首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
From 1987 to 1992 diet and condition of two populations of wild boar which received no supplementary feeding were studied in the Veluwe area, a large area of heathlands and forests in The Netherlands, and were compared with those obtained in a previous study (1974–1976), when supplementary food was provided. Composition of stomach contents depended mainly on season, mast availability, and area-specific factors, whereas sex and age were of little or no importance. Density dependence was found for the decrease in mast (tree seed) consumption from autumn to winter. In autumn, and in winters of rich mast years, mast was the main constituent of the diet. In winters of poor mast years this was replaced by broadleaved grasses in one area and by broadleaved grasses, wavy hairgrass, and roots in the other. We found no important differences between the stomach contents of animals receiving no supplementation, and the natural fraction during a period of supplementary feeding. Variation in body weight was related mainly to age and sex, but also to mast availability. Judged by relative loss of body weight and decrease of bone marrow fat, juveniles seemed to suffer more from poor mast availability than adults. The decrease in body weight from autumn to winter was greater when population density was high. In poor mast years, recruitment into the population receiving no supplementation depended on the availability of broadleaved grasses; in rich years, recruitment was still lower than in populations receiving supplementary feeding. In populations receiving supplementary feeding, recruitment seemed independent of mast availability.  相似文献   

2.
Survival, growth rates, body size and fertility of wild caught Norway rats (Rattus norvegicus), infected and uninfected with a Hantavirus (antigenically related to Seoul virus), were compared. No differences were found in the survival of seronegative versus seropositive rats, as measured by mark-recapture experiments. Growth rates, as measured by weight gain but not by increased body length, were slower in seropositive, sexually mature (greater than 200 g) rats, although no differences in the ultimate body size of infected versus uninfected rats were found. No differences in external measures of sexual maturity, or in embryo counts or testes sizes, were found for infected versus uninfected rats. We conclude that hantaviral infections have little or no impact on demographic processes in Norway rat populations.  相似文献   

3.
Synopsis Widespread male body size variation in P. latipinna appears to be attributable to genetic variation in the size at maturation. The contribution of adult growth needs to be assessed because adult growth rates may vary with size at maturation and local environment. In our laboratory study we examined adult growth patterns as a function of size at maturation and juvenile experience (favorable or unfavorable conditions). In our field study we assessed adult growth as a function of initial size and environmental condition (using males in enclosures in contrasting habitats). Adult growth rates in the laboratory were an order of magnitude higher than rates observed in field enclosures. Growth rates varied with male size, increasing with increasing male size in the laboratory study but decreasing with increasing male size in the field study. The laboratory results alone would have cast considerable doubt on the ability to interpret size distributions of field-collected males, but the field results indicate that adult growth is sufficiently low that it can be ignored as a source of body size variation within and among populations.  相似文献   

4.
Summary We obtined data on body mass and growth rates for the immature members of two groups of wild baboons in Amboseli National Park, Kenya. Data were collected without feeding, trapping, or handling. The data were separated into cross-sectional and longitudinal components, allowing both the examination of body mass-age relationships and the calculation of growth rates for individuals. For animals less than three years old, body mass was wellperedicted from age by a linear model. Differences based on social group membership were small but consistent, and their origins are discussed. We detected no differences in body mass based on sex or on maternal dominance rank. For older juveniles, those three to seven years of age, a better fit was obtained from log of mass than by mass in a linear model. This was also true for the cross-sectional data set over the whole age range (zero to seven years). For older juveniles, samples were too small for quantitative analysis of differences based on sex, rank, or group membership, but trends in the data are indicated. Growth rates derived from repeat measures of body mass for 38 animals are presented and discussed.The growth rate values obtained in this study are consistent with data from cross-sectional studies of other wild baboon populations; these values for wild baboons are consistently one-half to one-third lower than growth rate values for well-provisioned captive baboons and equivalent to captive baboons fed a low-protein diet. Comparisons between primates and other mammals in the primate size range raise questions concerning ecological and behavioral constraints on primate growth rates; some possible mechanisms of constraint are suggested.  相似文献   

