首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
黑素瘤是一种多发于皮肤的恶性肿瘤,因其侵袭性强,预后差等特点一直是科研人员关注的热点。环状RNAs(circRNAs)是一种新型内源性非编码RNA,广泛参与动物生长发育、细胞分化和信号转导等生理过程,但circRNAs在黑素瘤细胞内的分子机制尚未被充分解析。本研究以小鼠(C57BL/6J)正常黑素细胞及B16黑素瘤细胞为研究对象,采用二代测序技术分析两种细胞间circRNAs表达特性。测序结果显示,小鼠正常黑素细胞和黑素瘤细胞中共有851个circRNAs,其中195个差异表达circRNAs(DECs)。GO及KEGG数据库注释发现,DECs的来源基因主要参与细胞周期(cell cycle)、紧密结合(tight junction)、Rap1信号通路(Rap1 signaling pathway)、TGF-beta信号通路(TGF-beta signaling pathway)等与细胞增殖、迁移相关的信号通路;探究发现,黑素瘤细胞中显著性高表达的circE2F5(circ-3:14578602|14606309)通过上调E2F5的表达促进黑素瘤细胞增殖。circRNA靶基因预测发现,...  相似文献   

2.
3.
Melanoma is considered as an aggressive neoplastic transformation and featured with high metastatic potential. Although some studies have provided targets for novel therapeutic interventions, clinical development of targeted drugs for melanoma still remains obscure. Therefore, this study aims to identify the role of microRNA-27a (miR-27a) in autophagy and apoptosis of melanoma cells in regulating spleen tyrosine kinase (SYK)-mediated the mammalian target of rapamycin (mTOR) signaling pathway. A microarray-based analysis was made to screen differentially expressed genes and predict target miRNA. Melanoma specimens were collected with pigmented nevus as a control. Melanoma cell line Mel-RM was treated with miR-27a inhibitor or pcDNA-SYK to prove their effects on autophagy and apoptosis of melanoma cells. The volume change and tumor mass of nude mice in each group were detected by the tumorigenesis assay. Microarray-based analysis results showed that SYK was lowly expressed in melanoma cells and may be regulated by miR-27a. Besides, miR-27a expression was increased whereas SYK expression was decreased in melanoma tissues. Meanwhile, miR-27a was positively correlated with tumor stage and lymph node metastasis of melanoma tissues. Furthermore, miR-27a targeted SYK and silencing of miR-27a or overexpression of SYK cells promoted autophagy and apoptosis of melanoma cells and reduced their tumorigenic ability in vivo. In conclusion, this study proves that silencing of miR-27a facilitates autophagy and apoptosis of melanoma cells by upregulating SYK expression and activating the mTOR signaling pathway. The finding offers new ideas for the clinical development of melanoma.  相似文献   

4.
Cutaneous malignant melanoma is the leading cause of skin cancer death in industrialized countries. Melanoma development and progression are well defined by clinical and histopathological aspects; however, detailed analysis of molecular changes is still ongoing. The protein MIA, which is strongly expressed in melanoma cells but not in melanocytes, is likely to represent a key molecule regulating melanoma progression. Consistent with this, several in vitro and in vivo model systems indicate a direct involvement of MIA in melanoma migration and invasion, with recent studies suggesting a central role for MIA in early melanoma development by regulating important melanoma-related pathways and molecules. The latest developments in MIA research are summarized in this review, which describes recently published data related to the MIA protein structure and function, the role of MIA in melanoma development and progression, and the regulation of MIA expression. Furthermore, newly discovered MIA-homologous genes are discussed.  相似文献   

