首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Methylation dynamics of imprinted genes in mouse germ cells   总被引:20,自引:0,他引:20  
  相似文献   

3.
The imprinted mouse gene Gnas produces the G protein alpha-subunit G(S)alpha and several other gene products by using alternative promoters and first exons. G(S)alpha is maternally expressed in some tissues and biallelically expressed in most other tissues, while the gene products NESP55 and XLalphas are maternally and paternally expressed, respectively. We investigated the mechanisms of Gnas imprinting. The G(S)alpha promoter and first exon are not methylated on either allele. A further upstream region (approximately from positions -3400 to -939 relative to the G(S)alpha translational start site) is methylated only on the maternal allele in all adult somatic tissues and in early postimplantation development. Within this region lies a fourth promoter and first exon (exon 1A) that generates paternal-specific mRNAs of unknown function. Exon 1A and G(S)alpha mRNAs have similar expression patterns, making competition between their promoters unlikely. Differential methylation in this region is established during gametogenesis, being present in oocytes and absent in spermatozoa, and is maintained in preimplantation E3. 5d blastocysts. Therefore, this region is a methylation imprint mark. In contrast, differential methylation of the NESP55 and XLalphas promoter regions (Nesp and Gnasxl) is not established during gametogenesis. The methylation imprint mark that we identified may be important for the tissue-specific imprinting of G(S)alpha.  相似文献   

4.
Here, we show that in the chicken genome, the domain of alpha-globin genes is preceded by a CpG island of which the downstream part ( approximately 0.65 kbp) is heavily methylated in lymphoid cells; it is either non-methylated or undermethylated in erythroid cells. Recombinant plasmids were constructed with the corresponding DNA fragment (called "uCpG") placed upstream to a reporter CAT gene expressed from the promoter of the alpha(D) chicken globin gene. Selective methylation of CpG dinucleotides within the uCpG fragment suppressed fivefold the expression of the CAT gene, when neither this gene itself nor the alpha(D) promoter were methylated. Methylation of CpG dinucleotides within the alpha(D) gene promoter did not modify the suppression effect exerted by methylated uCpG. We interpret these results within the frame of the hypothesis postulating, that methylation of the upstream CpG island of the chicken alpha-globin gene domain may play an essential role in silencing the alpha-globin genes in non-erythroid cells.  相似文献   

5.
The mouse tyrosine hydroxylase (Th) gene is located in an evolutionarily conserved imprinted gene cluster on distal chromosome 7. It is associated with a CpG island that spans the promoter of the gene. Using a bisulfite sequencing method we show that the Th promoter is fully methylated in both male and female mouse germ cells and in human spermatozoa, suggesting that it belongs to the newly identified category of CpG islands, the similarly methylated regions (SMRs). Contrary to other tissue-specific gene sequences, the mouse Th promoter escapes the initial wave of genome demethylation during the first few cell cycles, but becomes demethylated between the morula and the blastocyst stages. This unusual methylation ontogeny may be a characteristic of the SMRs and/or related to the localization of the Th gene in an imprinted gene cluster.  相似文献   

6.
7.
J L Swain  T A Stewart  P Leder 《Cell》1987,50(5):719-727
We have created a transgenic mouse strain in which an autosomal transgene bearing elements of the RSV LTR and a translocated c-myc gene obeys very unusual rules. If the transgene is inherited from the male parent, it is expressed in the heart and no other tissue. If it is inherited from the female parent, it is not expressed at all. This pattern of expression correlates precisely with a parentally imprinted methylation state evident in all tissues. Methylation of the transgene is acquired by its passage through the female parent and eliminated during gametogenesis in the male. These observations provide direct molecular evidence that autosomal gene expression can depend upon the sex of the parent from which the gene is inherited. They also provide a plausible mechanism for understanding parental imprinting that may be relevant to the failure of parthenogenesis in mammals, the apparent non-Mendelian behavior of some autosomal genes, and the role of methylation in gene regulation.  相似文献   

