首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Type 2 diabetes is due to defects in both insulin action and secretion. In an attempt to discover small molecules that stimulate glucose uptake, similar to insulin, a cell-based glucose uptake screening assay was performed using 3T3-L1 adipocytes. Shikonin, a substance originally isolated from the root of the Chinese plant that has been used as an ointment for wound healing, was thus identified. Shikonin stimulated glucose uptake and potentiated insulin-stimulated glucose uptake in a concentration-dependent manner in 3T3-L1 adipocytes. Stimulation of glucose uptake was also observed in rat primary adipocytes and cardiomyocytes. Like insulin, shikonin-stimulated glucose uptake was inhibited by genistein, a tyrosine kinase inhibitor, and enhanced by vanadate, a tyrosine phosphatase inhibitor. However, in contrast to insulin, shikonin-stimulated glucose uptake was not strongly inhibited by wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K). In vitro phosphorylation analyses revealed that shikonin did not induce tyrosine phosphorylation of the insulin receptor, but significantly induced both Thr-308 and Ser-473 phosphorylation of Akt. Our results suggest that in 3T3-L1 adipocytes, shikonin action is not mediated primarily via the insulin receptor/PI3K pathway, but rather via another distinct tyrosine kinase-dependent pathway leading to glucose uptake involving Akt phosphorylation.  相似文献   

2.
Atypical protein kinase C (PKC) isotype-specific interacting protein (ASIP) specifically interacts with the atypical protein kinase C isozymes PKClambda and PKCzeta. ASIP and atypical PKC, as well as their Caenorhabditis elegans counterparts (PAR-3 and PKC-3, respectively), are thought to coordinately participate in intracellular signaling that contributes to the maintenance of cellular polarity and to the formation of junctional complexes. The potential role of ASIP in other cellular functions of atypical PKC was investigated by examining the effect of overexpression of ASIP on insulin-induced glucose uptake, previously shown to be mediated through PKClambda, in 3T3-L1 adipocytes. When overexpressed in these cells, which contain PKClambda but not PKCzeta, ASIP was co-immunoprecipitated with endogenous PKClambda but not with PKCepsilon or with Akt. The subcellular localization of PKClambda was also altered in cells overexpressing ASIP. Overexpression of ASIP inhibited insulin stimulation of both glucose uptake and translocation of the glucose transporter GLUT4 to the plasma membrane, but it did not inhibit glucose uptake induced by either growth hormone or hyperosmolarity both of which promote glucose uptake in a PKClambda-independent manner. Moreover, glucose uptake stimulated by a constitutively active mutant of PKClambda, but not that induced by an active form of Akt, was inhibited by ASIP. Insulin-induced activation of PKClambda, but not that of phosphoinositide 3-kinase or Akt, was also inhibited by overexpression of ASIP. These data suggest that overexpression of ASIP inhibits insulin-induced glucose uptake by specifically interfering with signals transmitted through PKClambda.  相似文献   

3.
Fong JC  Kao YS  Tsai H  Ho LT 《Cellular signalling》2001,13(7):491-497
The mechanism of enhancing glucose transport by prolonged endothelin-1 (ET-1) treatment of 3T3-L1 adipocytes was examined. Western and Northern blot analyses indicated that ET-1 increased the amount of both GLUT1 protein and mRNA. The degradation rate of GLUT1 mRNA as measured in the presence of actinomycin D, nevertheless, was not significantly altered by ET-1. Whereas various inhibitors for distinct signalling pathways were tested, only the mitogen-activated protein kinase (MAPK) kinase inhibitor, PD98059, was found to decrease significantly the enhancing effect of ET-1. Similar extent of inhibition was observed in cells pretreated with pertussis toxin (PT). Immunoblot analysis revealed that ET-1 may stimulate a transient phosphorylation of p42/p44 MAPK and both PT and PD98059 inhibited this stimulation. In addition, the effect of ET-1 on GLUT1 mRNA accumulation was inhibited by PD98059 and cycloheximide, implying that a trans-activation was involved. Taken together, these results suggest that ET-1 may induce GLUT1 gene expression by a MAPK-dependent mechanism.  相似文献   

