首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G-banded metaphase preparations of cultured fibroblasts were used to construct the karyotypes of Petrogale brachyotis (2n = 18) and P. concinna (2n = 16). The two karyotypes differ significantly from the plesiomorphic karyotype of the genus and from those of all other Petrogale species examined. Petrogale brachyotis and P. concinna are characterised by three synapomorphies: a 1-10 centric fusion, a 3a-6 centric fusion, and a submetacentric chromosome 2 (2s). Both species also possess autapomorphies. Petrogale brachyotis is characterised by submetacentric chromosomes 5 (5s) and 4 (4sm), whereas P. concinna is characterised by a 5-9 centric fusion and a submetacentric chromosome 8 (8m). The 2s, 5s, 4sm, and 8m chromosomes all appear to be derived from their plesiomorphic homologs by centromeric transpositions. Although the rate of chromosome evolution varies considerably in Petrogale, the genus clearly exhibits karyotypic orthoselection, with all the autosomal rearrangements identified being either centric fusions or centromeric transpositions. This study also illustrates the potential for convergent evolution in chromosomally diverse groups and demonstrates the importance of G-banding studies for accurate identification of chromosome rearrangements.  相似文献   

2.
The distribution of the conserved vertebrate telomeric sequence (T(2)AG(3))(n) was examined by fluorescence in situ hybridization in the six Petrogale (rock wallabies) taxa of the lateralis complex. As expected, the (T(2)AG(3))(n) sequence was located at the termini of all chromosomes in all taxa. However, the sequence was also present at several nontelomeric (viz., interstitial and centromeric) sites. The signals identified were associated with either ancient rearrangements involved with the formation of the 2n = 22 plesiomorphic macropodine karyotype or more recent rearrangements associated with karyotypes derived from the 2n = 22 karyotype. Interstitial (T(2)AG(3))(n) signals identified on chromosomes 3 and 4 in all six species of the lateralis complex and a large centromeric signal identified on chromosome 7 in the five subspecies/races of P. lateralis appear to be related to the more ancient rearrangements. Subsequent chromosome evolution has seen these signals retained, lost, or amplified in different Petrogale lineages. Within the lateralis complex, in two submetacentric chromosome derived by recent centric fusions, the telomeric sequence was identified at or near the centromere, indicating its retention during the fusion process. In the two taxa where chromosome 3 was rearranged via a recent centromeric transposition to become an acrocentric chromosome, the telomeric signal was located interstitially.  相似文献   

3.
G-banding has demonstrated the presence of a conserved (2n = 22) chromosome complement in the macropod genus Thylogale and in some Petrogale species. This plesiomorphic karyotype consists of acrocentric chromosomes 1, 2, 5, 6, 8, 9, and 10; submetacentric chromosomes 3 and 4; and a metacentric chromosome 7. It should now be possible to relate the G-banding patterns of all other Petrogale species to this plesiomorphic complement and thereby determine the number and types of changes that have occurred during the course of chromosome evolution in Petrogale. It is hypothesised that this 2n = 22 complement is plesiomorphic for all macropodids.  相似文献   

4.
The rock-wallaby genus Petrogale comprises a group of habitat-specialist macropodids endemic to Australia. Their restriction to rocky outcrops, with infrequent interpopulation dispersal, has been suggested as the cause of their recent and rapid diversification. Molecular phylogenetic relationships within and among species of Petrogale were analysed using mitochondrial (cytochrome oxidase c subunit 1, cytochrome b, NADH dehydrogenase subunit 2) and nuclear (omega-globin intron, breast and ovarian cancer susceptibility gene) sequence data with representatives that encompassed the morphological and chromosomal variation within the genus, including for the first time both Petrogale concinna and Petrogale purpureicollis. Four distinct lineages were identified, (1) the brachyotis group, (2) Petrogale persephone, (3) Petrogalexanthopus and (4) the lateralis-penicillata group. Three of these lineages include taxa with the ancestral karyotype (2n=22). Paraphyletic relationships within the brachyotis group indicate the need for a focused phylogeographic study. There was support for P. purpureicollis being reinstated as a full species and P. concinna being placed within Petrogale rather than in the monotypic genus Peradorcas. Bayesian analyses of divergence times suggest that episodes of diversification commenced in the late Miocene-Pliocene and continued throughout the Pleistocene. Ancestral state reconstructions suggest that Petrogale originated in a mesic environment and dispersed into more arid environments, events that correlate with the timing of radiations in other arid zone vertebrate taxa across Australia.  相似文献   

