vaccination. Vaccine-induced immune responses against a broad array of prostate tumor associated antigens were detected in all six patients. Two of the three patients receiving the higher dose showed a decline in serum prostate-specific antigen (PSA) values of more than 50%, with one patient remaining on protocol for 3 years. CONCLUSIONS: Immunisation with the allogeneic LNCaP/IL-2/IFN-gamma vaccine is safe and feasible without any dose-limiting toxicity or autoimmunity. A 50% PSA decline was achieved in two of the six patients. This encouraging data provides the scientific rationale for further investigation of the vaccine in a phase II trial.  相似文献   

16.
We have developed novel DNA fusion vaccines encoding tumor Ags fused to pathogen-derived sequences. This strategy activates linked T cell help and, using fragment C of tetanus toxin, amplification of anti-tumor Ab, CD4(+), and CD8(+) T cell responses is achievable in mice. However, there is concern that simple DNA vaccine injection may produce inadequate responses in larger humans. To overcome this, we tested electroporation as a method to increase the transfection efficiency and immune responses by these tumor vaccines in vivo in mice. Using a DNA vaccine expressing the CTL epitope AH1 from colon carcinoma CT26, we confirmed that effective priming and tumor protection in mice are highly dependent on vaccine dose and volume. However, suboptimal vaccination was rendered effective by electroporation, priming higher levels of AH1-specific CD8(+) T cells able to protect mice from tumor growth. Electroporation during priming with our optimal vaccination protocol did not improve CD8(+) T cell responses. In contrast, electroporation during boosting strikingly improved vaccine performance. The prime/boost strategy was also effective if electroporation was used at both priming and boosting. For Ab induction, DNA vaccination is generally less effective than protein. However, prime/boost with naked DNA followed by electroporation dramatically increased Ab levels. Thus, the priming qualities of DNA fusion vaccines, integrated with the improved Ag expression offered by electroporation, can be combined in a novel homologous prime/boost approach, to generate superior antitumor immune responses. Therefore, boosting may not require viral vectors, but simply a physical change in delivery, facilitating application to the cancer clinic.  相似文献   

17.
We have previously reported that a subunit protein vaccine based on the receptor-binding domain (RBD) of severe acute respiratory syndrome coronavirus (SARS-CoV) spike protein and a recombinant adeno-associated virus (rAAV)-based RBD (RBD-rAAV) vaccine could induce highly potent neutralizing Ab responses in immunized animals. In this study, systemic, mucosal, and cellular immune responses and long-term protective immunity induced by RBD-rAAV were further characterized in a BALB/c mouse model, with comparison of the i.m. and intranasal (i.n.) routes of administration. Our results demonstrated that: 1) the i.n. vaccination induced a systemic humoral immune response of comparable strength and shorter duration than the i.m. vaccination, but the local humoral immune response was much stronger; 2) the i.n. vaccination elicited stronger systemic and local specific cytotoxic T cell responses than the i.m. vaccination, as evidenced by higher prevalence of IL-2 and/or IFN-gamma-producing CD3+/CD8+ T cells in both lungs and spleen; 3) the i.n. vaccination induced similar protection as the i.m. vaccination against SARS-CoV challenge in mice; 4) higher titers of mucosal IgA and serum-neutralizing Ab were associated with lower viral load and less pulmonary pathological damage, while no Ab-mediated disease enhancement effect was observed; and 5) the vaccination could provide long-term protection against SARS-CoV infection. Taken together, our findings suggest that RBD-rAAV can be further developed into a vaccine candidate for prevention of SARS and that i.n. vaccination may be the preferred route of administration due to its ability to induce SARS-CoV-specific systemic and mucosal immune responses and its better safety profile.  相似文献   