5.
Uveal melanoma is the most common intraocular malignancy although it is a rare subset of all melanomas. Uveal melanoma has distinct biology relative to cutaneous melanoma, with widely divergent patient outcomes. Patients diagnosed with a primary uveal melanoma can be stratified for risk of metastasis by cytogenetics or gene expression profiling, with approximately half of patients developing metastatic disease, predominately hepatic in location, over a 15‐yr period. Historically, no systemic therapy has been associated with a clear clinical benefit for patients with advanced disease, and median survival remains poor. Here, as a joint effort between the Melanoma Research Foundation's ocular melanoma initiative, CURE OM and the National Cancer Institute, the current understanding of the molecular and immunobiology of uveal melanoma is reviewed, and on‐going laboratory research into the disease is highlighted. Finally, recent investigations relevant to clinical management via targeted and immunotherpies are reviewed, and next steps in the development of clinical therapeutics are discussed.  相似文献   

6.
While advanced melanoma remains one of the most challenging cancers, recent developments in our understanding of the molecular drivers of this disease have uncovered exciting opportunities to guide personalized therapeutic decisions. Genetic analyses of melanoma have uncovered several key molecular pathways that are involved in disease onset and progression, as well as prognosis. These advances now make it possible to create a "Molecular Disease Model" (MDM) for melanoma that classifies individual tumors into molecular subtypes (in contrast to traditional histological subtypes), with proposed treatment guidelines for each subtype including specific assays, drugs, and clinical trials. This paper describes such a Melanoma Molecular Disease Model reflecting the latest scientific, clinical, and technological advances.  相似文献   

7.
BACKGROUND: The stages of melanocytic progression are defined as atypical (dysplastic) nevus, melanoma in situ, melanoma in the radial growth phase (RGP), melanoma in the vertical growth phase (VGP), and melanoma in the metastatic growth phase (MGP). Melanoma in situ and RGP melanoma often develop in contiguous association with atypical nevi. This frequently poses a problem with respect to their early detection. Furthermore, unlike cells obtained from VGP and MGP melanomas, cells derived from melanoma in situ and RGP melanoma do not proliferate in vitro. Thus, compared to the late stages of the disease, less information is available regarding genes expressed in the early stages. MATERIALS AND METHODS: To determine whether spectral imaging, a recently developed optical imaging technique, can detect melanoma in situ and RGP melanoma arising in melanoma precursor lesions, atypical nevi in patients with a clinical history of melanoma were subjected to noninvasive macroscopic spectral imaging. To determine at what stage in the progression pathway of melanoma genes having important biological functions in VGP and MGP melanomas are activated and expressed, lesions of melanoma in situ were analyzed by immunohistochemistry and in situ hybridization for expression of some of these known molecular and immunologic markers. RESULTS: The present study demonstrates the capability of noninvasive spectral imaging to detect melanoma in situ and RGP melanoma that arise in contiguous association with atypical nevi. Furthermore, the study provides evidence that genes and antigens expressed in VGP and MGP melanoma are also expressed in melanoma in situ. CONCLUSIONS: Because of the dark and variegated pigmentation of atypical nevi, melanoma in situ and RGP melanoma that arise in these melanoma precursor lesions are often difficult to recognize and thus frequently go unnoticed. The application of new optical screening techniques for early detection of melanoma and the identification of genes expressed in the early stages of melanoma development are two important avenues in the pursuit of melanoma prevention. The investigations presented here document that macroscopic spectral imaging has the potential to detect melanoma in its early stage of development and that genes essential for the proliferation and cell adhesion of VGP and MGP melanoma are already expressed in melanoma in situ.  相似文献   

8.
9.
黑色素瘤是常见的皮肤肿瘤,它放化疗的效果差,达卡巴嗪仍是目前晚期黑色素瘤化疗药物治疗中公认的金标准,但有效率仅8%~12%左右。现抗细胞毒T淋巴细胞相关抗原4(cytotoxic Tlymphocyte-associated antigen-4,CTLA-4)单抗和针对基因突变的分子靶向药物的出现,增加了治疗的手段并取得了好的疗效。这些药物在延长晚期黑色素瘤患者的生存期方面取得了令人瞩目的突破,有可能对晚期黑色素瘤患者的治疗进行彻底的革命,这为治疗晚期恶性黑色素瘤患者带来希望,在目前常用的药物中,虽然威罗菲尼和易普利姆玛被用来治疗转移性黑色素瘤,但他们都有局限性。威罗菲尼有效应答时间短,而易普利姆玛应答率低。本文就恶性黑色素瘤分子靶向治疗的研究进展进行综述,未来几年靶向药物的联合治疗及新的有效靶点的发现可能会成为黑色素瘤治疗的突破点。  相似文献   