5.
Marsupial mammals show extraordinary karyotype stability, with 2n = 14 considered ancestral. However, macropodid marsupials (kangaroos and wallabies) exhibit a considerable variety of karyotypes, with a hypothesised ancestral karyotype of 2n = 22. Speciation and karyotypic diversity in rock wallabies (Petrogale) is exceptional. We used cross species chromosome painting to examine the chromosome evolution between the tammar wallaby (2n = 16) and three 2n = 22 rock wallaby species groups with the putative ancestral karyotype. Hybridization of chromosome paints prepared from flow sorted chromosomes of the tammar wallaby to Petrogale spp., showed that this ancestral karyotype is largely conserved among 2n = 22 rock wallaby species, and confirmed the identity of ancestral chromosomes which fused to produce the bi-armed chromosomes of the 2n = 16 tammar wallaby. These results illustrate the fission-fusion process of karyotype evolution characteristic of the kangaroo group.  相似文献   

6.
Hypotheses on the evolution of the karyotypes of 8 chromosome races (2n = 4, 6, 8, 10, 12, 16-two forms, 26) within theOrnithogalum tenuifolium complex are discussed. Four of the karyotypes are strictly bimodal: 2n = 8 (6 long and two short chromosomes), 2n = 10 (6 long and 4 short chromosomes), 2n = 12 (6 long and 6 short chromosomes) and 2n = 16 (12 long and 4 short chromosomes). The hypotheses are tested by means of measurements of nuclear DNA content, studies of meiosis and pollen fertility of hybrids, and comparisons of karyotype morphology. The results indicate that the E. African 2n = 12 chromosome race is the most primitive and has given rise to the other chromosome races. The 2n = 6 race is found to have a significantly higher fitness than the 2n = 12 race.  相似文献   

7.
Max King  Ruth Rofe 《Chromosoma》1976,54(1):75-87
The gekko Phyllodactylus marmoratus has at least three distinct chromosome races; 2n=36, 2n=36 ZZ/ZW and 2n=34. Specimens from these races are morphologically distinguishable, have a degree of habitat specialization and occur in a defined distribution. The 2n=36 race found in Eastern Australia is the presumed primordial type. The 2n=34 race occurs in Western Australia and is regarded as a fusion derivative. The 2n=36 ZZ/ZW race, which is only found on the Murray River system in Eastern Australia has a heteromorphic sex chromosome system present in the female. Giemsa banding suggests that this heteromorphism is the result of a pericentric inversion.  相似文献   

8.
A comparison of the karyotypes of races D (2n=8), E (2n=10), B (2n=12) and C (2n=16) of B. lineariloba suggests that these races have in common a basic set of four chromosome pairs, and that the higher chromosome number races are related to race D by successive chromosome addition. — A study of meiosis in B × C and A1 × B hybrids supports this contention and elucidates the homologies of the additional chromosomes. — Meiotic pairing in hybrids between A and C is very complex. At present it can only be stated that there are extensive interchromosomal homologies between the two races. — Two phyletic schemes of the relationships of the races are considered. The second, which is favoured, involves successive chromosome addition, with the quasidiploid race E (2n = 10) giving rise to race B by diploidisation of the univalent chromosomes. This scheme is supported by features of univalent behaviour in the various races and their hybrids. — The ecogeographic distribution pattern of the races shows replacement of D by E by B by C as the species extends into more arid and more harsh environments. This replacement is also associated with increasing vigour. — It seems most likely that the addition chromosomes are derived from a race A (2n=4) source since they are added always by twos, and each addition increases both vigour and drought tolerance. Race A is the most vigorous and one of the most drought tolerant of the five races.It is suggested that the evolution of the races can be related to the increasing aridity of the Late Pleistocene and Recent geological epochs.  相似文献   