5.
The Mammal Society has co-ordinated a population survey of Wood Mice Apodemus sylvaticus and Bank Voles Clethrionomys glareolus in 13 0.81 -hectare sites in Britain. Numbers of mice and voles live-trapped using standard methods were collated every May/June and November/December from 1982 to 1987. The data were analysed with results from four independent studies in England and the corresponding assessments of tree seed crop size. Wood Mouse numbers are usually higher in winter than in summer but Bank Vole fluctuations are less regular. In deciduous woodland, Wood Mouse mean relative densities are significantly greater in the winter and the following summer after a good seed crop than after a poor one; rates of population change from summer to winter are significantly higher when a good seed crop falls. Bank Vole relative densities are significantly greater in the summer following a good seed crop than after a poor one, and rates of change from winter to summer are significantly higher. In Wood Mouse populations, tests for density dependence suggest that it is strong from summer to winter but absent from winter to summer; in Bank Voles weaker density dependence is present in both halves of the year. Thus, Wood Mouse numbers are regulated in autumn but are also influenced by seed crop size in winter and the following summer; Bank Vole numbers are less strongly regulated during both autumn and spring and are influenced by seed crop size in the following summer. Evidence is presented suggesting that populations of each species in deciduous woodlands are synchronized over the country in summer and that Wood Mice are also synchronized in winter; highs and lows tend to coincide between different sites. The yield of tree seed is shown to vary significantly from year to year and may be the cause of the synchrony, but weather effects may also be involved.  相似文献   

6.
Juvenile (12–152 g) shortfinned eels Anguilla australis and longfinned eels A. dieffenbachia caught in New Zealand streams were fed squid mantle Nototodarus spp. 4 days per week in laboratory experiments. A linear multiple regression equation showed the amount of food eaten (0–2·7% w day−1) explained 77·7% of the variation in specific growth rates (–0·60 to +1·07% w day−1) among individual eels, while previous growth rates, water temperature (10·0–20·6°C), and eel weight (12–152 g) explained a further 5·6, 1·4 and 0·8%, respectively. Growth in length ranged from –0·3 to +0·9 mm day−1. Eels which were starved and then given high rations grew substantially faster than expected. Once growth rates were adjusted for differences in ration and other factors, there were no significant differences in growth rates between species or individual fish. Growth of shortfinned eels fed maximum rations of commercial eel food depended on fish size and water temperatures and ceased below 9·0°C. Growth rates in the wild were substantially less than the maximum possible, after seasonal changes in water temperatures were taken into account, indicating that food supplies and not low water temperatures were controlling growth rates in the wild.  相似文献   

7.
ABSTRACT Recent work suggests that availability and quality of forage in late summer and early autumn, a time when female ungulates face multiple energetic demands, is critical to reproduction in wild ungulates. Therefore, we examined direct links between nutritional quality of diets, body condition, and reproduction of lactating mule deer. Using captive mule deer, we tested the hypothesis that females consuming diets with lower digestible energy (DE; kJ/g) would have lower DE intake rates (DEI; MJ/day), have less body fat and muscle, have later estrus cycles, and have lower pregnancy and twinning rates. Deer fed lower DE diets had lower DEI during summer and autumn. In turn, deer with lower DEI, regardless of diet DE, had lower body mass, body fat, and muscle thickness. When nutritional quality of diets began to decline earlier in the summer, relationships between food quality, DEI, and body condition were stronger. Although DEI did not influence estrus date for deer that became pregnant before 21 December, deer with lower DEI had a lower probability of becoming pregnant and had a lower probability of producing twins. Measures of body condition in October (i.e., body mass, body fat, and muscle depth) predicted pregnancy and twinning rates in mule deer. Serum concentration of hormones leptin and Insulin Growth Factor 1 were not good predictors of body condition or reproduction. These findings suggest that managers concerned with productivity of mule deer populations should consider focusing on assessing and improving quality of forage available in summer and autumn.  相似文献   

