共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Cytokinesis involves the concerted efforts of the microtubule and actin cytoskeletons as well as vesicle trafficking and membrane remodeling to form the cleavage furrow and complete daughter cell separation. The exact mechanisms that support membrane remodeling during cytokinesis remain largely undefined. In this study, we report that the large GTPase dynamin, a protein involved in membrane tubulation and vesiculation, is essential for successful cytokinesis. Using biochemical and morphological methods, we demonstrate that dynamin localizes to the spindle midzone and the subsequent intercellular bridge in mammalian cells and is also enriched in spindle midbody extracts. In Caenorhabditis elegans, dynamin localized to newly formed cleavage furrow membranes and accumulated at the midbody of dividing embryos in a manner similar to dynamin localization in mammalian cells. Further, dynamin function appears necessary for cytokinesis, as C. elegans embryos from a dyn-1 ts strain, as well as dynamin RNAi-treated embryos, showed a marked defect in the late stages of cytokinesis. These findings indicate that, during mitosis, conventional dynamin is recruited to the spindle midzone and the subsequent intercellular bridge, where it plays an essential role in the final separation of dividing cells. 相似文献
4.
Guanine nucleotide binding proteins (G proteins) mediate a variety of cellular responses to external stimuli. Pure G protein, receptor, and effector are sufficient to reconstitute hormonal activation of an effector in phospholipid vesicles, but other components may be important for specificity or localization in vivo. If another protein associates with GO, the molecular weight of GO solubilized from membranes would be larger than the molecular weight of GO after purification. We find that GO solubilized from bovine brain membranes by Triton X-100 behaves as a single population of molecules on sucrose density gradients and gel filtration columns. Its molecular mass is about 40 kDa larger than pure GO. Association of GO with the other protein is fragile as the proteins dissociate on further purification. There was no difference in ADP-ribosylation or tryptic cleavage of GO in larger and smaller form. These studies provide a basis for future experiments to stabilize the interaction and identify the protein. 相似文献
5.
6.
GORI,encoding the WD40 domain protein,is required for pollen tube germination and elongation in rice
Yu-Jin Kim Myung-Hee Kim Woo-Jong Hong Sunok Moon Eui-Jung Kim Jeniffer Silva Jinwon Lee Sangho Lee Sun Tae Kim Soon Ki Park Ki-Hong Jung 《The Plant journal : for cell and molecular biology》2021,105(6):1645-1664
7.
TRAPP stably associates with the Golgi and is required for vesicle docking 总被引:10,自引:0,他引:10 下载免费PDF全文
Bet3p, a component of a large novel complex called TRAPP, acts upstream of endoplasmic reticulum (ER)-Golgi SNAREs. Unlike the SNAREs, which reside on multiple compartments, Bet3p is localized exclusively to Golgi membranes. While other proteins recycle from the Golgi to the ER, Bet3p and other TRAPP subunits remain associated with this membrane under conditions that block anterograde traffic. We propose that the persistent localization of TRAPP to the Golgi may be important for its role in docking vesicles to this membrane. Consistent with this proposal, we find that transport vesicles fail to bind to Golgi membranes in vitro in the absence of Bet3p. Binding is restored by the addition of cytosol containing Bet3p. These findings indicate that TRAPP stably associates with the Golgi and is required for vesicle docking. 相似文献
8.
Chromosome dimers, formed by homologous recombination between sister chromosomes, normally require cell division to be resolved into monomers by site-specific recombination at the dif locus of Escherichia coli. We report here that it is not in fact cell division per se that is required for dimer resolution but the action of the cytoplasmic domain of FtsK, which is a bifunctional protein required both for cell division and for chromosome partition. 相似文献
9.
10.
11.