9.
The grasshopper Podisma sapporensis consists of two main chromosome races in Hokkaido. The western group of populations of P. sapporensis, belonging to the XO race, has a diploid number of chromosomes 2n = 23 in the male and 2n = 24 in the female (sex determination XO male/XX female). The eastern group of populations of this species, belonging to the XY race, differs from the western one as a result of Robertsonian translocation between the originally acrocentric X chromosome and M5 autosome in homozygous state, having resulted in the forming of chromosome sex determination neo-XY male/neo-XX female (2n = 22). These races are geographically isolated by the mountainous system consisting of the Mts Daisetsu and Hidaka range, occupying the central part of the island. The hybrid zones between the races have not so far been discovered. Various levels of polymorphism for the pericentric inversions and C-banding variation exist in different chromosomes throughout populations in both chromosome races. In some solitary populations (the population at the summit of Mt Yotei, populations in the vicinity of Naganuma, Oketo, and Tanno) pericentric inversions are fixed in some pairs of chromosomes, which enables marking of the discrete karyomorphes. In the Mt Daisengen population all chromosomes are two-armed as a result of fixing the pericentric inversions. These facts contradict karyotypical conservatism of the tribe Podismini. The level of diversity of P. sapporensis karyotypes could provide a new perspective on the evolutionary process of different karyotype in Orthoptera. The considerable occurrence of polymorphism in chromosomes suggests that karyotypic diversification is undergoing in P. sapporensis. The authors also proposed that P. sapporensis would be divided into four chromosome subraces in the XO chromosome race and two chromosome subraces in the XY race, on the basis of karyotypic features. These races may have been established by fundamental climatic changes during the glacial epoch.  相似文献   

10.
We have made an extensive allozyme survey of 21 enzyme and protein loci in populations of the alpine grasshopper Podisma pedestris. This species occurs in two races, differing by a chromosomal fusion which separates the ancestral XO/XX race from a derived neo-XY race. These races also differ in DNA content, and hybrids between them have reduced viability. Electrophoresis reveals that the amount of genetic differentiation between these races is no greater than the variation among populations within each race. Both larger-scale surveys and a detailed survey of an area where the races hybridize, show that the chromosomal change is not correlated with gene frequency changes at any of the 21 loci studied. These findings are consistent with recently developed theory concerning the strength of the barrier to gene flow posed by a hybrid zone with characteristics such as those measured experimentally in Podisma. It is argued that hybrid zones in other species which involve allozymic differences do so because of stronger selection against hybrids rather than through mating isolation.  相似文献   

11.
The Robertsonian fusion is a common chromosomal mutation among mammal species and is especially prevalent in the West European house mouse, Mus musculus domesticus. More than 40 races of the house mouse exist in Europe, including the famous “tobacco mouse” (Poschiavo race) of Val Poschiavo, Switzerland. Documented here is the discovery of an extreme case of karyotypic variation in the neighboring Upper Valtellina, Italy. In a 20-km stretch of the valley, 32 karyotypes were observed, including five chromosomal races and 27 hybrid types. One previously unknown race is reported, the “Mid Valtellina” race, with a diploid number of 2n = 24 and the Robertsonian fusions Rb(1.3), Rb(4.6), Rb(5.15), Rb(7.18), Rb(8.12), Rb(9.14), Rb(11.13), and Rb(16.17). The Poschiavo race (2n = 26), Upper Valtellina race (2n = 24), Lower Valtellina race (2n = 22) and all-acrocentric race (2n = 40) were also present. The races form a patchy distribution, which we term a “mottled hybrid zone.” Geographical position, isolation, extinction, recolonization, and selection against hybrids are all believed to be instrumental in the origin and evolution of this complex system. Previous studies of house mice from Upper Valtellina indicated that two of the races in the valley (the Upper Valtellina and Poschiavo races) may have speciated in the village of Migiondo. We discuss the possibility that there may have been a reinforcement event in this village.  相似文献   