10.
Melanoma is an aggressive malignancy originating from pigment-producing melanocytes. The development of targeted therapies (MAPK pathway inhibitors) and immunotherapies (immune checkpoint inhibitors) led to a substantial improvement in overall survival of patients. However, the long-term efficacy of such treatments is limited by side effects, lack of clinical effects and the rapidly emerging resistance to treatment. A number of molecular mechanisms underlying this resistant phenotype have already been elucidated.In this review, we summarise currently available treatment options for metastatic melanoma and the known resistance mechanisms to targeted therapies. A focus will be placed on “phenotype switching” as a mechanism and driver of drug resistance, together with an overview of novel approaches to circumvent resistance. A large body of recent data and literature suggests that tumour progression and phenotype switching could be better controlled and development of resistance prevented or at least delayed, by combining drugs targeting fast- and slow-proliferating cells.  相似文献   

11.
Melanoma is responsible for the majority of deaths caused by skin cancer. Antitumor activity of microRNA-329 (miR-329) has been seen in several human cancers. In this study, we identify whether miR-329 serves as a candidate regulator in melanoma. Melanoma-related differentially expressed genes were screened with its potential molecular mechanism predicted. Melanoma tissues and pigmented nevus tissues were collected, where the levels of miR-329 and high-mobility group box 2 (HMGB2) were determined. To characterize the regulatory role of miR-329 on HMGB2 and the β-catenin pathway in melanoma cell activities, miR-329 mimics, miR-329 inhibitors, and siRNA-HMGB2 were transfected into melanoma cells. Cell viability, migration, invasion, cell cycle, and apoptosis were assessed. miR-329 was predicted to influence melanoma by targeting HMGB2 via the β-catenin pathway. High level of HMGB2 and low miR-329 expression were observed in melanoma tissues. HMGB2 was targeted and negatively regulated by miR-329. In melanoma cells transfected with miR-329 mimics or siRNA-HMGB2, cell proliferation, migration, and invasion were impeded, yet cell cycle arrest and apoptosis were promoted, corresponding to decreased levels of β-catenin, cyclin D1, and vimentin and increased levels of GSK3β and E-cadherin. Collectively, our results show that miR-329 can suppress the melanoma progression by downregulating HMGB2 via the β-catenin pathway.  相似文献   

12.
Melanoma is a paradigm of aggressive tumors with a complex and heterogeneous genetic background. Still, melanoma cells frequently retain developmental traits that trace back to lineage specification programs. In particular, lysosome-associated vesicular trafficking is emerging as a melanoma-enriched lineage dependency. However, the contribution of other lysosomal functions such as autophagy to melanoma progression is unclear, particularly in the context of metastasis and resistance to targeted therapy. Here we mined a broad spectrum of cancers for a meta-analysis of mRNA expression, copy number variation and prognostic value of 13 core autophagy genes. This strategy identified heterozygous loss of ATG5 at chromosome band 6q21 as a distinctive feature of advanced melanomas. Importantly, partial ATG5 loss predicted poor overall patient survival in a manner not shared by other autophagy factors and not recapitulated in other tumor types. This prognostic relevance of ATG5 copy number was not evident for other 6q21 neighboring genes. Melanocyte-specific mouse models confirmed that heterozygous (but not homozygous) deletion of Atg5 enhanced melanoma metastasis and compromised the response to targeted therapy (exemplified by dabrafenib, a BRAF inhibitor in clinical use). Collectively, our results support ATG5 as a therapeutically relevant dose-dependent rheostat of melanoma progression. Moreover, these data have important translational implications in drug design, as partial blockade of autophagy genes may worsen (instead of counteracting) the malignant behavior of metastatic melanomas.  相似文献   