8.
1. Experimental growth data for Arctic charr (Salvelinus alpinus L.), all fed on excess rations, from 11 European watercourses between 54 and 70°N were analysed and fitted to a new general growth model for fish. The model was validated by comparing its predictions with the growth rate of charr in the wild. 2. Growth performance varied among populations, mainly because of variation in the maximum growth potential, whereas the thermal response curves were similar. The estimated lower and upper temperatures for growth varied between ?1.7 to 5.3 and 20.8–23.2 °C, respectively, while maximum growth occurred between 14.4 and 17.2 °C. 3. There was no geographical or climatic trend in growth performance among populations and therefore no indication of thermal adaptation. The growth potential of charr from different populations correlated positively with fish body length at maturity and maximum weight in the wild. Charr from populations including large piscivorous fish had higher growth rates under standardised conditions than those from populations feeding on zoobenthos or zooplankton. Therefore, the adaptive variation in growth potential was related to life‐history characteristics and diet, rather than to thermal conditions.  相似文献   

9.
《Journal of morphology》2017,278(8):1058-1074
Comparative information on the variation in the temporospatial patterning of mandible growth in wild and laboratory mice during early postnatal ontogeny is scarce but important to understand variation among wild rodent populations. Here, we compare mandible growth between two ontogenetic series from the second to the eighth week of postnatal life, corresponding to two different groups of mice reared under the same conditions: the classical inbred strain C57BL/6J, and Mus musculus domesticus . We characterize the ontogenetic patterns of bone remodeling of the mandibles belonging to these laboratory and wild mice by analyzing bone surface, as well as examine their ontogenetic form changes and bimodular organization using geometric morphometrics. Through ontogeny, the two mouse groups display similar directions of mandible growth, according to the temporospatial distribution of bone remodeling fields. The allometric shape variation of the mandibles of these mice entails the relative enlargement of the ascending ramus. The organization of the mandible into two modules is confirmed in both groups during the last postnatal weeks. However, especially after weaning, the mandibles of wild and laboratory mice differ in the timing and localization of several remodeling fields, in addition to exhibiting different patterns of shape variation and differences in size. The stimulation of dentary bone growth derived from the harder post‐weaning diet might account for some features of postnatal mandible growth common to both groups. Nonetheless, a large component of the postnatal growth of the mouse mandible appears to be driven by the inherent genetic programs, which might explain between‐group differences.  相似文献   

10.
In eastern North America, body size of the larval ant lion Myrmeleon immaculatus increases from south to north, following Bergmann's rule. We used a common-garden experiment and a reciprocal-transplant experiment to evaluate the effects of food and temperature on ant lion growth, body size, and survivorship. In the laboratory common-garden experiment, first-instar larvae from two southern (Georgia, South Carolina) and two northern (Connecticut, Rhode Island) populations were reared in incubators under high- and low-food and high- and low-temperature regimes. For all populations, high food increased final body mass and growth rate and decreased development time. Growth rates were higher at low temperatures, but temperature did not affect larval or adult body mass. Survivorship was highest in high-food and low-temperature treatments. Across all food and temperature treatments, northern populations exhibited a larger final body mass, shorter development time, faster growth rate, and greater survivorship than did southern populations. Results were similar for a field reciprocal-transplant experiment of third-instar larvae between populations in Connecticut and Oklahoma: Connecticut larvae grew faster than Oklahoma larvae, regardless of transplant site. Conversely, larvae transplanted to Oklahoma grew faster than larvae transplanted to Connecticut, regardless of population source. These results suggest that variation in food availability, not temperature, may account for differences in growth and body size of northern and southern ant lions. Although northern larvae grew faster and reached a larger body size in both experiments, northern environments should suppress growth because of reduced food availability and a limited growing season. This study provides the first example of countergradient selection causing Bergmann's rule in an ectotherm.  相似文献   