4.
To explore a novel adipokine, we screened adipocyte differentiation-related gene and found that TIG2/chemerin was strongly induced during the adipocyte differentiation. Chemerin was secreted by the mature 3T3-L1 adipocytes and expressed abundantly in adipose tissue in vivo as recently described. Intriguingly, the expression of chemerin was differently regulated in the liver and adipose tissue in db/db mice. In addition, serum chemerin concentration was decreased in db/db mice. Chemerin and its receptor/ChemR23 were expressed in mature adipocytes, suggesting its function in autocrine/paracrine fashion. Finally, chemerin potentiated insulin-stimulated glucose uptake concomitant with enhanced insulin signaling in the 3T3-L1 adipocytes. These data establish that chemerin is a novel adipokine that regulates adipocyte function.  相似文献   

5.
mTOR.RICTOR is the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes   总被引:16,自引:0,他引:16  
The insulin-signaling pathway leading to the activation of Akt/protein kinase B has been well characterized except for a single step, the phosphorylation of Akt at Ser-473. Double-stranded DNA-dependent protein kinase (DNA-PK), ataxia telangiectasia mutated (ATM) gene product, integrin-linked kinase (ILK), protein kinase Calpha (PKCalpha), and mammalian target of rapamycin (mTOR), when complexed to rapamycin-insensitive companion of mTOR (RICTOR), have all been identified as playing a critical role in Akt Ser-473 phosphorylation. However, the apparently disparate results reported in these studies are difficult to evaluate, given that different stimuli and cell types were examined and that all of the candidate proteins have never been systematically studied in a single system. Additionally, none of these studies were performed in a classical insulin-responsive cell type or tissue such as muscle or fat. We therefore examined each of these candidates in 3T3-L1 adipocytes. In vitro kinase assays, using different subcellular fractions of 3T3-L1 adipocytes, revealed that phosphatidylinositol 3,4,5-trisphosphate-stimulated Ser-473 phosphorylation correlated well with the amount of DNA-PK, mTOR, and RICTOR but did not correlate with levels of ATM, ILK, and PKCalpha. PKCalpha was completely absent from compartments with Ser-473 phosphorylation activity. Although purified DNA-PK could phosphorylate a peptide derived from Akt that contains amino acid Ser-473, it could not phosphorylate full-length Akt2. Vesicles immunoprecipitated from low density microsomes using antibodies directed against mTOR or RICTOR had phosphatidylinositol 3,4,5-trisphosphate-stimulated Ser-473 activity that was sensitive to wortmannin but not staurosporine. In contrast, immunopurified low density microsome vesicles containing ILK could not phosphorylate Akt on Ser-473 in vitro. Small interference RNA knockdown of RICTOR, but not DNA-PK, ATM, or ILK, suppressed insulin-activated Ser-473 phosphorylation and, to a lesser extent, Thr-308 phosphorylation in 3T3-L1 adipocytes. Based on our cell-free kinase and small interference RNA results, we conclude that mTOR complexed to RICTOR is the Ser-473 kinase in 3T3-L1 adipocytes.  相似文献   

6.
TNFalpha, which activates three different MAPKs [ERK, p38, and jun amino terminal kinase (JNK)], also induces insulin resistance. To better understand the respective roles of these three MAPK pathways in insulin signaling and their contribution to insulin resistance, constitutively active MAPK/ERK kinase (MEK)1, MAPK kinase (MKK6), and MKK7 mutants were overexpressed in 3T3-L1 adipocytes using an adenovirus-mediated transfection procedure. The MEK1 mutant, which activates ERK, markedly down-regulated expression of the insulin receptor (IR) and its major substrates, IRS-1 and IRS-2, mRNA and protein, and in turn reduced tyrosine phosphorylation of IR as well as IRS-1 and IRS-2 and their associated phosphatidyl inositol 3-kinase (PI3K) activity. The MKK6 mutant, which activates p38, moderately inhibited IRS-1 and IRS-2 expressions and IRS-1-associated PI3K activity without exerting a significant effect on the IR. Finally, the MKK7 mutant, which activates JNK, reduced tyrosine phosphorylation of IRS-1 and IRS-2 and IRS-associated PI3K activity without affecting expression of the IR, IRS-1, or IRS-2. In the context of our earlier report showing down-regulation of glucose transporter 4 by MEK1-ERK and MKK6/3-p38, the present findings suggest that chronic activation of ERK, p38, or JNK can induce insulin resistance by affecting glucose transporter expression and insulin signaling, though via distinctly different mechanisms. The contribution of ERK is, however, the strongest.  相似文献   