8.
A mouse line carrying a lacZ transgene driven by the human EEF1A1/EF1alpha promoter was established. Although the promoter is known to show ubiquitous activity, only paternal transgene alleles were expressed, resulting in a transgene imprinting. At mid‐gestation, the promoter sequence was differentially methylated, hypomethylated for paternal and hypermethylated for maternal alleles. In germline, the promoter was a typical differentially methylated region. After fertilization, however, both alleles were hypermethylated. Thus, the differential methylation of the promoter required for transgene imprinting was re‐established during later embryonic development independently of the germline differential methylation. Furthermore, also a retroelement promoter closely‐flanking imprinted transgene and its wild type counterpart displayed similar differential methylation during early development. The retroelement promoter was methylated differentially also in germline, but in an opposite pattern to the embryonic differential methylation. These results suggest that there might be an unknown epigenetic regulation inducing transgene imprinting independently of DNA methylation in the transgene insertion site. Then, besides CpG dinucleotides, non‐CpG cytosines of the retroelement promoter were highly methylated especially in the transgene‐active mid‐gestational embryos, suggesting that an unusual epigenetic regulation might protect the active transgene against de novo methylation occurring generally in mid‐gestational embryo.  相似文献   

9.
This paper shows stage- and tissue-specific global demethylation and remethylation occurring during embryonic development. The egg genome is strikingly undermethylated and the sperm genome relatively methylated. Following a loss of genomic methylation during preimplantation development, embryonic and extraembryonic lineages are progressively and independently methylated to different final extents. Methylation continues postgastrulation and hence could be a mechanism initiating, or confirming, differential programming in the definitive germ layers. It is proposed that much of the methylation observed in somatic tissues acts to stabilize and reinforce prior events that regulate the activity of specific genes, chromosome domains or the X chromosome (in females). Fetal germ cell DNA is markedly undermethylated and we favour the idea that the germ lineage is set aside before the occurrence of extensive methylation of DNA in fetal precursor cells.  相似文献   

10.
A fusion plasmid, pMK, containing the mouse metallothionein-I promoter/regulatory region joined to the structural gene of herpesvirus thymidine kinase, was introduced into mice by microinjection into fertilized eggs followed by reinsertion of the eggs into foster mothers. Fifteen percent (10 of 69) of the mice developing from this procedure carried pMK sequences. Seven of these mice expressed high levels of viral thymidine kinase in the liver. This enzyme is inducible by heavy metals, as indicated by assay of thymidine kinase activity following sequential partial hepatectomies with or without cadmium treatment. However, glucocorticoid treatment has been ineffective in all transgenic mice tested. The pMK sequences are extensively methylated at a variety of restriction sites, indicating the existence of a de novo methylation enzyme. We have analyzed the inheritance of pMK sequences and their expression in several pedigrees. These fusion genes are inherited as though they were integrated into a single chromosome; however, their expression may be extinguished, diminished or enhanced in the offspring relative to that of the parent. In some animals there is a correlation between changes in DNA methylation and expression of these fusion genes.  相似文献   

11.
Phenotypic variation in a genetically identical population of mice.   总被引:1,自引:0,他引:1       下载免费PDF全文
The parental alleles of an imprinted gene acquire their distinctive methylation patterns at different times in development. For the imprinted RSVIgmyc transgene, methylation of the maternal allele is established in the oocyte and invariably transmitted to the embryo. In contrast, the methylation of the paternal allele originates during embryogenesis. Here, we show that the paternal methylation pattern among mice with identical genetic backgrounds is subject to extensive variation. In addition to this nongenetic variation, the process underlying RSVIgmyc methylation in the embryo is also subject to considerable genetic regulation. The paternal transgene allele is highly methylated in an inbred C57BL/6J strain, whereas it is relatively undermethylated in an inbred FVB/N strain. Individual methylation patterns of paternal alleles, and therefore all of the variation (nongenetic and genetic) in methylation patterns within an RSVIgmyc transgenic line, are established in early embryogenesis. For each mouse, the paternal RSVIgmyc allele is unmethylated at the day-3.5 blastocyst stage, and the final, adult methylation pattern is found no later than day 8.5 of embryogenesis. Because of the strong relationship between RSVIgmyc methylation and expression, the variation in methylation is also manifest as variation in transgene expression. These results identify embryonic de novo methylation as an important source of both genetic and nongenetic contributions to phenotypic variation and, as such, further our understanding of the developmental origin of imprinted genes.  相似文献   