12.
We compared sequence variation in the complete mitochondrial cytochrome-b gene with chromosomal and geographical variation for specimens of Peters' tent-making bat (Uroderma bilobatum). Three different chromosomal races have been described in this species: a 2n = 42 race from South America east of the Andes, a 2n = 44 from NW Central America and 2n = 38 from the rest of Central America and NW South America. The deepest nodes in the tree were found within the South American race (42 race), which is consistent with a longer history of this race. Average distance among races ranged from 2.5 to 2.9%, with the highest amount of intraracial variation found within the 2n = 42 race (1.7%), intermediate values within the 2n = 38 race (0.9%) and lowest within the 2n = 44 race (0.5%). Variation among chromosomal races accounted for over 55% of molecular variance, whereas variation among populations within races accounted for 6%. The 2n = 38 and 2n = 44 races hybridize in the coastal lowlands of Honduras, near the Gulf of Fonseca. Introgression between these two races is low (two introgressed individuals in 45 examined). Clinal variation across the hybrid zone for the cytochrome-b of U. bilobatum, is similar to clinal variation reported for chromosomes and isozymes of this species. Mismatch distribution analyses suggests that geographical isolation and karyological changes have interplayed in a synergistic fashion. Fixation of the alternative chromosomal rearrangements in geographical isolation and secondary contact is the most likely mechanism accounting for the hybrid zone between the 2n = 38 and 2n = 44 races. If a molecular clock is assumed, with rates ranging from 2.3 to 5.0% per million years, then isolation between these races occurred within the last million years, implying a relatively recent origin of the extant diversity in Uroderma bilobatum. None the less, the three chromosomal races probably represent three different biological species.  相似文献   

13.
C. Moran  D. D. Shaw 《Chromosoma》1977,63(2):181-204
The acridine grasshopper, Caledia captiva exists as two chromosomal races in south-east Queensland. One of these, the Moreton race inhabits the coastal region to the east of the Great Dividing Range. All chromosomes of the complement (2n=11II+XO/XX) have been involved in centromeric rearrangement, which transforms the acro- and telocentric chromosomes into submeta- and metacentric elements. The second, or Torresian race is widely distributed through southern Papua, Arnhem Land, Cape York Peninsula and down the east coast of Australia as far south as Brisbane. This race, which is characterised by a completely acro- and telocentric chromosome complement, approaches the Moreton race in south-east Queensland where the two races are separated by less than 1 km, along a front of at least 150 km. Evidence is presented to show that chromosome introgression is occurring across the contact zone and this takes place in one direction only, namely the Torresian chromosomes are infiltrating into the Moreton race but not reciprocally. Furthermore, the introgression of chromosomes across the zone is limited to certain members of the Torresian complement and even then these successful chromosomes show highly variable degrees of penetrance into the Moreton race. It is proposed that a tension zone exists between these two races which is maintained by the interaction of (a) ecological tolerance differences on either side of the zone and (b) by partial competitive exclusion due to the interracial differences in phenology. This case of parapatric association with limited hybridisation is unique in its clarity due to the marked differences in the appearance of the chromosome complements of these races which permits direct assessment of the behaviour of most members of the genome in hybrids and their derivatives.  相似文献   

14.
Drosophila nasuta albomicans (with 2n = 6), contains a pair of metacentric neo-sex chromosomes. Phylogenetically these are products of centric fusion between ancestral sex (X, Y) chromosomes and an autosome (chromosome 3). The polytene chromosome complement of males with a neo-X- and neo-Y-chromosomes has revealed asynchrony in replication between the two arms of the neo-sex chromosomes. The arm which represents the ancestral X-chromosome is faster replicating than the arm which represents ancestral autosome. The latter arm of the neo-sex chromosome is synchronous with other autosomes of the complement. We conclude that one arm of the neo-X/Y is still mimicking the features of an autosome while the other arm has the features of a classical X/Y-chromosome. This X-autosome translocation differs from the other evolutionary X-autosome translocations known in certain species ofDrosophila.  相似文献   