7.
Insulin stimulates glucose uptake in fat and muscle by redistributing GLUT4 glucose transporters from intracellular membranes to the cell surface. We previously proposed that, in 3T3-L1 adipocytes, TUG retains GLUT4 within unstimulated cells and insulin mobilizes this retained GLUT4 by stimulating its dissociation from TUG. Yet the relative importance of this action in the overall control of glucose uptake remains uncertain. Here we report that transient, small interfering RNA-mediated depletion of TUG causes GLUT4 translocation and enhances glucose uptake in unstimulated 3T3-L1 adipocytes, similar to insulin. Stable TUG depletion or expression of a dominant negative fragment likewise stimulates GLUT4 redistribution and glucose uptake, and insulin causes a 2-fold further increase. Microscopy shows that TUG governs the accumulation of GLUT4 in perinuclear membranes distinct from endosomes and indicates that it is this pool of GLUT4 that is mobilized by TUG disruption. Interestingly, in addition to translocating GLUT4 and enhancing glucose uptake, TUG disruption appears to accelerate the degradation of GLUT4 in lysosomes. Finally, we find that TUG binds directly and specifically to a large intracellular loop in GLUT4. Together, these findings demonstrate that TUG is required to retain GLUT4 intracellularly in 3T3-L1 adipocytes in the absence of insulin and further implicate the insulin-stimulated dissociation of TUG and GLUT4 as an important action by which insulin stimulates glucose uptake.  相似文献   

8.
The precise mechanisms underlying insulin-stimulated glucose transport still require investigation. Here we assessed the effect of SB203580, an inhibitor of the p38 MAP kinase family, on insulin-stimulated glucose transport in 3T3-L1 adipocytes and L6 myotubes. We found that SB203580, but not its inactive analogue (SB202474), prevented insulin-stimulated glucose transport in both cell types with an IC50 similar to that for inhibition of p38 MAP kinase (0.6 microM). Basal glucose uptake was not affected. Moreover, SB203580 added only during the transport assay did not inhibit basal or insulin-stimulated transport. SB203580 did not inhibit insulin-stimulated translocation of the glucose transporters GLUT1 or GLUT4 in 3T3-L1 adipocytes as assessed by immunoblotting of subcellular fractions or by immunofluorescence of membrane lawns. L6 muscle cells expressing GLUT4 tagged on an extracellular domain with a Myc epitope (GLUT4myc) were used to assess the functional insertion of GLUT4 into the plasma membrane. SB203580 did not affect the insulin-induced gain in GLUT4myc exposure at the cell surface but largely reduced the stimulation of glucose uptake. SB203580 had no effect on insulin-dependent insulin receptor substrate-1 phosphorylation, association of the p85 subunit of phosphatidylinositol 3-kinase with insulin receptor substrate-1, nor on phosphatidylinositol 3-kinase, Akt1, Akt2, or Akt3 activities in 3T3-L1 adipocytes. In conclusion, in the presence of SB203580, insulin caused normal translocation and cell surface membrane insertion of glucose transporters without stimulating glucose transport. We propose that insulin stimulates two independent signals contributing to stimulation of glucose transport: phosphatidylinositol 3-kinase leads to glucose transporter translocation and a pathway involving p38 MAP kinase leads to activation of the recruited glucose transporter at the membrane.  相似文献   

9.
In 3T3-L1 adipocytes, insulin activates three major signaling cascades, the phosphoinositide 3-kinase (PI3K) pathway, the Cbl pathway, and the mitogen-activated protein kinase (MAPK) pathway. Although PI3K and Cbl mediate insulin-stimulated glucose uptake by promoting the translocation of the insulin-responsive glucose transporter (GLUT4) to the plasma membrane, the MAPK pathway does not have an established role in insulin-stimulated glucose uptake. We demonstrate in this report that PI3K inhibitors also inhibit the MAPK pathway. To investigate the role of the MAPK pathway separately from that of the PI3K pathway in insulin-stimulated glucose uptake, we used two specific inhibitors of MAPK kinase (MEK) activity, PD-98059 and U-0126, which reduced insulin-stimulated glucose uptake by approximately 33 and 50%, respectively. Neither MEK inhibitor affected the activation of Akt or PKCzeta/lambda, downstream signaling molecules in the PI3K pathway. Inhibition of MEK with U-0126 did not prevent GLUT4 from translocating to the plasma membrane, nor did it inhibit the subsequent docking and fusion of GLUT4-myc with the plasma membrane. MEK inhibitors affected glucose transport mediated by GLUT4 but not GLUT1. Importantly, the presence of MEK inhibitors only at the time of the transport assay markedly impaired both insulin-stimulated glucose uptake and MAPK signaling. Conversely, removal of MEK inhibitors before the transport assay restored glucose uptake and MAPK signaling. Collectively, our studies suggest a possible role for MEK in the activation of GLUT4.  相似文献   