Managadze D Würtz C Sichting M Niehaus G Veenhuis M Rottensteiner H 《Traffic (Copenhagen, Denmark)》2007,8(6):687-701
In the filamentous fungus Neurospora crassa, glyoxysomes and Woronin bodies coexist in the same cell. Because several glyoxysomal matrix proteins and also HEX1, the dominant protein of Woronin bodies, possess typical peroxisomal targeting signals, the question arises as to how protein targeting to these distinct yet related types of microbodies is achieved. Here we analyzed the function of the Neurospora ortholog of PEX14, an essential component of the peroxisomal import machinery. PEX14 interacted with both targeting signal receptors and was localized to glyoxysomes but was virtually absent from Woronin bodies. Nonetheless, a pex14Delta mutant not only failed to grow on fatty acids because of a defect in glyoxysomal beta-oxidation but also suffered from cytoplasmic bleeding, indicative of a defect in Woronin body-dependent septal pore plugging. Inspection of pex14Delta mutant hyphae by fluorescence and electron microscopy indeed revealed the absence of Woronin bodies. When these cells were subjected to subcellular fractionation, HEX1 was completely mislocalized to the cytosol. Expression of GFP-HEX1 in wild-type mycelia caused the staining of Woronin bodies and also of glyoxysomes in a targeting signal-dependent manner. Our data support the view that Woronin bodies emerge from glyoxysomes through import of HEX1 and subsequent fission. 相似文献
12.
Ludu JS de Bruin OM Duplantis BN Schmerk CL Chou AY Elkins KL Nano FE 《Journal of bacteriology》2008,190(13):4584-4595
Francisella tularensis is a highly infectious, facultative intracellular bacterial pathogen that is the causative agent of tularemia. Nearly a century ago, researchers observed that tularemia was often fatal in North America but almost never fatal in Europe and Asia. The chromosomes of F. tularensis strains carry two identical copies of the Francisella pathogenicity island (FPI), and the FPIs of North America-specific biotypes contain two genes, anmK and pdpD, that are not found in biotypes that are distributed over the entire Northern Hemisphere. In this work, we studied the contribution of anmK and pdpD to virulence by using F. novicida, which is very closely related to F. tularensis but which carries only one copy of the FPI. We showed that anmK and pdpD are necessary for full virulence but not for intracellular growth. This is in sharp contrast to most other FPI genes that have been studied to date, which are required for intracellular growth. We also showed that PdpD is localized to the outer membrane. Further, overexpression of PdpD affects the cellular distribution of FPI-encoded proteins IglA, IglB, and IglC. Finally, deletions of FPI genes encoding proteins that are homologues of known components of type VI secretion systems abolished the altered distribution of IglC and the outer membrane localization of PdpD. 相似文献
13.
14.
Arabidopsis POT1 associates with the telomerase RNP and is required for telomere maintenance 总被引:1,自引:0,他引:1
POT1 is a single-copy gene in yeast and humans that encodes a single-strand telomere binding protein required for chromosome end protection and telomere length regulation. In contrast, Arabidopsis harbors multiple, divergent POT-like genes that bear signature N-terminal OB-fold motifs, but otherwise share limited sequence similarity. Here, we report that plants null for AtPOT1 show no telomere deprotection phenotype, but rather exhibit progressive loss of telomeric DNA. Genetic analysis indicates that AtPOT1 acts in the same pathway as telomerase. In vitro levels of telomerase activity in pot1 mutants are significantly reduced and are more variable than wild-type. Consistent with this observation, AtPOT1 physically associates with active telomerase particles. Although low levels of AtPOT1 can be detected at telomeres in unsynchronized cells and in cells arrested in G2, AtPOT1 binding is significantly enhanced during S-phase, when telomerase is thought to act at telomeres. Our findings indicate that AtPOT1 is a novel accessory factor for telomerase required for positive telomere length regulation, and they underscore the coordinate and extraordinarily rapid evolution of telomere proteins and the telomerase enzyme. 相似文献
15.
The zinc finger domain of the archaeal minichromosome maintenance protein is required for helicase activity 总被引:10,自引:0,他引:10
Poplawski A Grabowski B Long SE Kelman Z 《The Journal of biological chemistry》2001,276(52):49371-49377
The minichromosome maintenance (MCM) proteins, a family of six conserved polypeptides found in all eukaryotes, are essential for DNA replication. The archaeon Methanobacterium thermoautotrophicum Delta H contains a single homologue of MCM with biochemical properties similar to those of the eukaryotic enzyme. The amino acid sequence of the archaeal protein contains a putative zinc-binding domain of the CX(2)CX(n)CX(2)C (C(4)) type. In this study, the roles of the zinc finger domain in MCM function were examined using recombinant wild-type and mutant proteins expressed and purified from Escherichia coli. The protein with a mutation in the zinc motif forms a dodecameric complex similar to the wild-type enzyme. The mutant enzyme, however, is impaired in DNA-dependent ATPase activity and single-stranded DNA binding, and it does not possess helicase activity. These results illustrate the importance of the zinc-binding domain for archaeal MCM function and suggest a role for zinc binding in the eukaryotic MCM complex as well, since four out of the six eukaryotic MCM proteins contain a similar zinc-binding motif. 相似文献
16.
