首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Static exercise causes activation of the sympathetic nervous system, which results in increased blood pressure (BP) and renal vascular resistance (RVR). The question arises as to whether renal vasoconstriction that occurs during static exercise is due to sympathetic activation and/or related to a pressure-dependent renal autoregulatory mechanism. To address this issue, we monitored renal blood flow velocity (RBV) responses to two different handgrip (HG) exercise paradigms in 7 kidney transplant recipients (RTX) and 11 age-matched healthy control subjects. Transplanted kidneys are functionally denervated. Beat-by-beat analyses of changes in RBV (observed via duplex ultrasound), BP, and heart rate were performed during HG exercise in all subjects. An index of RVR was calculated as BP/RBV. In protocol 1, fatiguing HG exercise (40% of maximum voluntary contraction) led to significant increases in RVR in both groups. However, at the end of exercise, RVR was more than fourfold higher in control subjects than in the RTX group (88 vs. 20% increase over baseline; interaction, P < 0.001). In protocol 2, short bouts of HG exercise (15 s) led to significant increases in RVR at higher workloads (50 and 70% of maximum voluntary contraction) in the control subjects (P < 0.001). RVR did not increase in the RTX group. In conclusion, we observed grossly attenuated renal vasoconstrictor responses to exercise in RTX subjects, in whom transplanted kidneys were considered functionally denervated. Our results suggest that renal vasoconstrictor responses to exercise in conscious humans are mainly dependent on activation of a neural mechanism.  相似文献   

2.
During exercise, activation of the sympathetic nervous system causes reflex renal vasoconstriction. The effects of aging on this reflex are poorly understood. This study evaluated the effects of age on renal vasoconstrictor responses to handgrip. Seven older (65 +/- 9 yr) and nine younger (25 +/- 2 yr) subjects were studied. Beat-by-beat analyses of changes in renal blood flow velocity (RBV; duplex ultrasound) were performed during two handgrip paradigms. Arterial blood pressure (BP) and heart rate were also measured, and an index of renal vascular resistance (RVR) was calculated (BP/RBV). In protocol 1, fatiguing handgrip [40% of maximal voluntary contraction (MVC)] caused a greater increase in RVR in the older subjects (old 90% +/- 15 increase, young 52% +/- 4 increase; P = 0.03). During posthandgrip circulatory arrest (isolates muscle metaboreflex), the increases in RVR were only approximately 1/2 of the increase seen at end grip. In protocol 2, 15-s bouts of handgrip at graded intensities led to increases in RVR in both subject groups. This effect was not seen until 50% MVC workload (P < 0.05). RVR responses occurred early and were greater in older than in younger subjects at 50% MVC (32 +/- 6% vs. 16 +/- 5%; P = 0.02) and 70% MVC (39 +/- 11% vs. 24 +/- 8%; P = 0.02). Static exercise-induced renal vasoconstriction is enhanced with aging. Because the characteristics of this response suggest a predominant role for mechanoreceptor engagement, we hypothesize that mechanoreceptor responses are augmented with aging.  相似文献   

3.
During exercise, reflex renal vasoconstriction maintains blood pressure and helps in redistributing blood flow to the contracting muscle. Exercise intolerance in heart failure (HF) is thought to involve diminished perfusion in active muscle. We studied the temporal relationship between static handgrip (HG) and renal blood flow velocity (RBV; duplex ultrasound) in 10 HF and in 9 matched controls during 3 muscle contraction paradigms. Fatiguing HG (protocol 1) at 40% of maximum voluntary contraction led to a greater reduction in RBV in HF compared with controls (group main effect: P <0.05). The reduction in RBV early in HG tended to be more prominent during the early phases of protocol 1. Similar RBV was observed in the two groups during post-HG circulatory arrest (isolating muscle metaboreflex). Short bouts (15 s) of HG at graded intensities (protocol 2; engages muscle mechanoreflex and/or central command) led to greater reductions in RBV in HF than controls (P <0.03). Protocol 3, voluntary and involuntary biceps contraction (eliminates central command), led to similar increases in renal vasoconstriction in HF (n=4). Greater reductions in RBV were found in HF than in controls during the early phases of exercise. This effect was not likely due to a metaboreflex or central command. Thus our data suggest that muscle mechanoreflex activity is enhanced in HF and serves to vigorously vasoconstrict the kidney. We believe this compensatory mechanism helps preserve blood flow to exercising muscle in HF.  相似文献   