11.
Shou Sadakiyo  Michihiro Ishihara 《Oikos》2012,121(8):1231-1238
A wide variety of animals show latitudinal cline in body size, which can be caused not only by abiotic factors such as temperature but also by biotic ones such as diet quality. In seed feeding insects, adult body size is affected by seed size. Therefore, seed size may be an important factor to explain the latitudinal cline in body size if the seed size also shows a latitudinal cline. In the present study, we detected a latitudinal cline in body size of an alien bruchid, Acanthoscelides pallidipennis, which was introduced into Japan from North America with its host plant Amorpha fruticosa. In 13 out of 24 populations that we collected in Japan, A. fruticosa seeds were infested with A. pallidipennis. Both body size of A. pallidipennis and host seed weight increased with latitude in the infested populations, but not in the non‐infested populations. There was a significant positive correlation between body size and seed weight in both field observation and laboratory experiment. In a common environmental condition, there was no significant difference in body size among three latitudinally different populations. Our results show that the latitudinal cline in adult body size of A. pallidipennis across a non‐native range could be explained by the latitudinal cline in seed weight of A. fruticosa, but not by genetic differentiation among populations.  相似文献   

12.
Summary We test the hypothesis that body size and population density of the deposit-feeding gastropod, Hydrobia truncata, are greater in muddy than in sandy habitats as a result of faster growth on fine- compared to coarse-grained sediments. We refute this hypothesis using a combination of field measurements and laboratory experiments. Three out of three populations tested had higher maximal growth rates and two of three populations approached their asymptotic size more quickly on sand than on silt-clay fractions of natural sediment. Growth decreased with increasing snail density and was as high or higher on sand as on silt-clay at all densities. Two populations were more fecund on sand than on silt-clay, and fecundity of the third population was not affected by sediment type. We show that the smaller body sizes observed in snails from the sandiest habitat result from late recruitment of these snails, relative to the other populations.  相似文献   

13.
Pastinaca sativa (wild parsnip) produces seeds on the primary, secondary, and tertiary umbels of the flowering stalk. Within plants, variation in seed weight is about twofold. Secondary and tertiary seed weight is 73% and 50% of primary seed weight, respectively. Maximum variation in seed weight between plants is sixfold when tertiary seeds from a small plant are compared to primary seeds from a large plant. Within an umbel order, variation in seed weight between plants is correlated with plant size. Under autumn germinating conditions in the laboratory, final germination of seeds from different umbel orders does not differ but smaller seeds germinate more rapidly than larger seeds. Under spring germination conditions in the laboratory, significantly more primary and secondary seeds germinate than tertiary seeds and the rate of germination is independent of seed weight. Field germination of seeds from different umbel orders produces similar results except that in the spring both secondary and tertiary seed germination is lower than that of primary seeds. These results suggest that with respect to seed germination characteristics small seeds may have a competitive advantage over large seeds in the autumn because they germinate more quickly, but in the spring small seeds are at a disadvantage because they have lower overall germination. Because most germination in the field occurs in the spring, population recruitment from small seeds is likely to be substanially less than that from large seeds.  相似文献   

14.
SUMMARY. Embryonic durations and post embryonic growth rates of Caridina nilotica were determined under laboratory conditions at constant temperatures near 18, 24 and 30°C. Embryonic durations and intermoult intervals were negative curvilinear functions of temperature. At a given temperature moulting frequency varied inversely with shrimp size and slight sexual differences were apparent. Moulting frequency of berried females was governed by the temperature-specific embryonic durations. Growth rates were determined from changes in carapace length (CL) of individual shrimps (laboratory) or batches of shrimps (field enclosures) over 1 month and these data were used to calculate temperature-specific life-long growth curves for males and females. Growth in body mass was estimated indirectly from the carapace length-mass relationship of C. nilotica. On average, males grew marginally faster than females during the first 2 months of life, but growth of males larger than CL= 4 mm was considerably depressed relative to that of females. Inflexions in growth rate, apparently related to the onset of sexual maturity, were apparent in both sexes. Under laboratory conditions, the growth rate of males increased with temperature, but temperature-related differences were not as marked in females. Notwithstanding the more rapid moulting rate at 30°C the growth rate of females was slightly slower at 30 than at 24°C as a result of marginally but significantly smaller per moult growth increments observed at 30°C in animals up to CL= 5.5 mm. Possible reasons for this depressed growth are discussed. Growth rates of animals in field enclosures in Lake Sibaya over 1 month in winter (20 ± 3°C) were generally comparable to those estimated for the 18°C laboratory experiments. Growth rates in enclosures containing tripled standing stocks were almost identical to those containing the naturally occurring biomass of animals, suggesting a non-limited environment at least during the time of the experiment.  相似文献   