13.
Although the rates of cancer are stabilizing, the number of new invasive melanoma continues to rise. Melanoma represents only 4% of all skin cancers, but nearly 80% of skin cancer deaths. In loss of potential productive life-years, it is second only to adult leukemia. Once melanoma spreads to regional and distant sites, the chance of cure decreases significantly. Unfortunately, current diagnostic and prognostic methods are often inadequate. More precise staging and disease characterization will lead to new and more rational approaches to treatment. Proteomics is a fast-growing discipline in biomedicine that can be defined as the global characterization and differential expression of the entire protein complement of a cell, tissue or organism. Despite major advances in molecular approaches to the diagnosis and prognostication of human diseases such as melanoma, there remain significant obstacles in applying the proteomic technologies to clinical samples to extract important biological information. The application of a shotgun-based technique termed direct tissue proteomics with improved extraction protocol of proteins from formalin-fixed paraffin-embedded tissue would enable retrospective biomarker investigations of the vast archive of pathologically characterized clinical samples that exist worldwide. Combination of this direct tissue proteomics method with laser-capture microdissection may assist in the discovery of new biomarkers and may lead to new diagnostic tests, risk assessment and staging tools as well as improvement in therapeutics. In addition, these tools can provide a molecular characterization of melanoma, which may enable individualized molecular therapy.  相似文献   

14.
Although the rates of cancer are stabilizing, the number of new invasive melanoma continues to rise. Melanoma represents only 4% of all skin cancers, but nearly 80% of skin cancer deaths. In loss of potential productive life-years, it is second only to adult leukemia. Once melanoma spreads to regional and distant sites, the chance of cure decreases significantly. Unfortunately, current diagnostic and prognostic methods are often inadequate. More precise staging and disease characterization will lead to new and more rational approaches to treatment. Proteomics is a fast-growing discipline in biomedicine that can be defined as the global characterization and differential expression of the entire protein complement of a cell, tissue or organism. Despite major advances in molecular approaches to the diagnosis and prognostication of human diseases such as melanoma, there remain significant obstacles in applying the proteomic technologies to clinical samples to extract important biological information. The application of a shotgun-based technique termed direct tissue proteomics with improved extraction protocol of proteins from formalin-fixed paraffin-embedded tissue would enable retrospective biomarker investigations of the vast archive of pathologically characterized clinical samples that exist worldwide. Combination of this direct tissue proteomics method with laser-capture microdissection may assist in the discovery of new biomarkers and may lead to new diagnostic tests, risk assessment and staging tools as well as improvement in therapeutics. In addition, these tools can provide a molecular characterization of melanoma, which may enable individualized molecular therapy.  相似文献   

15.
16.
The circadian clock controls the timing of the cell cycle in healthy tissues and clock disruption is known to increase tumourigenesis. Melanoma is one of the most rapidly increasing forms of cancer and the precise molecular circadian changes that occur in a melanoma tumor are unknown. Using a melanoma zebrafish model, we have explored the molecular changes that occur to the circadian clock within tumors. We have found disruptions in melanoma clock gene expression due to a major impairment to the light input pathway, with a parallel loss of light-dependent activation of DNA repair genes. Furthermore, the timing of mitosis in tumors is perturbed, as well as the regulation of certain key cell cycle regulators, such that cells divide arhythmically. The inability to co-ordinate DNA damage repair and cell division is likely to promote further tumourigenesis and accelerate melanoma development.  相似文献   