4.
During exercise, muscle mechanoreflex-mediated sympathoexcitation evokes renal vasoconstriction. Animal studies suggest that prostaglandins generated within the contracting muscle sensitize muscle mechanoreflexes. Thus we hypothesized that local prostaglandin blockade would attenuate renal vasoconstriction during ischemic muscle stretch. Eleven healthy subjects performed static handgrip before and after local prostaglandin blockade (6 mg ketorolac tromethamine infused into the exercising forearm) via Bier block. Renal blood flow velocity (RBV; Duplex Ultrasound), mean arterial pressure (MAP; Finapres), and heart rate (HR; ECG) were obtained during handgrip, post-handgrip muscle ischemia (PHGMI) followed by PHGMI with passive forearm muscle stretch (PHGMI + stretch). Renal vascular resistance (RVR, calculated as MAP/RBV) was increased from baseline during all paradigms except during PHGMI + stretch after the ketorolac Bier block trial where RVR did not change from baseline. Before Bier block, RVR rose more during PHGMI + stretch than during PHGMI alone (P < .01). Similar results were found after a saline Bier block trial (Delta53 +/- 13% vs. Delta35 +/- 10%; P < 0.01). However, after ketorolac Bier block, RVR was not greater during PHGMI + stretch than during PHGMI alone [Delta39 +/- 8% vs. Delta40 +/- 12%; P = not significant (NS)]. HR and MAP responses were similar during PHGMI and PHGMI + stretch (P = NS). Passive muscle stretch during ischemia augments renal vasoconstriction, suggesting that ischemia sensitizes mechanically sensitive afferents. Inhibition of prostaglandin synthesis eliminates this mechanoreceptor sensitization-mediated constrictor responses. Thus mechanoreceptor sensitization in humans is linked to the production of prostaglandins.  相似文献   

5.
During exercise, the sympathetic nervous system is activated, which causes vasoconstriction. The autonomic mechanisms responsible for this vasoconstriction vary based on the particular tissue being studied. Attempts to examine reflex control of the human renal circulation have been difficult because of technical limitations. In this report, the Doppler technique was used to examine renal flow velocity during four muscle contraction paradigms in conscious humans. Flow velocity was divided by mean arterial blood pressure to yield an index of renal vascular resistance (RVR). Fatiguing static handgrip (40% of maximal voluntary contraction) increased RVR by 76%. During posthandgrip circulatory arrest, RVR remained above baseline (2.1 +/- 0.2 vs. 2.8 +/- 0.2 arbitrary units; P < 0.017) but was only 40% of the end-grip RVR value. Voluntary biceps contraction increased RVR within 10 s of initiation of contraction. This effect was not associated with an increase in blood pressure. Finally, involuntary biceps contraction also raised RVR. We conclude that muscle contraction evokes renal vasoconstriction in conscious humans. The characteristic of this response is consistent with a primary role for mechanically sensitive afferents. This statement is based on the small posthandgrip circulatory arrest response and the vasoconstriction that was observed with involuntary biceps contraction.  相似文献   

6.
The roles of the mode of contraction (i.e., dynamic or static) and the active muscle mass as determinants of the cardiovascular responses to exercise were studied. Six healthy men performed static handgrip (SHG), dynamic handgrip (DHG), static two-knee extension (SKE), and dynamic two-knee extension (DKE) to local muscular fatigue in approximately 6 min. Increases in mean arterial pressure were similar for each mode of contraction, 29 +/- 5 and 30 +/- 3 mmHg in SHG and DHG and 56 +/- 2 and 48 +/- 2 mmHg in SKE and DKE (P greater than 0.05) but larger for KE than HG (P less than 0.001). Cardiac output increased more for dynamic than for static exercise and for each mode more for KE than HG (P less than 0.001). Systemic resistance was lower for dynamic than static exercise and fell from resting levels by approximately 1/3 during DKE. The magnitude of the pressor response was related to the active muscle mass but independent of the contraction mode. However, the mode of contraction affected the circulatory changes contributing to the pressor response. Equalization of the pressor responses was achieved by proportionately larger increases in cardiac output during dynamic exercise.  相似文献   

