首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In airway smooth muscle cells (SMCs) from mouse lung slices, > or =10 microM ATP induced Ca2+ oscillations that were accompanied by airway contraction. After approximately 1 min, the Ca2+ oscillations subsided and the airway relaxed. By contrast, > or =0.5 microM adenosine 5'-O-(3-thiotriphosphate) (nonhydrolyzable) induced Ca2+ oscillations in the SMCs and an associated airway contraction that persisted for >2 min. Adenosine 5'-O-(3-thiotriphosphate)-induced Ca2+ oscillations occurred in the absence of external Ca2+ but were abolished by the phospholipase C inhibitor U-73122 and the inositol 1,4,5-trisphosphate receptor inhibitor xestospongin. Adenosine, AMP, and alpha,beta-methylene ATP had no effect on airway caliber, and the magnitude of the contractile response induced by a variety of nucleotides could be ranked in the following order: ATP = UTP > ADP. These results suggest that the SMC response to ATP is impaired by ATP hydrolysis and mediated via P2Y(2) or P2Y(4) receptors, activating phospholipase C to release Ca2+ via the inositol 1,4,5-trisphosphate receptor. We conclude that ATP can serve as a spasmogen of airway SMCs and that Ca2+ oscillations in SMCs are required to sustain airway contraction.  相似文献   

2.
Asthma is a chronic disease characterized by inflammation and hypersensitivity of airway smooth muscle cells (ASMCs) to different spasmogens. The past decade has seen increased use of herbal treatments for many chronic illnesses. Ginger (Zingiber officinale) is a common food plant that has been used for centuries in treating respiratory illnesses. In this study, we report the effect of its 70% aqueous methanolic crude extract (Zo.Cr) on acetylcholine (ACh)-induced airway contraction and Ca(2+) signalling in ASMCs using mouse lung slices. Airway contraction and Ca(2+) signalling, recorded via confocal microscopy, were induced with ACh, either alone or after pretreatment of slices with Zo.Cr and (or) verapamil, a standard Ca(2+) channel blocker. ACh (10 micromol/L) stimulated airway contraction, seen as decreased airway diameter, and also stimulated Ca(2+) transients (sharp rise in [Ca(2+)]i) and oscillations in ASMCs, seen as increased fluo-4-induced fluorescence intensity. When Zo.Cr (0.3-1.0 mg/mL) was given 30 min before ACh administration, the ACh-induced airway contraction and Ca(2+) signalling were significantly reduced. Similarly, verapamil (1 micromol/L) also inhibited agonist-induced airway contraction and Ca(2+) signalling, indicating a similarity in the modes of action. When Zo.Cr (0.3 mg/mL) and verapamil (1 micromol/L) were given together before ACh, the degree of inhibition was the same as that observed when each of these blockers was given alone, indicating absence of any additional inhibitory mechanism in the extract. In Ca(2+) -free solution, both Zo.Cr and verapamil, when given separately, inhibited Ca(2+) (10 mmol/L)-induced increase in fluorescence and airway contraction. This shows that ginger inhibits airway contraction and associated Ca(2+) signalling, possibly via blockade of plasma membrane Ca(2+) channels, thus reiterating the effectiveness of this age-old herb in treating respiratory illnesses.  相似文献   

3.
Physiological mechanisms associated with interleukin-13 (IL-13), a key cytokine in asthma, in intracellular Ca2+ signaling in airway smooth muscle cells (ASMCs) remain unclear. The aim of this study was to assess effects of IL-13 on Ca2+ oscillations in response to leukotriene D4 (LTD4) in human cultured ASMCs.LTD4-induced Ca2+ oscillations in ASMCs pretreated with IL-13 were imaged by confocal microscopy. mRNA expressions of cysteinyl leukotriene 1 receptors (CysLT1R), CD38, involved with the ryanodine receptors (RyR) system, and transient receptor potential canonical (TRPC), involved with store-operated Ca2+ entry (SOCE), were determined by real-time PCR. In IL-13-pretreated ASMCs, frequency of LTD4-induced Ca2+ oscillations and number of oscillating cells were significantly increased compared with untreated ASMCs. Both xestospongin C, a specific inhibitor of inositol 1,4,5-triphosphate receptors (IP3R), and ryanodine or ruthenium red, inhibitors of RyR, partially blocked LTD4-induced Ca2+ oscillations. Ca2+ oscillations were almost completely inhibited by 50 μM of 2-aminoethoxydiphenyl borate (2-APB), which dominantly blocks SOCE but not IP3R at this concentration. Pretreatment with IL-13 increased the mRNA expressions of CysLT1R and CD38, but not of TRPC1 and TRPC3.We conclude that IL-13 enhances frequency of LTD4-induced Ca2+ oscillations in human ASMCs, which may be cooperatively modulated by IP3R, RyR systems and possibly by SOCE.  相似文献   