10.
By a cell-based glucose uptake screening assay, a chalcone derivative, 3-nitro-2'-benzyloxychalcone (compound 1) was identified. Compound 1 stimulated glucose uptake and potentiated insulin-stimulated glucose uptake in a concentration-dependent manner in 3T3-L1 adipocytes. When cells were treated with various concentrations of insulin in the presence of compound 1, marked enhancement of insulin-stimulated glucose uptake was observed at each concentration, suggesting that the compound might function as an insulin sensitizer. Preliminary study on the structure-activity relationships revealed that two aromatic benzene rings tolerated several substituents, but substitution by acidic or highly polar groups abolished the activity. Among several chalcone derivatives, 4-chloro-2'-benzyloxychalcone (compound 8) showed the highest level of activity. Compound 8-stimulated glucose uptake was almost completely inhibited by wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K). These results suggest that the action of chalcone derivatives is mediated via a pathway involving PI3K.  相似文献   

11.
The mechanism via which diacylglycerol-sensitive protein kinase Cs (PKCs) stimulate glucose transport in insulin-sensitive tissues is poorly defined. Phorbol esters, such as phorbol-12-myristate-13-acetate (PMA), are potent activators of conventional and novel PKCs. Addition of PMA increases the rate of glucose uptake in many different cell systems. We attempted to investigate the mechanism via which PMA stimulates glucose transport in 3T3-L1 adipocytes in more detail. We observed a good correlation between the rate of disappearance of PKCbetaII during prolonged PMA treatment and the increase in glucose uptake. Moreover, inhibition of PKCbetaII with a specific myristoylated PKCbetaC2-4 peptide inhibitor significantly increased the rate of glucose transport. Western blot analysis demonstrated that both PMA treatment and incubation with the myristoylated PKCbetaC2-4 pseudosubstrate resulted in more glucose transporter (GLUT)-1 but not GLUT-4 at the plasma membrane. To our knowledge, we are the first to demonstrate that inactivation of PKC, most likely PKCbetaII, elevates glucose uptake in 3T3-L1 adipocytes. The observation that PKCbetaII influences the rate of glucose uptake through manipulation of GLUT-1 expression levels at the plasma membrane might reveal a yet unidentified regulatory mechanism involved in glucose homeostasis.  相似文献   

12.
Tumor necrosis factor-alpha (TNF-alpha) is a potent inducer of insulin resistance, and increased TNF-alpha expression is associated with impaired glucose disposal. Although insulin is the primary regulator of glucose transport in adipose, endothelin-1, a vasoconstrictor peptide that signals through the heterotrimeric G proteins Galphaq/11, potently stimulates glucose uptake in 3T3-L1 adipocytes by a mechanism independent of phosphatidylinositol (PI) 3-kinase. Here, we report that exposure of 3T3-L1 adipocytes to TNF-alpha for 48 h dose-dependently decreased endothelin-1-stimulated glucose uptake and translocation of GLUT4 to the plasma membrane. TNF-alpha exposure had no effect on endothelin-1 receptor number at the cell surface. In contrast, TNF-alpha treatment reduced the quantity of Galphaq/11 and proline-rich tyrosine kinase 2 (PYK2) and decreased endothelin-1-stimulated PYK2-Tyr402 tyrosine phosphorylation. Taken together, these results suggest that TNF-alpha-induced desensitization of endothelin-1-stimulated GLUT4 translocation and glucose uptake in 3T3-L1 adipocytes is due, at least in part, to a decreased expression of Galphaq/11, leading to a suppression in tyrosine phosphorylation of PYK2.  相似文献   