12.
To better understand the tissue-specific expression of the human apolipoprotein (apo)AI gene, we performed a detailed analysis of the pattern of methylation of the gene in various human adult and embryonic tissues and in tissues of transgenic mice harboring the human apo-AI gene. In addition, the gene was analyzed also in liver and intestine-derived human cell lines (HepG2 and Caco2, respectively). Using methyl-sensitive restriction enzymes (HpaII, HhaI, and SmaI) and the appropriate radioactive probes, we were able to determine separately the status of methylation of the 5'-end, the body of the gene, and 3'-end flanking sequences. The apo-AI gene in tissues that express the gene was undermethylated at the 5'-end. However, the 5'-end of the gene in sperm and in all adult tissues that do not express the gene was heavily methylated. The body of the gene which contains a CpG island and the 3'-end flanking sequences were, in general, hypomethylated except for specific sites that showed partial methylation. In contrast, while the gene showed tissue-specific expression already in a 12-week-old embryo, the 5'-end was invariably hypomethylated in all tissues of the embryo. A human apo-AI transgene has recently been shown to be active exclusively in the liver, while the endogenous gene is expressed in both liver and intestine (6). We show here that the 5'-end of the apo-AI transgene was methylated in all tissues of the mouse (including intestine) except liver. The results presented here demonstrate a clear correlation between hypomethylation of the 5'-end and activity of the apo-AI gene. However, the observed methylation pattern of the gene in embryonic tissues suggests that tissue-specific expression precedes formation of the tissue-specific methylation pattern.  相似文献   

13.
We used bisulfite sequencing to study the methylation of a viral transgene whose expression was silenced upon plum pox virus infection of the transgenic plant and its subsequent recovery as a consequence of so‐called virus‐induced gene silencing (VIGS). VIGS was associated with a general increase in the accumulation of small RNAs corresponding to the coding region of the viral transgene. After VIGS, the transgene promoter was not methylated and the coding region showed uneven methylation, with the 5′ end being mostly unmethylated in the recovered tissue or mainly methylated at CG sites in regenerated silenced plants. The methylation increased towards the 3′ end, which showed dense methylation in all three contexts (CG, CHG and CHH). This methylation pattern and the corresponding silenced status were maintained after plant regeneration from recovered silenced tissue and did not spread into the promoter region, but were not inherited in the sexual offspring. Instead, a new pattern of methylation was observed in the progeny plants consisting of disappearance of the CHH methylation, similar CHG methylation at the 3′ end, and an overall increase in CG methylation in the 5′ end. The latter epigenetic state was inherited over several generations and did not correlate with transgene silencing and hence virus resistance. These results suggest that the widespread CG methylation pattern found in body gene bodies located in euchromatic regions of plant genomes may reflect an older silencing event, and most likely these genes are no longer silenced.  相似文献   

14.
Ssm1 is responsible for the mouse strain-specific DNA methylation of the transgene HRD. In adult mice of the C57BL/6 (B6) strain, the transgene is methylated at essentially all CpGs. However, when the transgene is bred into the DBA/2 (D2) strain, it is almost completely unmethylated. Strain-specific methylation arises during differentiation of embryonic stem (ES) cells. Here we show that Ssm1 causes striking chromatin changes during the development of the early embryo in both strains. In undifferentiated ES cells of both strains, the transgene is in a chromatin state between active and inactive. These states are still observed 1 week after beginning ES cell differentiation. However, 4 weeks after initiating differentiation, in B6, the transgene has become heterochromatic, and in D2, the transgene has become euchromatic. HRD is always expressed in D2, but in B6, it is expressed only in early embryos. The transgene is already more methylated in B6 ES cells than in D2 ES cells and becomes increasingly methylated during development in B6, until essentially all CpGs in the critical guanosine phosphoribosyl transferase core are methylated. Clearly, DNA methylation of HRD precedes chromatin compaction and loss of expression, suggesting that the B6 form of Ssm1 interacts with DNA to cause strain-specific methylation that ultimately results in inactive chromatin.  相似文献   