4.
Ca(2+) influx triggered by depletion of sarcoplasmic reticulum (SR) Ca(2+) stores [mediated via store-operated Ca(2+) channels (SOCC)] was characterized in enzymatically dissociated porcine airway smooth muscle (ASM) cells. When SR Ca(2+) was depleted by either 5 microM cyclopiazonic acid or 5 mM caffeine in the absence of extracellular Ca(2+), subsequent introduction of extracellular Ca(2+) further elevated [Ca(2+)](i). SOCC was insensitive to 1 microM nifedipine- or KCl-induced changes in membrane potential. However, preexposure of cells to 100 nM-1 mM La(3+) or Ni(2+) inhibited SOCC. Exposure to ACh increased Ca(2+) influx both in the presence and absence of a depleted SR. Inhibition of inositol 1,4,5-trisphosphate (IP)-induced SR Ca(2+) release by 20 microM xestospongin D inhibited SOCC, whereas ACh-induced IP(3) production by 5 microM U-73122 had no effect. Inhibition of Ca(2+) release through ryanodine receptors (RyR) by 100 microM ryanodine also prevented Ca(2+) influx via SOCC. Qualitatively similar characteristics of SOCC-mediated Ca(2+) influx were observed with cyclopiazonic acid- vs. caffeine-induced SR Ca(2+) depletion. These data demonstrate that a Ni(2+)/La(3+)-sensitive Ca(2+) influx via SOCC in porcine ASM cells involves SR Ca(2+) release through both IP(3) and RyR channels. Additional regulation of Ca(2+) influx by agonist may be related to a receptor-operated, noncapacitative mechanism.  相似文献   

5.
The Ca(2+) signaling and contractility of airway smooth muscle cells (SMCs) were investigated with confocal microscopy in murine lung slices (approximately 75-microm thick) that maintained the in situ organization of the airways and the contractility of the SMCs for at least 5 d. 10--500 nM acetylcholine (ACH) induced a contraction of the airway lumen and a transient increase in [Ca(2+)](i) in individual SMCs that subsequently declined to initiate multiple intracellular Ca(2+) oscillations. These Ca(2+) oscillations spread as Ca(2+) waves through the SMCs at approximately 48 microm/s. The magnitude of the airway contraction, the initial Ca(2+) transient, and the frequency of the subsequent Ca(2+) oscillations were all concentration-dependent. In a Ca(2+)-free solution, ACH induced a similar Ca(2+) response, except that the Ca(2+) oscillations ceased after 1--1.5 min. Incubation with thapsigargin, xestospongin, or ryanodine inhibited the ACH-induced Ca(2+) signaling. A comparison of airway contraction with the ACH-induced Ca(2+) response of the SMCs revealed that the onset of airway contraction correlated with the initial Ca(2+) transient, and that sustained airway contraction correlated with the occurrence of the Ca(2+) oscillations. Buffering intracellular Ca(2+) with BAPTA prohibited Ca(2+) signaling and airway contraction, indicating a Ca(2+)-dependent pathway. Cessation of the Ca(2+) oscillations, induced by ACH-esterase, halothane, or the absence of extracellular Ca(2+) resulted in a relaxation of the airway. The concentration dependence of the airway contraction matched the concentration dependence of the increased frequency of the Ca(2+) oscillations. These results indicate that Ca(2+) oscillations, induced by ACH in murine bronchial SMCs, are generated by Ca(2+) release from the SR involving IP(3)- and ryanodine receptors, and are required to maintain airway contraction.  相似文献   