15.
1. This is the first study on the life cycle, growth and production of Sigara selecta, a Palearctic corixid species typical of brackish and saline waters, at the warmest limit of its European distributional range. The study combines field and laboratory approaches. 2. The S. selecta population studied was multivoltine, producing four asynchronous cohorts from early spring to December and overwintering in the adult state. Development time from egg to first adult ranged from 2 to 3 months. A minimum temperature threshold of 10 °C and diel amplitude of ≥10 °C were observed for reproduction and oviposition. 3. Maximum density and biomass were reached in mid spring and early autumn. The sex ratio was unbalanced, females dominating during most of the year, except in spring, when the sex ratio was balanced or dominated by males during the first adult emergence. 4. Laboratory rearing experiments at constant temperatures (18, 22 and 26 °C) pointed to a significant effect of temperature on egg development and nymphal growth. In the range of temperatures tested, both egg and nymphal instar duration decreased with increasing temperature. Mean nymphal development time varied from 43 days at 26 °C to 71 days at 18 °C, with a mean of 57 days. Survivorship was independent of temperature. 5. A reduction in nymphal and adult length was observed with increasing temperature. 6. Growth rates decreased with increasing body mass and increased as temperature increased. The first nymphal instar had the highest length increments and growth rates in all temperature treatments. 7. Satisfactory agreement was found between the field and laboratory degree‐days required for complete development from egg to first adult. At constant and variable thermal regimes, degree‐days decreased with increasing temperature. 8. Rate of growth in the field could be predicted with reasonable accuracy from a simple model obtained as a function of body mass. The model explained 67% of the variability in growth rates. 9. Annual production and production/biomass ratio (P/B) of S. selecta estimated by the Instantaneous Growth method were 1.28 g m?2 year?1 and 13.71, respectively. Spring and autumn cohorts contributed 32% and 54%, respectively, of total annual production. Maximum production corresponded to intermediate temperature periods, although summer production may have been underestimated because of the longer sampling interval relative to cohort interval production. The Size Frequency method underestimated production by at least 18% with respect to the Instantaneous Growth method.  相似文献   

16.
Nest-building by male and virgin female wild and laboratory mice kept at a temperature of 2o C was compared with that of controls kept at 23o C. The amount of cotton wool pulled into the cage was recorded over 24 hours. Nest quality was also assessed. The tests of nest-building were conducted in both cold and warm environments. Cotton pulling was usually at a lower rate in the cold environment, but there was no corresponding decrement in final nest quality. Previous experience in the cold, compared with absence of such experience, resulted in higher scores by wild mice tested in either environment, and by laboratory mice tested in the cold environment. Wild mice that built high quality nests used less cotton wool in the cold than in the warm environment. The tendency for wild mice to pull more cotton wool and build better nests than laboratory mice was more pronounced among cold-treated animals. Differences in body weight did not account for the differences between wild and laboratory mice.
In further experiments nest-building was observed over 16 days. In the cold environment there was an initial depression of nest-building by both wild and laboratory mice, followed by a steady improvement over 6 days.
Both males and virgin females sometimes made well constructed nests even in the warm environment. In the cold environment the effect of previous cold-exposure on wild mice was the rapid construction of a good nest.  相似文献   