7.
The purpose of the present study was to examine the effect of heating and cooling the forearm muscles on renal vascular responses to ischemic isometric handgrip (IHG). It was hypothesized that heating and cooling the forearm would augment and attenuate, respectively, renal vascular responses to IHG. Renal vascular responses to IHG were studied during forearm heating at 39 degrees C (n = 15, 26 +/- 1 yr) and cooling at 26 degrees C (n = 12, 26 +/- 1 yr). For a control trial, subjects performed the experimental protocol while the forearm was normothermic (approximately 34 degrees C). Muscle temperature (measured by intramuscular probe) was controlled by changing the temperature of water cycling through a water-perfused sleeve. The experimental protocol was as follows: 3 min at baseline, 1 min of ischemia, ischemic IHG to fatigue, and 2 min of postexercise muscle ischemia. At rest, renal artery blood velocity (RBV; Doppler ultrasound) and renal vascular conductance (RVC = RBV/mean arterial blood pressure) were not different between normothermia and the two thermal conditions. During ischemic IHG, there were greater decreases in RBV and RVC in the heating trial. However, RBV and RVC were similar during postexercise muscle ischemia during heating and normothermia. RVC decreased less during cooling than in normothermia while the subjects performed the ischemic IHG protocol. During postexercise muscle ischemia, RVC was greater during cooling than in normothermia. These results indicate that heating augments mechanoreceptor-mediated renal vasoconstriction whereas cooling blunts metaboreceptor-mediated renal vasoconstriction.  相似文献   

8.
Sympathetic vasoconstrictor responses are blunted in the vascular beds of contracting muscle (functional sympatholysis), but the mechanism(s) have been difficult to elucidate. We tested the hypothesis that the mechanical effects of muscle contraction blunt sympathetic vasoconstriction in human muscle. We measured forearm blood flow (Doppler ultrasound) and calculated the reductions in forearm vascular conductance (FVC) in response to reflex increases in sympathetic activity evoked via lower body negative pressure (LBNP). In protocol 1, eight young adults were studied under control resting conditions and during simulated muscle contractions using rhythmic forearm cuff inflations (20 inflations/min) with cuff pressures of 50 and 100 mmHg with the arm below heart level (BH), as well as 100 mmHg with the arm at heart level (HL). Forearm vasoconstrictor responses (%DeltaFVC) during LBNP were -26 +/- 2% during control conditions and were not blunted by simulated contractions (range = -31 +/- 3% to -43 +/- 6%). In protocol 2, eight subjects were studied under control conditions and during rhythmic handgrip exercise (20 contractions/min) using workloads of 15% maximum voluntary contraction (MVC) at HL and BH (similar metabolic demand, greater mechanical muscle pump effect for the latter) and 5% MVC BH alone and in combination with superimposed forearm compressions of 100 mmHg (similar metabolic demand, greater mechanical component of contractions for the latter). The forearm vasoconstrictor responses during LBNP were blunted during 15% MVC exercise with the arm at HL (-1 +/- 3%) and BH (-2 +/- 3%) compared with control (-25 +/- 3%; both P < 0.005) but were intact during both 5% MVC alone (-24 +/- 4%) and with superimposed compressions (-23 +/- 4%). We conclude that mechanical effects of contraction per se do not cause functional sympatholysis in the human forearm and that this phenomenon appears to be coupled with the metabolic demand of contracting skeletal muscle.  相似文献   

9.
In this report, we examined if the synchronization of muscle sympathetic nerve activity (MSNA) with muscle contraction is enhanced by limb congestion. To explore this relationship, we applied signal-averaging techniques to the MSNA signal obtained during short bouts of forearm contraction (2-s contraction/3-s rest cycle) at 40% maximal voluntary contraction for 5 min. We performed this analysis before and after forearm venous congestion; an intervention that augments the autonomic response to sustained static muscle contractions via a local effect on muscle afferents. There was an increased percentage of the MSNA noted during second 2 of the 5-s contraction/rest cycles. The percentage of total MSNA seen during this particular second increased from minute 1 to 5 of contraction and was increased further by limb congestion (control minute 1 = 25.6 +/- 2.0%, minute 5 = 32.8 +/- 2.2%; limb congestion minute 1 = 29.3 +/- 2.1%, minute 5 = 37.8 +/- 3.9%; exercise main effect <0.005; limb congestion main effect P = 0.054). These changes in the distribution of signal-averaged MSNA were seen despite the fact that the mean number of sympathetic discharges did not increase over baseline. We conclude that synchronization of contraction and MSNA is seen during short repetitive bouts of handgrip. The sensitizing effect of contraction time and limb congestion are apparently due to feedback from muscle afferents within the exercising muscle.  相似文献   