The Drosophila gene, pixie, is an essential gene required for normal growth and translation. Pixie is the fly ortholog of human RLI, which was first identified as an RNase L inhibitor, and yeast Rli1p, which has recently been shown to play a role in translation initiation and ribosome biogenesis. These proteins are all soluble ATP-binding cassette proteins with two N-terminal iron-sulfur clusters. Here we demonstrate that Pixie can be isolated from cells in complex with eukaryotic translation initiation factor 3 and ribosomal proteins of the small subunit. In addition, our analysis of polysome profiles reveals that double-stranded RNA interference-mediated depletion of Pixie results in an increase in empty 80 S ribosomes and a corresponding decrease in polysomes. Thus Pixie is required for normal levels of translation initiation. We also find that Pixie associates with the 40 S subunit on sucrose density gradients in an ATP-dependent manner. Our observations are consistent with Pixie playing a catalytic role in the assembly of complexes required for translation initiation. Thus, the function of this soluble ATP-binding cassette domain protein family in translation initiation has been conserved from yeast through to higher eukaryotes. 相似文献
17.
Ku antigen,an origin-specific binding protein that associates with replication proteins,is required for mammalian DNA replication 总被引:6,自引:0,他引:6
Ors binding activity (OBA) represents a HeLa cell protein activity that binds in a sequence-specific manner to A3/4, a 36-bp mammalian replication origin sequence. OBA's DNA binding domain is identical to the 80-kDa subunit of Ku antigen. Ku antigen associates with mammalian origins of DNA replication in vivo, with maximum binding at the G1/S phase. Addition of an A3/4 double-stranded oligonucleotide inhibited in vitro DNA replication of p186, pors12, and pX24, plasmids containing the monkey replication origins of ors8, ors12, and the Chinese hamster DHFR oribeta, respectively. In contrast, in vitro SV40 DNA replication remained unaffected. The inhibitory effect of A3/4 oligonucleotide was fully reversed upon addition of affinity-purified Ku. Furthermore, depletion of Ku by inclusion of an antibody recognizing the Ku heterodimer, Ku70/Ku80, decreased mammalian replication to basal levels. By co-immunoprecipitation analyses, Ku was found to interact with DNA polymerases alpha, delta and epsilon, PCNA, topoisomerase II, RF-C, RP-A, DNA-PKcs, ORC-2, and Oct-1. These interactions were not inhibited by the presence of ethidium bromide in the immunoprecipitation reaction, suggesting DNA-independent protein associations. The data suggest an involvement of Ku in mammalian DNA replication as an origin-specific-binding protein with DNA helicase activity. Ku acts at the initiation step of replication and requires an A3/4-homologous sequence for origin binding. The physical association of Ku with replication proteins reveals a possible mechanism by which Ku is recruited to mammalian origins. 相似文献
18.
19.
20.
S W Polyak A Chapman-Smith P J Brautigan J C Wallace 《The Journal of biological chemistry》1999,274(46):32847-32854
Catalytically active biotin protein ligase from Saccharomyces cerevisiae (EC 6.3.4.15) was overexpressed in Escherichia coli and purified to near homogeneity in three steps. Kinetic analysis demonstrated that the substrates ATP, biotin, and the biotin-accepting protein bind in an ordered manner in the reaction mechanism. Treatment with any of three proteases of differing specificity in vitro revealed that the sequence between residues 240 and 260 was extremely sensitive to proteolysis, suggesting that it forms an exposed linker between an N-terminal 27-kDa domain and the C-terminal 50-kDa domain containing the active site. The protease susceptibility of this linker region was considerably reduced in the presence of ATP and biotin. A second protease-sensitive sequence, located in the presumptive catalytic site, was protected against digestion by the substrates. Expression of N-terminally truncated variants of the yeast enzyme failed to complement E. coli strains defective in biotin protein ligase activity. In vitro assays performed with purified N-terminally truncated enzyme revealed that removal of the N-terminal domain reduced BPL activity by greater than 3500-fold. Our data indicate that both the N-terminal domain and the C-terminal domain containing the active site are necessary for complete catalytic function. 相似文献