6.
We studied in -escin-permeabilized canine tracheal smoothmuscle (CTSM) the effect of the protein kinase C (PKC) agonist phorbol12,13-dibutyrate (PDBu) on isometric force at a constant submaximalCa2+ concentration (i.e., theeffect on Ca2+ sensitivity) andregulatory myosin light-chain (rMLC) phosphorylation. PDBuincreased Ca2+sensitivity, an increase associated with a concentration-dependent, sustained increase in rMLC phosphorylation. PDBu altered therelationship between rMLC phosphorylation and isometric force such thatthe increase in isometric force was less than that expected for the increase in rMLC phosphorylation observed. The effect of four PKCinhibitors [calphostin C, chelerythrine chloride, apseudosubstrate inhibitor for PKC, PKC peptide-(1931) (PSSI), andstaurosporine] on PDBu-inducedCa2+ sensitization as well as theeffect of calphostin C and PSSI on rMLC phosphorylation weredetermined. Whereas none of these compounds prevented or reversed thePDBu-induced increase in Ca2+sensitivity, the PDBu-induced increase in rMLC phosphorylation wasinhibited. We conclude that PDBu increases rMLC phosphorylation byactivation of PKC but that the associated PDBu-induced increases inCa2+ sensitivity are mediated bymechanisms other than activation of PKC in permeabilized airway smoothmuscle.

  相似文献   

7.
The cGMP-dependent protein kinase (PKG) is the main mediator of nitric oxide-induced relaxation of smooth muscle. Although this pathway is well established, the cellular action of PKG, nitric oxide, and cGMP is complex and not fully understood. A cross-talk between the cGMP-PKG and other pathways (e.g. cAMP-protein kinase A) seems to exist. We have explored cGMP- and cAMP-dependent relaxation of smooth muscle using PKG-deficient mice (cGKI-/-). In intact ileum strips of wild type mice (cGKI+/+), 8-Br-cGMP inhibited the sustained phase of carbachol contractions by approximately 80%. The initial peak was less inhibited (approximately 30%). This relaxation was associated with a reduction in intracellular [Ca2+] and decreased Ca2+ sensitivity. Contractions of cGKI-/- ileum were not influenced by 8-Br-cGMP. EC50 for 8-Br-cGMP for PKG was estimated to be 10 nm. PKG-independent relaxation by 8-Br-cGMP had an EC50 of 10 microm. Relaxation by cAMP (approximately 50% at 100 microm), Ca2+ sensitivity of force, and force potentiation by GTPgammaS were similar in cGKI+/+ and cGKI-/- tissues. The results show that PKG is the main target for cGMP-induced relaxation in intestinal smooth muscle. cGMP desensitize the contractile system to Ca2+ via PKG. PKG-independent pathways are activated at 1000-fold higher cGMP concentrations. Relaxation by cAMP can occur independently of PKG. Long term deficiency of PKG does not lead to an apparent up-regulation of the cAMP-dependent pathways or changes in Ca2+ sensitivity.  相似文献   