15.
We have studied the variations induced in iron status parameters by four endurance races of different lengths. A comprehensive group of 48 healthy, non-iron deficient, endurance athletes were evaluated before and after four different cross-country and roller ski races: I = Skirollonga, roller ski race for individuals (n = 10), mean duration (MD) = 1 h 48 min; II = Marcialonga, cross-country ski race for individuals (n = 9) MD = 3 h 10 min; III = 12-h of Caldonazzo (Trento-Italy) roller ski relay race (n = 13) MD = 12 h; IV = 24-h of Pinzolo (Trento-Italy) cross-country ski relay race (n = 16) MD = 24 h. In the relays the MD includes both exercise and recovery times. Blood samples were taken before and after every race for the determination of the following haematological parameters: red blood count, haemoglobin, and packed cell volume, serum iron concentration [SI], serum ferritin concentration [FERR] and total iron binding capacity (TIBC). The results showed a constant significant increase of [FERR] after the races (+44.9% in I, +50.5% in II, +51.2% in III and +36.5% in IV, P less than 0.01) while [SI] increased only in the first two races (+28.2% in I and +19.7% in II, P less than 0.01) and showed a remarkable decrease in the longer races (-46.1% in III and -39% in IV, P less than 0.01). The TIBC increased in all the races (except II) to the same extent (range 10%-12%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Summary Pachytene chromosome morphology was compared in nine races ofRicinus communis L. (2n = 20), using pollen mother cells (PMCs) and light microscopy. Of the ten bivalents, only the two possessing nucleolar organizing regions (NORs), chromosomes 2 and 7, exhibit structural variations among the races. The NORs are located in the short arms of these two chromosomes. Most of the observed structural variations affect these short arms, which are similar morphologically and consist largely of heterochromatic segments. The PMCs contain a single nucleolus and this is associated with the NOR of each of the two chromosomes at a particular frequency in each race. In eight races, a nucleolar constriction (NC) is present in either chromosome 2 or chromosome 7. In these races, the nucleolus is associated with the chromosome possessing an NC at a frequency of 100% and with the chromosome lacking an NC at a frequency ranging between 5.6 and 100%, depending upon the race. No microscopically visible NC is present in the ninth race. In this race, the nucleolus is associated with both chromosomes 2 and 7 at a frequency of 100%. The association of the nucleolus with a chromosome possessing an NC is at the NC and with a chromosome lacking an NC is at the terminal heterochromatic segment of the short arm. Several interpretations are offered to account for the variations in frequency of association between the nucleolus and each of the nucleolar organizing chromosomes. It is suggested that the two non-linked NORs have evolved through some intragenomic changes rather than polyploidy, that this species is highly intolerant to structural variations other than those occurring in or near the NORs, and that structural variations in the nucleolar organizing chromosomes are not associated with racial variations in plant phenotype.Paper of the Journal Series, New Jersey Agricultural Experiment Station  相似文献   

17.
The common shrew is subdivided into 74 chromosomal races, widely distributed in the postglacial area from the Britain Islands to Lake Baikal. Based on 1969 karyotypes from 216 localities, we present for the first time a map of ranges of 25 chromosomal races (except the Altai race) currently known in Russia. We revealed two centers of high karyotypic diversity: the western (near Baltic Sea) and the eastern (near Baikal Lake). The studied races were categorized as small-, medium-, and large-range races, and small-range races concentrated around those two centers of karyotypic diversity. We did not find any significant association between race range size and ecological zone, latitude, or the ambient temperature. Physical barriers, such as Ural Mountain or rivers, do not limit race distribution. The width of rivers that divide a range of a single race or ranges of two different races does not differ. We supposed that the occupation of an area by a race could limit the invasion of a different race from an adjacent area and expansion of its range, thus contributing to race parapatric distribution alone without additional effects of physical barriers. Based on karyotype similarity and geographic localization, we combined races into four “karyotypic chains,” in which the races can be derived from one another consequently by a single chromosomal translocation. The present distribution of the common shrew races in Russia supports the idea that it has resulted from recolonization from refugia governed by the density-dependent processes.  相似文献   