10.
The present study was undertaken to test the hypothesis that activation of the muscle reflex elicits less sympathetic activation in skeletal muscle than in internal organs. In decerebrate rats, we examined renal and lumbar (mainly innervating hindlimb blood vessels) sympathetic nerve activities (RSNA and LSNA, respectively) during 1 min of 1) repetitive (1- to 4-s stimulation-to-relaxation) contraction of the triceps surae muscle, 2) repetitive tendon stretch, and 3) repetitive contraction with hindlimb circulatory occlusion. During these interventions, RSNA and LSNA responded synchronously as tension developed. The increase was greater in RSNA than in LSNA [+51 +/- 14 vs. +24 +/- 5% (P < 0.05) with contraction, +46 +/- 8 vs. +17 +/- 4% (P < 0.05) with stretch, +76 +/- 20 vs. 39 +/- 7% (P < 0.05) with contraction during occlusion] during all three interventions: repetitive contraction (n = 10, +508 +/- 48 g tension from baseline), tendon stretch (n = 12, +454 +/- 34 g), and contraction during occlusion (n = 9, +473 +/- 33 g). Additionally, hindlimb circulatory occlusion significantly enhanced RSNA and LSNA responses to contraction. These data demonstrate that RSNA responses to muscle contraction and stretch are greater than LSNA responses. We suggest that activation of the muscle afferents induces the differential sympathetic outflow that is directed toward the kidney as opposed to the limbs. This differential outflow contributes to the distribution of cardiac output observed during exercise. We further suggest that as exercise proceeds, muscle metabolites produced in contracting muscle sensitize muscle afferents and enhance sympathetic drive to limbs and renal beds.  相似文献   

11.
In women, sympathoexcitation during static handgrip exercise is reduced during the follicular phase of the ovarian cycle compared with the menstrual phase. Previous animal studies have demonstrated that estrogen modulates the exercise pressor reflex, a sympathoexcitatory mechanism originating in contracting skeletal muscle. The present study was conducted in female rats to determine whether skeletal muscle contraction-evoked reflex sympathoexcitation fluctuates with the estrous cycle. The estrous cycle was judged by vaginal smear. Plasma concentrations of estrogen were significantly (P < 0.05) higher in rats during the proestrus phase of the estrus cycle than those during the diestrus phase. In decerebrate rats, either electrically induced 30-s continuous static contraction of the hindlimb muscle or 30-s passive stretch of Achilles tendon (a maneuver that selectively stimulates mechanically sensitive muscle afferents) evoked less renal sympathoexcitatory and pressor responses in the proestrus animals than in the diestrus animals. Renal sympathoexcitatory response to 1-min intermittent (1- to 4-s stimulation to relaxation) bouts of static contraction was also significantly less in the proestrus rats than that in the diestrus rats. In ovariectomized female rats, 17β-estradiol applied into a well covering the dorsal surface of the lumbar spinal cord significantly reduced skeletal muscle contraction-evoked responses. These observations demonstrate that the exercise pressor reflex function and its mechanical component fluctuate with the estrous cycle in rats. Estrogen may cause these fluctuations through its attenuating effects on the spinal component of the reflex arc.  相似文献   