8.
Regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) in airway smooth muscle (ASM) during agonist stimulation involves sarcoplasmic reticulum (SR) Ca(2+) release and reuptake. The sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) is key to replenishment of SR Ca(2+) stores. We examined regulation of SERCA in porcine ASM: our hypothesis was that the regulatory protein phospholamban (PLN) and the calmodulin (CaM)-CaM kinase (CaMKII) pathway (both of which are known to regulate SERCA in cardiac muscle) play a role. In porcine ASM microsomes, we examined the expression and extent of PLN phosphorylation after pharmacological inhibition of CaM (with W-7) vs. CaMKII (with KN-62/KN-93) and found that PLN is phosphorylated by CaMKII. In parallel experiments using enzymatically dissociated single ASM cells loaded with the Ca(2+) indicator fluo 3 and imaged using fluorescence microscopy, we measured the effects of PLN small interfering RNA, W-7, and KN-62 on [Ca(2+)](i) responses to ACh and direct SR stimulation. PLN small interfering RNA slowed the rate of fall of [Ca(2+)](i) transients to 1 microM ACh, as did W-7 and KN-62. The two inhibitors additionally slowed reuptake in the absence of PLN. In other cells, preexposure to W-7 or KN-62 did not prevent initiation of ACh-induced [Ca(2+)](i) oscillations (which were previously shown to result from repetitive SR Ca(2+) release/reuptake). However, when ACh-induced [Ca(2+)](i) oscillations reached steady state, subsequent exposure to W7 or KN-62 decreased oscillation frequency and amplitude and slowed the fall time of [Ca(2+)](i) transients, suggesting SERCA inhibition. Exposure to W-7 completely abolished ongoing ACh-induced [Ca(2+)](i) oscillations in some cells. Preexposure to W-7 or KN-62 did not affect caffeine-induced SR Ca(2+) release, indicating that ryanodine receptor channels were not directly inhibited. These data indicate that, in porcine ASM, the CaM-CaMKII pathway regulates SR Ca(2+) reuptake, potentially through altered PLN phosphorylation.  相似文献   

9.
Sarcoplasmic reticulum (SR) Ca2+ release and plasma membrane Ca2+ influx are key to intracellular Ca2+ ([Ca2+]i) regulation in airway smooth muscle (ASM). SR Ca2+ depletion triggers influx via store-operated Ca2+ channels (SOCC) for SR replenishment. Several clinically relevant bronchodilators mediate their effect via cyclic nucleotides (cAMP, cGMP). We examined the effect of cyclic nucleotides on SOCC-mediated Ca2+ influx in enzymatically dissociated porcine ASM cells. SR Ca2+ was depleted by 1 microM cyclopiazonic acid in 0 extracellular Ca2+ ([Ca2+]o), nifedipine, and KCl (preventing Ca2+ influx through L-type and SOCC channels). SOCC was then activated by reintroduction of [Ca2+]o and characterized by several techniques. We examined cAMP effects on SOCC by activating SOCC in the presence of 1 microM isoproterenol or 100 microM dibutryl cAMP (cell-permeant cAMP analog), whereas we examined cGMP effects using 1 microM (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NO nitric oxide donor) or 100 microM 8-bromoguanosine 3',5'-cyclic monophosphate (cell-permeant cGMP analog). The role of protein kinases A and G was examined by preexposure to 100 nM KT-5720 and 500 nM KT-5823, respectively. SOCC-mediated Ca2+ influx was dependent on the extent of SR Ca2+ depletion, sensitive to Ni2+ and La3+, but not inhibitors of voltage-gated influx channels. cAMP as well as cGMP potently inhibited Ca2+ influx, predominantly via their respective protein kinases. Additionally, cAMP cross-activation of protein kinase G contributed to SOCC inhibition. These data demonstrate that a Ni2+/La3+-sensitive Ca2+ influx in ASM triggered by SR Ca2+ depletion is inhibited by cAMP and cGMP via a protein kinase mechanism. Such inhibition may play a role in the bronchodilatory response of ASM to clinically relevant drugs (e.g., beta-agonists vs. nitric oxide).  相似文献   

10.
In order to elucidate the role of tyrosine phosphorylation in vasoconstriction, we investigated the effects of inhibitors of tyrosine kinase (genistein, 30 microM) and phosphatase (sodium o-vanadate, 5 microM) on the contraction of aorta isolated from guinea pig. Genistein significantly inhibited norepinephrine-induced contraction, but it did not affect that induced by KCI. Thus, tyrosine phosphorylation may not be involved in the contractile response to KCI alone. The aortic contraction elicited by KCl was significantly augmented by sodium o-vanadate, which increased both the maximum force and pD2 values of KCl contraction. In the presence of verapamil, KCl-induced contraction was abolished even after pretreatment with sodium o-vanadate. Sodium o-vanadate also augmented Ca2+-induced contraction in the aortic strips depolarized with KCl, increasing both its maximum force and pD2 values. Neither basal 45Ca2+ uptake nor verapamil-sensitive 45Ca2+ uptake induced by KCl were affected by pretreatment with sodium o-vanadate. These results suggest that tyrosine phosphorylation is involved in the contraction of guinea-pig aorta not through transplasmalemmal Ca2+ entry but through increased Ca2+ sensitivity of the intracellular contractile pathway.  相似文献   