18.
Summary Photosynthetic responses to light and temperature are compared for two genetically related chromosomal races of Machaeranthera gracilis. The ancestral foothills race occurs in cooler, more mesic environments, while the derived desert race occurs in more arid environments. The desert race exhibited greater rates of net photosynthesis at all levels of irradiance than did plants of the foothills race. This enhancement is due primarily to a greater quantum yield and leaf density. High light pretreatment significantly increased the photosynthetic capacity of the desert race, with little or no effect on the foothills race. Furthermore, the leaf density of the desert race was affected proportionately more than the foothills race by light pretreatment. The desert race also possessed higher stomatal and mesophyll conductances to CO2. Both races exhibited enhanced photosynthetic capacities when grown in a warm thermoperiod (35/25 C), relative to a cool thermoperiod (25/15 C), concomitant with slight increases in leaf density. There was a lack of thermal acclimation for both photosynthesis and respiration of the two races. The greater photosynthetic capactity of the desert race is suggested as an evolutionary modification which could account for invasion into and survival in the sonoran Desert.  相似文献   

19.
We analyzed a hybrid zone between two chromosome races (2n = 16 and 2n = 22) of a Japanese harvestman, Gagrellopsis nodulifera Sato and Suzuki (Arachnida: Opiliones: Phalangiidae). The hybrid zone is located in the eastern part of Tottori Prefecture, western Honshu. The width of the zone is approximately 5 to 15 km. Three independent tandem fusions/fissions seem to be the main cause of the karyotypic differences between the parental races. Ten karyotypic variants were found in the hybrid zone. They differed by numbers of diploid chromosomes and trivalents detected in meiosis. In most of the collecting sites, karyotypic heterozygotes were less common than expected. A positive correlation was found between number of trivalents in a karyotype and its deficiency rate. In some sites, the deficit of heterozygous individuals was accompanied by an excess of the intermediate homozygotes. One of the three transects across the zone was studied in detail. We found that three types of single heterozygotes (2n = 17, 2n = 19 and 2n = 21) formed a series of successive, spatially separated peaks along the transect. Two types of intermediate homozygotes (2n = 18 and 2n = 20) were also spatially separated. The most parsimonious explanation of such a structure is the staggering of clines of three tandem (or Robertsonian) fusion/fission variants that differentiate the parental races caused by selection against multiple heterozygotes. Analysis of nondisjunction in single heterozygotes demonstrated that there was a strong interindividual variation in nondisjunction rate. The mean frequency of aneuploid MII in single heterozygotes was 0.10 +/- 0.03. Crossover exchanges in some critical regions of trivalents result in abnormal chromosomal configurations: chromosomes with unequal chromatids and dicentric chromosomes. Frequency of crossover-induced chromosomal abnormalities was low in single heterozygotes (approximately equal to 4%), and was unexpectedly high in the double heterozygotes (approximately equal to 15%). Selection against karyotypic heterozygotes is considered as a main evolutionary force responsible for the structuring of the hybrid zone. A positive association between diploid chromosome number and altitude was found. The race 2n = 16 tended to occupy lower altitudes than the 2n = 22 parental race. Differences in ecological preferences may be a result of previous adaptations to different environments in allopatry. A hypothesis concerning the origin and evolution of the hybrid zone is proposed.  相似文献   

20.
Summary Drosophila paulistorum Dobzhansky et Pavan is a complex of six races or incipient species. The races are mostly allopatric, but they are reproductively isolated sufficiently to permit them to exist also sympatrically in some places. The gene arrangements in the chromosomes of the races have been compared by means of examination of the giant chromosomes in the larval salivary glands; 28 strains of all races, and about an equal number of interracial hybrids have been studied.Chromosomal inversion polymorphism has been discovered in all races, even in the Guianan race of which only a single strain is available. Inversion heterozygotes are found in every one of the five chromosomal strands which the species has. Interracial hybrids tend to be heterozygous for more inversions than are present in the strains of the parental races. The Transitional race has however much the same gene arrangements as the widespread Andean — South Brazilian race.With the exception of the Transitional race, and of three other possible exceptions, each race has a collection of its own race-specific inversion polymorphs, not found in the other races. This very striking finding is discussed in connection with the hypothesis which envisages the origin of new species from marginal colonies at the periphery of the geographic distribution area of the ancestral species.The work reported in this article has been carried under Contract No. AT-(30-1)-1151, U.S. Atomic Energy Commission, mostly at the Department of Zoology, Columbia University, New York.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号