13.
Uncoupling protein 2 (UCP2) was reported to be involved in insulin-glucose homeostasis, based on well established event that inhibition of UCP2 stimulates insulin secretion in pancreatic β-cells. However, the role of UCP2 on insulin-stimulated glucose uptake in adipose tissue, which is an indispensable process in insulin-glucose homeostasis, remains unknown. In this study, UCP2 was inhibited by genipin in 3T3-L1 adipocytes, which increased mitochondrial membrane potential, intracellular ATP level and production of reactive oxygen species (ROS). Importantly, insulin-stimulated glucose uptake in 3T3-L1 adipocytes was largely impaired in the presence of genipin, and recovered by CCCP, a mitochondrial uncoupler. Furthermore, genipin leaded to suppression of insulin signal transduction through hyperactivation of c-Jun N-terminal kinase (JNK) and subsequent serine phosphorylation of insulin receptor substrate-1 (IRS-1). These results suggest that mitochondrial uncoupling in adipocytes positively regulates insulin-stimulated glucose uptake in adipocytes, and UCP2 may play an important role in insulin resistance.  相似文献   

14.
Apelin, a cytokine mainly secreted by adipocytes, is closely related with insulin resistance. The underlying molecular mechanisms of how apelin affects insulin resistance, however, are poorly understood. This study aimed to investigate the effect of apelin on glucose metabolism and insulin resistance in 3T3-L1 adipocytes. After 10 ng/ml TNF-α treatment for 24 h, insulin-stimulated glucose uptake was reduced by 47% in 3T3-L1 adipocytes. Apelin treatment improved glucose uptake in a time- and dose-dependent manner. Treatment of 1,000 nM apelin for 60 min maximally augmented glucose uptake in insulin-resistant 3T3-L1 adipocytes. Furthermore, apelin pre-incubation also increased adipocytes' insulin-stimulated glucose uptake, and PI3K/Akt pathway were involved in these effects. In addition, immunocytochemistry staining and western blotting analysis indicated that apelin could increase glucose transporter 4 translocation from the cytoplasm to the plasma membrane. Apelin also increased the anti-inflammatory adipokine adiponectin mRNA expression while reducing that of pro-inflammatory adipokine interleukin-6 in insulin-resistant 3T3-L1 adipocytes. These results suggest that apelin stimulates glucose uptake through the PI3K/Akt pathway, promotes GLUT4 translocation from the cytoplasm to the plasma membrane, and modulates inflammatory responses in insulin-resistant 3T3-L1 adipocytes.  相似文献   

15.
Adipose tissue is a source of hepatocyte growth factor (HGF), and circulating HGF levels have been associated with elevated body mass index in human. However, the effects of HGF on adipocyte functions have not yet been investigated. We show here that in 3T3-L1 adipocytes HGF stimulates the phosphatidylinositol (PI) 3-kinase-dependent protein kinase B (PKB) activity, AS160 phosphorylation, Glut4 translocation, and consequently, glucose uptake. The initial steps involved in HGF- and insulin-induced glucose uptake are different. HGF enhanced the tyrosine phosphorylation of Gab1, leading to the recruitment of the p85-regulated subunit of PI 3-kinase, whereas p85 was exclusively recruited by IRS1 in response to insulin. In adipocytes rendered insulin-resistant by a long-lasting tumor necrosis factor alpha treatment, the protein level of Gab1 was strongly decreased, and HGF-stimulated PKB activation and glucose uptake were also altered. Moreover, treatment of 3T3-L1 adipocytes with thiazolidinedione, an anti-diabetic drug, enhanced the expression of both HGF and its receptor. These data provide the first evidence that in vitro HGF promotes glucose uptake through a Gab1/PI 3-kinase/PKB/AS160 pathway which was altered in tumor necrosis factor alpha-treated adipocytes.  相似文献   

16.
The main function of aldosterone is to regulate blood pressure and electrolytic balance;however,recent studies have also focused on the effect of aldosterone on glucose metabolism especially in adipose tissue.Aldosterone was found to inhibit insulin-induced glucose uptake in 3T3-L1 adipocytes [1] and aldosterone deficiency was found to prevent high-fat-feeding-induced hyperglycemia and adipocyte dysfunction in mice [2].Visfatin,an adipokine discovered by the team of Fukuhara,is mainly released by adipose tissue [3].Treatment of 3T3-L1 adipocytes and L6 myocytes with visfatin increased basal glucose uptake,and glucose release was suppressed in H4IIEC3 hepatocytes after visfatin treatment [3].It has also been suggested that visfatin may act as a proinflammatory cytokine [4] and produce chronic inflammation in adipocytes [5].Eyileten et al.[6] reported that treatment with angiotensin-converting enzyme inhibitor,which can reduce plasma aldosterone concentration,decreased circulating visfatin level in diabetic nephropathy patients.These findings suggest a possible interaction between the renin–angiotensin–aldosterone system(RAAS)and visfatin.Considering the important roles of aldosterone and visfatin and the association between RAAS and visfatin,we hypothesize that there may be a direct regulatory interaction between aldosterone and visfatin.To test this hypothesis,3T3-L1 adipocytes were used as the cell model and the expression of visfatin was measured by qRT-PCR and western blot analysis.  相似文献   