11.
Neurotrophins [e.g., brain-derived neurotrophic factor (BDNF), neurotrophin 4 (NT4)], known to affect neuronal structure and function, are expressed in nonneuronal tissues including the airway. However, their function is unclear. We examined the effect of acute vs. prolonged neurotrophin exposure on regulation of airway smooth muscle (ASM) intracellular Ca(2+) concentration ([Ca(2+)](i)): sarcoplasmic reticulum (SR) Ca(2+) release and Ca(2+) influx (specifically store-operated Ca(2+) entry, SOCE). Human ASM cells were incubated for 30 min in medium (control) or 1 or 10 nM BDNF, NT3, or NT4 (acute exposure) or overnight in 1 nM BDNF, NT3, or NT4 (prolonged exposure) and imaged after loading with the Ca(2+) indicator fura-2 AM. [Ca(2+)](i) responses to ACh, histamine, bradykinin, and caffeine and SOCE following SR Ca(2+) depletion were compared across cell groups. Force measurements were performed in human bronchial strips exposed to neurotrophins. Basal [Ca(2+)](i), peak responses to all agonists, SOCE, and force responses to ACh and histamine were all significantly enhanced by both acute and prolonged BDNF exposure (smaller effect of NT4) but decreased by NT3. Inhibition of the BDNF/NT4 receptor trkB by K252a prevented enhancement of [Ca(2+)](i) responses. ASM cells showed positive immunostaining for BDNF, NT3, NT4, trkB, and trkC (NT3 receptor). These novel data demonstrate that neurotrophins influence ASM [Ca(2+)](i) and force regulation and suggest a potential role for neurotrophins in airway diseases.  相似文献   

12.
The microenvironment between the plasma membrane and the near-membrane sarcoplasmic reticulum (SR) may play an important role in Ca(2+) regulation in smooth muscle cells. We used a three-dimensional mathematical model of Ca(2+) diffusion and regulation and experimental measurements of SR Ca(2+) uptake and the distribution of the SR in isolated smooth muscle cells to predict the extent that the near-membrane SR could load Ca(2+) after the opening of single plasma membrane Ca(2+) channels. We also modeled the effect of SR uptake on 1), single-channel Ca(2+) transients in the near-membrane space; 2), the association of Ca(2+) with Ca(2+) buffers in this space; and 3), the amount of Ca(2+) reaching the central cytoplasm of the cell. Our results indicate that, although single-channel Ca(2+) transients could increase SR Ca(2+) to a certain extent, SR Ca(2+) uptake is not rapid enough to greatly affect the magnitude of these transients or their spread to the central cytoplasm unless the Ca(2+) uptake rate of the peripheral SR is an order-of-magnitude higher than the mean rate derived from our experiments. Immunofluorescence imaging, however, did not reveal obvious differences in the density of SR Ca(2+) pumps or phospholamban between the peripheral and central SR in smooth muscle cells.  相似文献   

13.
We examined the effect of membrane potential (Em) on the activity of the plasma membrane Ca2+ pump in cultured rat aortic smooth muscle cells (VSMCs). Inside-negative K+ diffusion potential higher or lower than the resting Em (-46 mV) was artificially imposed on VSMCs with various concentrations of extracellular K+ (K+o) and 1 microM valinomycin. We found that the recovery phase of the intracellular Ca2+ transient elicited with 1 microM ionomycin was accelerated by depolarizing Em, whereas it was retarded by hyperpolarizing Em. The rate of extracellular Na+ (Na+o)-independent 45Ca2+ efflux from VSMCs stimulated with 1 microM ionomycin increased almost linearly with a change in Em from -98 to -3 mV. This effect of Em was abolished by extracellularly added LaCl3 or a combination of high pH (pH 8.8) and high Mg2+ (20 mM), conditions that presumably inhibit the plasma membrane Ca2+ pump (Furukawa, K.-I., Tawada, Y., & Shigekawa, M. (1988) J. Biol. Chem. 263, 8058-8065). Intracellular contents of Na+ and K+ and intracellular pH, on the other hand, were not influenced by the change in Em under the conditions used. These results indicate that alteration in Em can modulate the intracellular Ca2+ concentration in intact VSMCs by changing the rate of Ca2+ extrusion by the plasma membrane Ca2+ pump. The data strongly suggest that the plasma membrane Ca2+ pump in VSMCs is electrogenic.  相似文献   