12.
To test the hypothesis that sex influences forearm blood flow (FBF) during exercise, 15 women and 16 men of similar age [women 24.3 +/- 4.0 (SD) vs. men 24.9 +/- 4.5 yr] but different forearm muscle strength (women 290.7 +/- 44.4 vs. men 509.6 +/- 97.8 N; P < 0.05) performed dynamic handgrip exercise as the same absolute workload was increased in a ramp function (0.25 W/min). Task failure was defined as the inability to maintain contraction rate. Blood pressure and FBF were measured on separate arms during exercise by auscultation and Doppler ultrasound, respectively. Muscle strength was positively correlated with endurance time (r = 0.72, P < 0.01) such that women had a shorter time to task failure than men (450.5 +/- 113.0 vs. 831.3 +/- 272.9 s; P < 0.05). However, the percentage of maximal handgrip strength achieved at task failure was similar between sexes (14% maximum voluntary contraction). FBF was similar between women and men throughout exercise and at task failure (women 13.6 +/- 5.3 vs. men 14.5 +/- 4.9 ml.min(-1).100 ml(-1)). Mean arterial pressure was lower in women at rest and during exercise; thus calculated forearm vascular conductance (FVC) was higher in women during exercise but similar between sexes at task failure (women 0.13 +/- 0.05 vs. men 0.11 +/- 0.04 ml.min(-1).100 ml(-1).mmHg(-1)). In conclusion, the similar FBF during exercise was achieved by a higher FVC in the presence of a lower MAP in women than men. Still, FBF remained coupled to work rate (and presumably metabolic demand) during exercise irrespective of sex.  相似文献   

13.
This study assessed muscle fatigue patterns of the elbow flexors in untrained men and women to determine if sex differences exist during acute maximal eccentric exercise. High-intensity eccentric exercise is often used by athletes to elicit gains in muscle strength and size gains. Development of fatigue during this type of exercise can increase risk of injury; therefore, it is important to understand fatigue patterns during eccentric exercise to minimize injury risk exposure while still promoting training effects. While many isometric exercise studies have demonstrated that women show less fatigue, the patterns of fatigue during purely eccentric exercise have not been assessed in men and women. Based on the lack of sex differences in overall strength loss immediately post-eccentric exercise, it was hypothesized that women and men would have similar relative fatigue pattern responses (i.e., change from baseline) during a single bout of maximal eccentric exercise. Forty-six subjects (24 women and 22 men) completed 5 sets of 10 maximal eccentric contractions on an isokinetic dynamometer. Maximal voluntary isometric contraction strength was assessed at baseline and immediately following each exercise set. Maximal eccentric torque and contractile properties (i.e., contraction time, work, half relaxation time, and maximal rate of torque development) were calculated for each contraction. Men and women demonstrated similar relative isometric (32% for men and 39% for women) and eccentric (32% for men and 39% for women) fatigue as well as similar deficits in work done and rates of torque development and relaxation during exercise (p > 0.05). Untrained men and women displayed similar relative responses in all measures of muscle function during a single bout of maximal eccentric exercise of the elbow flexors. Thus, there is no reason to suspect that women may be more vulnerable to fatigue-related injury.  相似文献   

14.
Exercise-induced increases in skin sympathetic nerve activity (SSNA) are similar between isometric handgrip (IHG) and leg extension (IKE) performed at 30% of maximal voluntary contraction (MVC). However, the precise effect of exercise intensity and level of fatigue on this relationship is unclear. This study tested the following hypotheses: 1) exercise intensity and fatigue level would not affect the magnitude of exercise-induced increase in SSNA between IHG and IKE, and 2) altering IHG muscle mass would also not affect the magnitude of exercise-induced increase in SSNA. In protocol 1, SSNA (peroneal microneurography) was measured during baseline and during the initial and last 30 s of isometric exercise to volitional fatigue in 12 subjects who randomly performed IHG and IKE bouts at 15, 30, and 45% MVC. In protocol 2, SSNA was measured in eight subjects who performed one-arm IHG at 30% MVC with the addition of IHG of the contralateral arm in 10-s intervals for 1 min. Exercise intensity significantly increased SSNA responses during the first 30 s of IHG (34+/-13, 70+/-11, and 92+/-13% change from baseline) and IKE (30+/-17, 69+/-12, and 76+/-13% change from baseline) for 15, 30, and 45% MVC. During the last 30 s of exercise to volitional fatigue, there were no significant differences in SSNA between exercise intensities or limb. SSNA did not significantly change between one-arm and two-arm IHG. Combined, these data indicate that exercise-induced increases in SSNA are intensity dependent in the initial portion of isometric exercise, but these differences are eliminated with the development of fatigue. Moreover, the magnitude of exercise-induced increase in SSNA responses is not dependent on either muscle mass involved or exercising limb.  相似文献   