17.
The retinoid-inducible gene 1 (RIG1) protein is a retinoid-inducible growth regulator. Previous studies have shown that the RIG1 protein inhibits the signaling pathways of Ras/mitogen-activated protein kinases. However, neither the mode of action nor the site of inhibition of RIG1 is known. This study investigated the effects of RIG1, and the mechanisms responsible for these effects, on the activation of Ras proteins in HtTA cervical cancer cells. RIG1 reduced the levels of activated Ras (Ras-GTP) and total Ras protein in cells transfected with mutated H-, N-, or K-Ras(G12V), or in cells transfected with the wild type H- or N-Ras followed by stimulation with epidermal growth factor. The half-life of Ras protein decreased from more than 36 h in control cells to 18 h in RIG1-transfected cells. RIG1 immunoprecipitated with the Ras protein in co-transfected cellular lysates. In contrast to the predominant plasma membrane localization in control cells, the H-Ras fusion protein EGFP-H-Ras was localized within a discrete cytoplasmic compartment where it co-localized with RIG1. RIG1 inhibited more than 93% of the Elk- and CHOP-mediated transactivation induced by H- or K-Ras(G12V). However, RIG1 did not inhibit the transactivation induced by MEK1 or MEK3, and failed to suppress the phosphorylation of extracellular signal-regulated kinases 1 and 2 induced by the constitutively activated B-Raf(V599E). The RIG1 with carboxyl terminal truncation (RIG1DeltaC) did not immunoprecipitate with Ras and had no effect on Ras activation or transactivation of the downstream signal pathways. These data indicate that RIG1 exerts its inhibitory effect at the level of Ras activation, which is independent of Ras subtype but dependent on the membrane localization of the RIG1 protein. This inhibition of Ras activation may be mediated through downregulation of Ras levels and alteration of Ras subcellular distribution.  相似文献   

18.
Insulin stimulated GLUT4 (glucose transporter 4) translocation and glucose uptake in muscles and adipocytes is important for the maintenance of blood glucose homeostasis in our body. In this paper, we report the identification of kaempferitrin (kaempferol 3,7-dirhamnoside), a glycosylated flavonoid, as a compound that inhibits insulin stimulated GLUT4 translocation and glucose uptake in 3T3-L1 adipocytes. In the absence of insulin, we observed that addition of kaempferitrin did not affect GLUT4 translocation or glucose uptake. On the other hand, kaempferitrin acted as an inhibitor of insulin-stimulated GLUT4 translocation and glucose uptake in 3T3-L1 adipocytes by inhibiting Akt activation. Molecular docking studies using a homology model of GLUT4 showed that kaempferitrin binds directly to GLUT4 at the glucose transportation channel, suggesting the possibility of a competition between kaempferitrin and glucose during the transport. Taken together, our data demonstrates that kaempferitrin inhibits GLUT4 mediated glucose uptake at least by two different mechanisms, one by interfering with the insulin signaling pathway and the other by a possible competition with glucose during the transport.  相似文献   

19.
20.
The isoflavone-derivative genistein is commonly applied as an inhibitor of tyrosine kinases. In this report we analyze the effect of genistein on insulin-stimulated glucose uptake in 3T3-L1 adipocytes. In these cells insulin-induced glucose uptake is primarily mediated by the GLUT4 glucose transporter. We observed that pre-treatment with genistein did not affect insulin-induced tyrosine kinase activity of the insulin receptor or activation of protein kinase B. On the other hand, genistein acted as a direct inhibitor of insulin-induced glucose uptake in 3T3-L1 adipocytes with an IC(50) of 20 microM. We conclude that apart from acting as a general tyrosine kinase inhibitor, genistein also affects the function of other proteins such as the GLUT4 transporter. These data suggest that caution must be applied when interpreting data on the involvement of tyrosine kinase activity in glucose uptake in 3T3-L1 adipocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号