14.
In smooth muscle, Ca(2+) controls diverse activities including cell division, contraction and cell death. Of particular significance in enabling Ca(2+) to perform these multiple functions is the cell's ability to localize Ca(2+) signals to certain regions by creating high local concentrations of Ca(2+) (microdomains), which differ from the cytoplasmic average. Microdomains arise from Ca(2+) influx across the plasma membrane or release from the sarcoplasmic reticulum (SR) Ca(2+) store. A single Ca(2+) channel can create a microdomain of several micromolar near (approximately 200 nm) the channel. This concentration declines quickly with peak rates of several thousand micromolar per second when influx ends. The high [Ca(2+)] and the rapid rates of decline target Ca(2+) signals to effectors in the microdomain with rapid kinetics and enable the selective activation of cellular processes. Several elements within the cell combine to enable microdomains to develop. These include the brief open time of ion channels, localization of Ca(2+) by buffering, the clustering of ion channels to certain regions of the cell and the presence of membrane barriers, which restrict the free diffusion of Ca(2+). In this review, the generation of microdomains arising from Ca(2+) influx across the plasma membrane and the release of the ion from the SR Ca(2+) store will be discussed and the contribution of mitochondria and the Golgi apparatus as well as endogenous modulators (e.g. cADPR and channel binding proteins) will be considered.  相似文献   

15.
L-type, voltage-dependent calcium (Ca(2+)) channels, ryanodine-sensitive Ca(2+) release (RyR) channels, and large-conductance Ca(2+)-activated potassium (K(Ca)) channels comprise a functional unit that regulates smooth muscle contractility. Here, we investigated whether genetic ablation of caveolin-1 (cav-1), a caveolae protein, alters Ca(2+) spark to K(Ca) channel coupling and Ca(2+) spark regulation by voltage-dependent Ca(2+) channels in murine cerebral artery smooth muscle cells. Caveolae were abundant in the sarcolemma of control (cav-1(+/+)) cells but were not observed in cav-1-deficient (cav-1(-/-)) cells. Ca(2+) spark and transient K(Ca) current frequency were approximately twofold higher in cav-1(-/-) than in cav-1(+/+) cells. Although voltage-dependent Ca(2+) current density was similar in cav-1(+/+) and cav-1(-/-) cells, diltiazem and Cd(2+), voltage-dependent Ca(2+) channel blockers, reduced transient K(Ca) current frequency to approximately 55% of control in cav-1(+/+) cells but did not alter transient K(Ca) current frequency in cav-1(-/-) cells. Furthermore, although K(Ca) channel density was elevated in cav-1(-/-) cells, transient K(Ca) current amplitude was similar to that in cav-1(+/+) cells. Higher Ca(2+) spark frequency in cav-1(-/-) cells was not due to elevated intracellular Ca(2+) concentration, sarcoplasmic reticulum Ca(2+) load, or nitric oxide synthase activity. Similarly, Ca(2+) spark amplitude and spread, the percentage of Ca(2+) sparks that activated a transient K(Ca) current, the amplitude relationship between sparks and transient K(Ca) currents, and K(Ca) channel conductance and apparent Ca(2+) sensitivity were similar in cav-1(+/+) and cav-1(-/-) cells. In summary, cav-1 ablation elevates Ca(2+) spark and transient K(Ca) current frequency, attenuates the coupling relationship between voltage-dependent Ca(2+) channels and RyR channels that generate Ca(2+) sparks, and elevates K(Ca) channel density but does not alter transient K(Ca) current activation by Ca(2+) sparks. These findings indicate that cav-1 is required for physiological Ca(2+) spark and transient K(Ca) current regulation in cerebral artery smooth muscle cells.  相似文献   