15.
We sought to examine the influence of exercise intensity on carotid baroreflex (CBR) control of heart rate (HR) and mean arterial pressure (MAP) at the onset of exercise in humans. To accomplish this, eight subjects performed multiple 1-min bouts of isometric handgrip (HG) exercise at 15, 30, 45 and 60% maximal voluntary contraction (MVC), while breathing to a metronome set at eupneic frequency. Neck suction (NS) of -60 Torr was applied for 5 s at end expiration to stimulate the CBR at rest, at the onset of HG (<1 s), and after approximately 40 s of HG. Beat-to-beat measurements of HR and MAP were recorded throughout. Cardiac responses to NS at onset of 15% (-12 +/- 2 beats/min) and 30% (-10 +/- 2 beats/min) MVC HG were similar to rest (-10 +/- 1 beats/min). However, HR responses to NS were reduced at the onset of 45% and 60% MVC HG (-6 +/- 2 and -4 +/- 1 beats/min, respectively; P < 0.001). In contrast to HR, MAP responses to NS were not different from rest at exercise onset. Furthermore, both HR and MAP responses to NS applied at approximately 40s of HG were similar to rest. In summary, CBR control of HR was transiently blunted at the immediate onset of high-intensity HG, whereas MAP responses were preserved demonstrating differential baroreflex control of HR and blood pressure at exercise onset. Collectively, these results suggest that carotid-cardiac baroreflex control is dynamically modulated throughout isometric exercise in humans, whereas carotid baroreflex regulation of blood pressure is well-maintained.  相似文献   

16.
In general, cardiac regulation is dominated by the sympathetic and parasympathetic nervous systems in men and women, respectively. Our recent study had revealed sex differences in the forebrain network associated with sympathoexcitatory response to baroreceptor unloading. The present study further examined the sex differences in forebrain modulation of cardiovagal response at the onset of isometric exercise. Forebrain activity in healthy men (n = 8) and women (n = 9) was measured using functional magnetic resonance imaging during 5 and 35% maximal voluntary contraction handgrip exercise. Heart rate (HR), mean arterial pressure (MAP), and muscle sympathetic nerve activity (MSNA) were collected in a separate recording session. During the exercise, HR and MAP increased progressively, while MSNA was suppressed (P < 0.05). Relative to men, women demonstrated smaller HR (8 +/- 2 vs. 18 +/- 3 beats/min) and MAP (3 +/- 2 vs. 11 +/- 2 mmHg) responses to the 35% maximal voluntary contraction trials (P < 0.05). Although a similar forebrain network was activated in both groups, the smaller cardiovascular response in women was reflected in a weaker insular cortex activation. Nevertheless, men did not show a stronger deactivation at the ventral medial prefrontal cortex, which has been associated with modulating cardiovagal activity. In contrast, the smaller cardiovascular response in women related to their stronger suppression of the dorsal anterior cingulate cortex activity, which has been associated with sympathetic control of the heart. Our findings revealed sex differences in both the physiological and forebrain responses to isometric exercise.  相似文献   

17.
The renal vasoconstriction induced by the sympathetic outflow during exercise serves to direct blood flow from the kidney toward the exercising muscles. The renal circulation seems to be particularly important in this regard, because it receives a substantial part of the cardiac output, which in resting humans has been estimated to be 20%. The role of group III mechanoreceptors in causing the reflex renal sympathetic response to static contraction remains an open question. To shed some light on this question, we recorded the renal sympathetic nerve responses to static contraction before and after injection of gadolinium into the arterial supply of the statically contracting triceps surae muscles of decerebrate unanesthetized and chloralose-anesthetized cats. Gadolinium has been shown to be a selective blocker of mechanogated channels in thin-fiber muscle afferents, which comprise the afferent arm of the exercise pressor reflex arc. In decerebrate (n = 15) and chloralose-anesthetized (n = 12) cats, we found that gadolinium (10 mM; 1 ml) significantly attenuated the renal sympathetic nerve and pressor responses to static contraction (60 s) after a latent period of 60 min; both responses recovered after a latent period of 120 min. We conclude that thin-fiber mechanoreceptors supplying contracting muscle are involved in some of the renal vasoconstriction evoked by the exercise pressor reflex.  相似文献   