15.
16.
Genomic levels of DNA methylation undergo widespread alterations in early embryonic development. However, changes in embryonic methylation have proven difficult to study at the level of single-copy genes due to the small amount of tissue available for assay. This study provides the first detailed analysis of the methylation state of a tissue-specific gene through early development and differentiation. Using bisulfite sequencing, we mapped the methylation profile of the tissue-specific mouse skeletal α-actin promoter at all stages of development, from gametes to postimplantation embryos. We show that the α-actin promoter, which is fully methylated in the sperm and essentially unmethylated in the oocyte, undergoes a general demethylation from morula to blastocyst stages, although the blastula is not completely demethylated. Remethylation of the α-actin promoter occurs after implantation in a stochastic pattern, with some molecules being extensively methylated and others sparsely methylated. Moreover, we demonstrate that tissue-specific expression of the skeletal α-actin gene in the adult mouse does not correlate with the methylation state of the promoter, as we find a similar low level of methylation in both expressing and one of the two nonexpressing tissues tested. However, a subset of CpG sites within the skeletal α-actin promoter are preferentially methylated in liver, a nonexpressing tissue.  相似文献   

17.
Human DNA sequences exhibiting gamete-specific hypomethylation.   总被引:3,自引:1,他引:2       下载免费PDF全文
X Y Zhang  R Y Wang    M Ehrlich 《Nucleic acids research》1985,13(13):4837-4851
Three human DNA sequences have been cloned from DNA regions which are strikingly undermethylated in sperm, highly methylated in adult somatic tissues, and methylated to an intermediate extent in tissues of extraembryonic origin. It is proposed that some such DNA sequences may function specifically early in embryogenesis or during gametogenesis. They may be subsequently extensively methylated in the embryonic cell lineage and methylated to a lesser extent in extraembryonic tissues in order to allow embryogenesis to proceed.  相似文献   

18.
《Epigenetics》2013,8(3):214-221
Parent-of-origin specific expression of imprinted genes relies on the differential DNA methylation of specific genomic regions. Differentially methylated regions (DMRs) acquire DNA methylation either during gametogenesis (primary DMR) or after fertilisation when allele-specific expression is established (secondary DMR). Little is known about the function of these secondary DMRs. We investigated the DMR spanning Cdkn1c in mouse embryonic stem cells, androgenetic stem cells and embryonic germ stem cells. In all cases, expression of Cdkn1c was appropriately repressed in in vitro differentiated cells. However, stem cells failed to de novo methylate the silenced gene even after sustained differentiation. In the absence of maintained DNA methylation (Dnmt1-/-), Cdkn1c escapes silencing demonstrating the requirement for DNA methylation in long term silencing in vivo. We propose that postfertilisation differential methylation reflects the importance of retaining single gene dosage of a subset of imprinted loci in the adult.  相似文献   

19.
Terminally differentiated lens fibre cells are formed in the vertebrate lens throughout life. Lens fibre cells may also be obtained by an in vitro process termed transdifferentiation, from certain tissues of different developmental origin from lens, such as embryo neural retina. delta-Crystallin is the major protein in the chick embryo lens fibre cells, and also in transdifferentiated lens cells obtained from cultured embryonic neural retina. Lens crystallin proteins and mRNA are present at low levels in the intact embryonic neural retina but are no longer detectable in the early stages of neural retina cell culture. However, levels rise steeply in the later stages and crystallins become the major products in terminally transdifferentiating neural retina cultures. We have used this system to test the hypothesis that the patterns of DNA methylation in particular genes are correlated with gene expression. A number of developmentally regulated genes have been found to be undermethylated in tissues where they are expressed, and methylated in tissues where they are not. However this correspondence does not always hold true. Eight-day-old embryonic neural retina was cultured for the period of time during which crystallin gene expression increases 100-fold. DNA methylation in the delta-crystallin gene region was analysed at several stages of cell culture by using the restriction endonucleases HpaII and MspI which cleave at the sequence CCGG. The former enzyme cannot cleave internally methylated cytosine (CmCGG) while the latter cannot cleave externally methylated cytosine (mCCGG). We detect no change in the methylation of CCGG sites within the delta-crystallin gene regions during transdifferentiation. Since dramatic changes in delta-crystallin gene expression occur during this process we conclude that large scale alterations in the pattern of DNA methylation are not a necessary accompaniment to changes in gene activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号