16.
目的:探讨大鼠结肠平滑肌细胞是否存在钙库操纵性通道(SOC)。方法:荧光探针Fura-2/AM标记细胞内游离Ca2+后,用荧光分光光度计检测毒胡萝卜素(thapsigargin)和咖啡因(caffeine)耗竭胞内钙库后激活的SOC通道对酶解分离的大鼠结肠平滑肌细胞[Ca2+]i的影响。结果:在无Ca2+缓冲液中,thapsigargin(1μmol/L)以及caf-feine(10 mmol/L)分别使[Ca2+]i由静息时(68.32±3.43)nmol/L升高至(240.85±12.65)nmol/L(、481.25±34.77)nmol/L,继之,向细胞外液中引入两种浓度的Ca2+(1.5 mmol/L和3.0 mmol/L),导致[Ca2+]i进一步升高,分别为(457.55±19.80)nmol/L、(1005.93±54.62)nmol/L;(643.88±34.65)nmol/L、(920.16±43.25)nmol/L。且上述升高效应对维拉帕米(verapamil,5μmol/L)以及KCl引起的细胞膜去极化不敏感,但可被La3+(1 mmol/L)抑制。结论:在酶解分离的大鼠结肠平滑肌细胞上,存在胞内钙库耗竭激活的SOC通道,为支持在电兴奋性细胞上存在库容性Ca2+内流提供了实验和理论依据。  相似文献   

17.
A method for saponin skinning of primary cultured rat aortic smooth muscle cells was established. The saponin-treated cells could be stained with trypan blue and incorporated more 45Ca2+ than the nontreated cells under the same conditions. At low free Ca2+ concentration, greater than 85% of 45Ca2+ uptake into the skinned cells was dependent on the extracellularly supplied MgATP. In the intact cells, both caffeine and norepinephrine increased 45Ca2+ efflux. In the skinned cells, caffeine increased 45Ca2+ efflux, whereas norepinephrine did not. The caffeine-releasable 45Ca2+ uptake fraction in the skinned cells appeared at 3 X 10(-7) M Ca2+, increased gradually with the increase in free Ca2+ concentration, and reached a plateau at 1 X 10(-5) M Ca2+. The 45Ca2+ uptake fraction, which was significantly suppressed by sodium azide, appeared at 1 X 10(-5) M Ca2+ and increased monotonically with increasing free Ca2+ concentration. The results suggest that the caffeine-sensitive Ca2+ store, presumably the sarcoplasmic reticulum, plays a physiological role by releasing Ca2+ in response to norepinephrine or caffeine and by buffering excessive Ca2+. The 45Ca2+ uptake by mitochondria appears too insensitive to be important under physiological conditions.  相似文献   

18.
The effect of fendiline, an anti-anginal drug, on cytosolic free Ca2+ levels ([Ca2+]i) in A10 smooth muscle cells was explored by using fura-2 as a Ca2+ indicator. Fendiline at concentrations between 10-50 microM increased [Ca2+]i in a concentration-dependent manner with an EC50 of 20 microM. External Ca2+ removal reduced the Ca2+ signal by 75%. Addition of 3 mM Ca2+ increased [Ca2+]i in cells pretreated with fendiline in Ca2+-free medium. The 50 microM fendiline-induced [Ca2+]i increase in Ca2+-containing medium was inhibited by 10 microM of La3+, nifedipine, or verapamil. In Ca2+-free medium, pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) to deplete the endoplasmic reticulum Ca2+ store partly inhibited 50 microM fendiline-induced Ca2+ release; whereas pretreatment with 50 microM fendiline abolished 1 microM thapsigargin-induced Ca2+ release. Inhibition of phospholipase C activity with 2 microM U73122 did not alter 50 microM fendiline-induced Ca2+ release. Incubation with 50 microM fendiline for 10-30 min decreased cell viability by 10-20%. Together, the findings indicate that in smooth muscle cells fendiline induced [Ca2+]i increases. Fendiline acted by activating Ca2+ influx via L-type Ca2+ channels, and by releasing internal Ca2+ in a phospholipase C-independent manner. Prolonged exposure of cells to fendiline induced cell death.  相似文献   