18.
In the current study, expression of the apoptotic calcium channel receptor P2X7 and prostate-specific antigen (PSA) levels were studied in biopsy cores from 174 patients as well as 20 radical prostatectomy cases. In clinical biopsies, we have previously demonstrated that P2X1 and P2X2 calcium channel receptors are absent from normal prostate epithelium that does not progress to prostate cancer within 5 years. In cases that did progress to prostate cancer however, P2X1 and P2X2 labeling was observed in a stage-specific manner first in the nucleus, then the cytoplasm and finally on the apical epithelium, as prostate cancer developed. These markers were present up to 5years before cancer was detectable by the usual morphological criteria (Gleason grading) as determined by H&E staining. In the current study, the apoptotic calcium channel receptor P2X7 yielded similar results to that of P2X1 and P2X2. Using radical prostatectomy tissue sections as well as biopsies, these changes in calcium channel metabolism were noted throughout the prostate, indicating a field effect. This finding suggests that the presence of a prostate tumor could be detected without the need for direct sampling of tumor tissue, leading to detection of false negative cases missed by H&E stain. The reliability of PSA levels as a prognostic indicator has been questioned in recent years. In the current study, PSA levels were correlated with the P2X7 labeling results. All patients who exhibited no P2X7 labeling had a prostatic serum antigen (PSA) level of <2. Patients who exhibited stage-specific P2X7 expression, and who later developed obvious prostate cancer as diagnosed by H&E stain, all had a PSA > 2. This finding suggests that increasing PSA may be an accurate indicator of cancer development.  相似文献   

19.

Background

Leishmania (Viannia) parasites present particular challenges, as human and murine immune responses to infection are distinct from other Leishmania species, indicating a unique interaction with the host. Further, vaccination studies utilizing small animal models indicate that modalities and antigens that prevent infection by other Leishmania species are generally not protective.

Methodology

Using a newly developed mouse model of chronic L. (Viannia) panamensis infection and the heterologous DNA prime – modified vaccinia virus Ankara (MVA) boost vaccination modality, we examined whether the conserved vaccine candidate antigen tryparedoxin peroxidase (TRYP) could provide protection against infection/disease.

Results

Heterologous prime – boost (DNA/MVA) vaccination utilizing TRYP antigen can provide protection against disease caused by L. (V.) panamensis. However, protection is dependent on modulating the innate immune response using the TLR1/2 agonist Pam3CSK4 during DNA priming. Prime-boost vaccination using DNA alone fails to protect. Prior to infection protectively vaccinated mice exhibit augmented CD4 and CD8 IFNγ and memory responses as well as decreased IL-10 and IL-13 responses. IL-13 and IL-10 have been shown to be independently critical for disease in this model. CD8 T cells have an essential role in mediating host defense, as CD8 depletion reversed protection in the vaccinated mice; vaccinated mice depleted of CD4 T cells remained protected. Hence, vaccine-induced protection is dependent upon TLR1/2 activation instructing the generation of antigen specific CD8 cells and restricting IL-13 and IL-10 responses.

Conclusions

Given the general effectiveness of prime-boost vaccination, the recalcitrance of Leishmania (Viannia) to vaccine approaches effective against other species of Leishmania is again evident. However, prime-boost vaccination modality can with modulation induce protective responses, indicating that the delivery system is critical. Moreover, these results suggest that CD8 T cells should be targeted for the development of a vaccine against infection caused by Leishmania (Viannia) parasites. Further, TLR1/2 modulation may be useful in vaccines where CD8 T cell responses are critical.  相似文献   

20.
Immunization strategies using plasmid DNA can potentially improve humoral and cellular immune responses that protect against cancer and infectious diseases. The chicken anemia virus-derived Apoptin protein exhibits remarkable specificity in its ability to induce apoptosis in tumor cells, but not in normal diploid cells. Interleukin-18 (IL-18) is a Th1-type cytokine that has demonstrated potential as a biological adjuvant in murine tumor models. In this study, we analyzed the anti-tumor potential and mechanism of action of simultaneous Apoptin and IL-18 gene transfer in C57BL/6 mice bearing Lewis lung carcinoma (LLC). Here we report that the growth of established tumors in mice immunized with pAPOPTIN in conjunction with pIL-18 was significantly inhibited compared with the growth of tumors in mice immunized with the empty vector (EV) or pAPOPTIN alone. Furthermore, the immunization of mice with pAPOPTIN in conjunction with pIL-18 elicited strong natural killer activity and LLC tumor-specific cytotoxic T lymphocyte (CTL) responses in vitro. In addition, T cells from lymph nodes of mice vaccinated with pIL-18 or pAPOPTIN + pIL-18 secreted high levels of the Th1 cytokine IL-2 and IFN-γ, indicating that the regression of tumor cells is related to a Th1-type dominant immune response. These results demonstrate that vaccination with Apoptin together with IL-18 may be a novel and powerful strategy for cancer immunotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号