17.
Fungal endophytes of grasses are often included in agricultural management and in ecological studies of natural grass populations. In European agriculture and ecological studies, however, grass endophytes are largely ignored. In this study, we determined endophyte infection frequencies of 13 European cultivars and 49 wild tall fescue (Schedonorus phoenix) populations in Northern Europe. We then examined seed production and seed predation of endophyte-infected (E+) and endophyte-free (E?) tall fescue (in wild grass populations and in a field experiment) and meadow fescue (Schedonorus pratensis; in a field experiment only). Endophytes were detected in only one of the 13 cultivars. In contrast, >90% of wild tall fescue plants harbored endophytes in 45 wild populations but were absent in three inland populations in Estonia. In three wild tall fescue study sites, 17%, 22%, and 56% of the seeds were preyed upon by the cocksfoot moth. Endophyte infection did not affect seed mass of tall fescue in the field experiment. However, seed predation was lower in E+ than E? grasses in the two tall fescue populations with higher predation rates. For meadow fescue, the mean number of seeds from E+ plants was higher than E? plants, but E? and E+ seeds had equal rates of predation by the moth. Our results suggest that the effects of grass endophytes on seed production and cocksfoot moth seed predation vary considerably among grass species, and the effects may depend on herbivore pressure and other environmental conditions.  相似文献   

18.
Growth rates of Chinese and American alligators   总被引:2,自引:0,他引:2  
Growth rates in two closely related species, Alligator mississippiensis (American alligator) and Alligator sinensis (Chinese alligator), were compared under identical conditions for at least 1 year after hatching. When hatched, Chinese alligators were approximately 2/3 the length and approximately 1/2 the weight of American alligator hatchlings. At the end of 1 year of growth in captivity in heated chambers, the Chinese alligators were approximately 1/2 as long and weighed approximately 1/10 as much as American alligator yearlings. When the animals were maintained at 31 degrees C, Chinese alligator food consumption and length gain rates dropped to near zero during autumn and winter and body weights decreased slightly, apparently in response to the change in day length. At constant temperature (31 degrees C), food consumption by American alligators remained high throughout the year. Length gain rates in American alligators decreased slowly as size increased, but were not affected by photoperiod. Daily weight gains in American alligators increased steadily throughout the year. In autumn, provision of artificial light for 18 h a day initially stimulated both length and weight gain in Chinese alligators, but did not affect growth in American alligators. Continuation of the artificial light regimen seemed to cause deleterious effects in the Chinese alligators after several months, however, so that animals exposed to the normal light cycle caught up to and then surpassed the extra-light group in size. Even after removal of the artificial light, it was several months before these extra-light animals reverted to a normal growth pattern. These findings may be of interest to those institutions engaged in captive growth programs intended to provide animals for reintroduction to the wild or to protected habitat.  相似文献   

19.
Abstract

Post‐weaning growth rates were measured for juvenile house mice (Mus domesticus) reared under four experimental treatments representing dietary conditions in cereal‐growing areas of southeastern Australia. The mice were bred in captivity from adult wild mice captured in mature dry cereal crops during summer. Juvenile mice were caged in pairs at 23°C and offered a diet of either ripening wheat heads or mature dry wheat heads, with or without access to free water. All diets were adequate for survival, but juvenile mice on a diet of ripening wheat with water available grew at 0.25 g day–1, 260% faster than those on a diet of mature wheat and deprived access to free water. Mice on a diet of ripening wheat but deprived of free water and those on a diet of mature wheat with water available grew at intermediate rates. Post‐weaning growth rates of mice in all treatment groups were higher when the young were weaned at higher body mass. The results have implications for estimates of growth, timing of sexual maturity and reproduction of mice in field populations, and indicate that prolonged access to ripening grain and/or relief from moisture stress are likely to be critical to rapid population increase during population outbreaks.  相似文献   

20.
Under common environments, populations of laboratory reared (Grand Banks, GB and Gulf of Maine, GOM) and wild caught (Fortune Bay, FB and Bonavista Bay, BB; Newfoundland) juvenile cod Gadus morhua responded similarly to temperature change in specific growth rates, food conversion efficiencies, condition factors, liver water content, and muscle water content. However, GOM cod had higher condition factors, and showed differences from GB cod in phenotypic plasticity of hepatosomatic index to temperature. These differences were not present in a different population comparison between FB and BB cod. All populations had higher growth rates and food conversion efficiencies at warmer temperatures, and exhibited compensatory growth when temperature was increased. The results suggest relatively larger genetic differences between GB and GOM cod than between FB and BB cod, and indicate that the faster growth of southern populations in the wild is not due to a higher genetic capacity for growth rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号