18.
Sympathetic alpha-adrenergic vasoconstrictor responses are blunted in the vascular beds of contracting muscle (functional sympatholysis). We tested the hypothesis that combined inhibition of nitric oxide (NO) and prostaglandins (PGs) restores sympathetic vasoconstriction in contracting human muscle. We measured forearm blood flow via Doppler ultrasound and calculated the reduction in forearm vascular conductance in response to alpha-adrenergic receptor stimulation during rhythmic handgrip exercise (6.4 kg) and during a control nonexercise vasodilator condition (using intra-arterial adenosine) before and after combined local inhibition of NO synthase (NOS; via N(G)-nitro-L-arginine methyl ester) and cyclooxygenase (via ketorolac) in healthy men. Before combined inhibition of NO and PGs, the forearm vasoconstrictor responses to intra-arterial tyramine (which evoked endogenous noradrenaline release), phenylephrine (a selective alpha1-agonist), and clonidine (an alpha2-agonist) were significantly blunted during exercise compared with adenosine treatment. After combined inhibition of NO and PGs, the vasoconstrictor responses to all alpha-adrenergic receptor stimuli were augmented by approximately 10% in contracting muscle (P <0.05), whereas the responses to phenylephrine and clonidine were also augmented by approximately 10% during passive vasodilation in resting muscle (P <0.05). In six additional subjects, PG inhibition alone did not alter the vasoconstrictor responses in resting or contracting muscles. Thus in light of our previous findings, it appears that inhibition of either NO or PGs alone does not affect functional sympatholysis in healthy humans. However, the results from the present study indicate that combined inhibition of NO and PGs augments alpha-adrenergic vasoconstriction in contracting muscle but does not completely restore the vasoconstrictor responses compared with those observed during passive vasodilation in resting muscle.  相似文献   

19.
Previous studies suggest that women experience less vascular occlusion than men when generating the same relative contractile force. This study examined forearm blood flow (FBF) in women and men during isometric handgrip exercise requiring the same relative force. Thirty-eight subjects [20 women and 18 men, 22.8 +/- 0.6 yrs old (means +/- SE)] performed low- and moderate-force handgrip exercise on two occasions. Subjects performed five maximum voluntary contractions (MVC) before exercise to determine 20% and 50% MVC target forces. Time to task failure (TTF) was determined when the subject could not maintain force within 5% of the target force. Mean blood velocity was measured in the brachial artery with the use of Doppler ultrasonography. Arterial diameter was measured at rest and used to calculate absolute FBF (FBFa; ml/min) and relative FBF (FBFr; ml.min(-1).100 ml(-1)). Women generated less (P < 0.05) absolute maximal force (208 +/- 10 N) than men (357 +/- 17 N). The TTF was longer (P < 0.05) at 20% MVC for women (349 +/- 32 s) than for men (230 +/- 23 s), but no difference between the sexes was observed at 50% MVC (women: 69 +/- 5 s; men: 71 +/- 8 s). FBFa and FBFr increased (P < 0.05) from rest to TTF in both women and men during 20% and 50% MVC trials. FBFr was greater in women than in men at > or =30% TTF during 50% MVC. At exercise durations > or =60% of TTF, FBFa was lower (P < 0.05) in women than in men during handgrip at 20% MVC. Despite the longer exercise duration for women at the lower contraction intensity, FBFr was similar between the sexes, suggesting that muscle perfusion is matched to the exercising muscle mass independent of sex.  相似文献   

20.
Muscle glycogenolytic flux and lactate accumulation during exercise are lower after 3-7 days of "short-term" aerobic training (STT) in men (e.g., Green HJ, Helyar R, Ball-Burnett M, Kowalchuk N, Symon S, and Farrance B. J Appl Physiol 72: 484-491, 1992). We hypothesized that 5 days of STT would attenuate pyruvate production and the increase in muscle tricarboxylic acid cycle intermediates (TCAI) during exercise, because of reduced flux through the reaction catalyzed by alanine aminotransferase (AAT; pyruvate + glutamate <--> 2-oxoglutarate + alanine). Eight women [22 +/- 1 yr, peak oxygen uptake (Vo2 peak) = 40.3 +/- 4.6 ml. kg-1. min-1] performed seven 45-min bouts of cycle exercise at 70% Vo2 peak over 9 days (1 bout/day; rest only on days 2 and 8). During the first and last bouts, biopsies (vastus lateralis) were obtained at rest and after 5 and 45 min of exercise. Muscle glycogen concentration was approximately 50% higher at rest after STT (493 +/- 38 vs. 330 +/- 20 mmol/kg dry wt; P 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号