19.
Intracellular Ca2+ and cAMP typically cause opposing effects on airway smooth muscle contraction. Receptors that stimulate these pathways are therapeutic targets in asthma and chronic obstructive pulmonary disease. However, the interactions between different G protein-coupled receptors (GPCRs) that evoke cAMP and Ca2+ signals in human bronchial airway smooth muscle cells (hBASMCs) are poorly understood. We measured Ca2+ signals in cultures of fluo-4-loaded hBASMCs alongside measurements of intracellular cAMP using mass spectrometry or [3H]-adenine labeling. Interactions between the signaling pathways were examined using selective ligands of GPCRs, and inhibitors of Ca2+ and cAMP signaling pathways. Histamine stimulated Ca2+ release through inositol 1,4,5-trisphosphate (IP3) receptors in hBASMCs. β2-adrenoceptors, through cAMP and protein kinase A (PKA), substantially inhibited histamine-evoked Ca2+ signals. Responses to other Ca2+-mobilizing stimuli were unaffected by cAMP (carbachol and bradykinin) or minimally affected (lysophosphatidic acid). Prostaglandin E2 (PGE2), through EP2 and EP4 receptors, stimulated formation of cAMP and inhibited histamine-evoked Ca2+ signals. There was no consistent relationship between the inhibition of Ca2+ signals and the amounts of intracellular cAMP produced by different stimuli. We conclude that β-adrenoceptors, EP2 and EP4 receptors, through cAMP and PKA, selectively inhibit Ca2+ signals evoked by histamine in hBASMCs, suggesting that PKA inhibits an early step in H1 receptor signaling. Local delivery of cAMP within hyperactive signaling junctions mediates the inhibition.  相似文献   

20.
Ca(2+)-induced Ca(2+) release (CICR) from the sarcoplasmic reticulum (SR) occurs in smooth muscle as spontaneous SR Ca(2+) release or Ca(2+) sparks and, in some spiking tissues, as Ca(2+) release that is triggered by the activation of sarcolemmal Ca(2+) channels. Both processes display spatial localization in that release occurs at a higher frequency at specific subcellular regions. We have used two-photon flash photolysis (TPFP) of caged Ca(2+) (DMNP-EDTA) in Fluo-4-loaded urinary bladder smooth muscle cells to determine the extent to which spatially localized increases in Ca(2+) activate SR release and to further understand the molecular and biophysical processes underlying CICR. TPFP resulted in localized Ca(2+) release in the form of Ca(2+) sparks and Ca(2+) waves that were distinguishable from increases in Ca(2+) associated with Ca(2+) uncaging, unequivocally demonstrating that Ca(2+) release occurs subsequent to a localized rise in [Ca(2+)](i). TPFP-triggered Ca(2+) release was not constrained to a few discharge regions but could be activated at all areas of the cell, with release usually occurring at or within several microns of the site of photolysis. As expected, the process of CICR was dominated by ryanodine receptor (RYR) activity, as ryanodine abolished individual Ca(2+) sparks and evoked release with different threshold and kinetics in FKBP12.6-null cells. However, TPFP CICR was not completely inhibited by ryanodine; Ca(2+) release with distinct kinetic features occurred with a higher TPFP threshold in the presence of ryanodine. This high threshold release was blocked by xestospongin C, and the pharmacological sensitivity and kinetics were consistent with CICR release at high local [Ca(2+)](i) through inositol trisphosphate (InsP(3)) receptors (InsP(3)Rs). We conclude that CICR activated by localized Ca(2+) release bears essential similarities to those observed by the activation of I(Ca) (i.e., major dependence on the type 2 RYR), that the release is not spatially constrained to a few specific subcellular regions, and that Ca(2+) release through InsP(3)R can occur at high local [Ca(2+)](i).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号