17.
Melanoma, a lethal malignancy that arises from melanocytes, exhibits a multiplicity of clinico-pathologically distinct subtypes in sun-exposed and non-sun-exposed areas. Melanocytes are derived from multipotent neural crest cells and are present in diverse anatomical locations, including skin, eyes, and various mucosal membranes. Tissue-resident melanocyte stem cells and melanocyte precursors contribute to melanocyte renewal. Elegant studies using mouse genetic models have shown that melanoma can arise from either melanocyte stem cells or differentiated pigment-producing melanocytes depending on a combination of tissue and anatomical site of origin and activation of oncogenic mutations (or overexpression) and/or the repression in expression or inactivating mutations in tumor suppressors. This variation raises the possibility that different subtypes of human melanomas (even subsets within each subtype) may also be a manifestation of malignancies of distinct cells of origin. Melanoma is known to exhibit phenotypic plasticity and trans-differentiation (defined as a tendency to differentiate into cell lineages other than the original lineage from which the tumor arose) along vascular and neural lineages. Additionally, stem cell-like properties such as pseudo-epithelial-to-mesenchymal (EMT-like) transition and expression of stem cell-related genes have also been associated with the development of melanoma drug resistance. Recent studies that employed reprogramming melanoma cells to induced pluripotent stem cells have uncovered potential relationships between melanoma plasticity, trans-differentiation, and drug resistance and implications for cell or origin of human cutaneous melanoma. This review provides a comprehensive summary of the current state of knowledge on melanoma cell of origin and the relationship between tumor cell plasticity and drug resistance.  相似文献   

18.
Although significant progress has been made in targeted and immunologic therapeutics for melanoma, many tumors fail to respond, and most eventually progress when treated with the most efficacious targeted combination therapies thus far identified. Therefore, alternative approaches that exploit distinct melanoma phenotypes are necessary to develop new approaches for therapeutic intervention. Tissue microarrays containing human nevi and melanomas were used to evaluate levels of the antioxidant protein thioredoxin reductase 1 (TR1), which was found to increase as a function of disease progression. Melanoma cell lines revealed metabolic differences that correlated with TR1 levels. We used this new insight to design a model treatment strategy that creates a synthetic lethal interaction wherein targeting TR1 sensitizes melanoma to inhibition of glycolytic metabolism, resulting in a decrease in metastases in vivo. This approach holds the promise of a new clinical therapeutic strategy, distinct from oncoprotein inhibition.  相似文献   

19.
黑色素瘤是一种预后较差的侵袭性癌症.了解黑色素瘤的分子机制和诊断标志物对黑色素瘤的防治极为重要.LncRNAs在肿瘤的发生发展中发挥重要作用.与正常黑色素细胞相比,LncRNA-177922在B16-F10黑色素瘤中高表达.丝裂源活化蛋白激酶15 (mitogen-activated protein kinase 15...  相似文献   

20.
Han MJ  Wang H  Beer LA  Tang HY  Herlyn M  Speicher DW 《Proteomics》2010,10(24):4450-4462
Melanoma is an excellent model to study molecular mechanisms of tumor progression because melanoma usually develops through a series of architecturally and phenotypically distinct stages that are progressively more aggressive, culminating in highly metastatic cells. In this study, we used an in-depth, 3-D protein level, comparative proteome analysis of two genetically, very closely related melanoma cell lines with low- and high-metastatic potentials to identify proteins and key pathways involved in tumor progression. This proteome comparison utilized fluorescent tagging of cell lysates followed by microscale solution IEF prefractionation and subsequent analysis of each fraction on narrow-range 2-D gels. LC-MS/MS analysis of gel spots exhibiting significant abundance changes identified 110 unique proteins. The majority of observed abundance changes closely correlate with biological processes central to cancer progression, such as cell death and growth and tumorigenesis. In addition, the vast majority of protein changes mapped to six cellular networks, which included known oncogenes (JNK, c-myc, and N-myc) and tumor suppressor genes (p53 and transforming growth factor-β) as critical components. These six networks showed substantial connectivity, and most of the major biological functions associated with these pathways are involved in tumor progression. These results provide novel insights into cellular pathways implicated in melanoma metastasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号