首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The fusogenic properties of gramicidin were investigated by using large unilamellar dioleoylphosphatidylcholine vesicles. It is shown that gramicidin induces aggregation and fusion of these vesicles at peptide to lipid molar ratios exceeding 1/100. Both intervesicle lipid mixing and mixing of aqueous contents were demonstrated. Furthermore, increased static and dynamic light scattering and a broadening of 31P NMR signals occurred concomitant with lipid mixing. Freeze-fracture electron microscopy revealed a moderate vesicle size increase. Lipid mixing is paralleled by changes in membrane permeability: small solutes like carboxyfluorescein and smaller dextrans, FD-4(Mr approximately 4000), rapidly (1-2 min) leak out of the vesicles. However, larger molecules like FD-10 and FD-17 (Mr approximately 9400 and 17,200) are retained in the vesicles for greater than 10 min after addition of gramicidin, thereby making detection of contents mixing during lipid mixing possible. At low lipid concentrations (5 microM), lipid mixing and leakage are time resolved: leakage of CF shows a lag phase of 1-3 min, whereas lipid mixing is immediate and almost reaches completion during this lag phase. It is therefore concluded that leakage, just as contents mixing, occurs subsequent to aggregation and lipid mixing. Although addition of gramicidin at a peptide/lipid molar ratio exceeding 1/50 eventually leads to hexagonal HII phase formation and a loss of vesicle contents, it is concluded that leakage during fusion (1-2 min) is not the result of HII phase formation but is due to local changes in lipid structure caused by precursors of this phase. By making use of gramicidin derivatives and different solvent conformations, it is shown that there is a close parallel between the ability of the peptide to induce the HII phase and its ability to induce intervesicle lipid mixing and leakage. It is suggested that gramicidin-induced fusion and HII phase formation share common intermediates.  相似文献   

2.
Vesicle polydispersity and leakage of solutes from the vesicle lumen influence the measurement and analysis of osmotically induced vesicle swelling and lysis, but their effects have not been considered in previous studies of these processes. In this study, a model is developed which expressly includes polydispersity and leakage effects. The companion paper demonstrated the preparation and characterization of large unilamellar lipid vesicles. A dye release technique was employed to indicate the leakage of solutes from the vesicles during osmotic swelling. Changes in vesicle size were monitored by dynamic light scattering (DLS). In explaining the results, the model identifies three stages. The first phase involves differential increases in membrane tension with strain increasing in larger vesicles before smaller ones. In the second phase, the yield point for lysis (leakage) is reached sequentially from large sizes to small sizes. In the final phase, the lumen contents and the external medium partially equilibrate under conditions of constant membrane tension. When fit to the data, the model yields information on polydispersity-corrected values for membrane area compressibility, Young's modulus, and yield point for lysis.  相似文献   

3.
Melittin, an amphiphathic peptide, affects the permeability of vesicles. This can be demonstrated using the dye release technique. Calcein, a fluorescent marker, is trapped in large unilamellar 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) vesicles and melittin-induced leakage of the dye can be monitored directly by increasing fluorescence intensity. First, we characterized the effect of increasing cholesterol content in the membrane on melittin-induced leakage and our results reveal that cholesterol inhibits the lytic activity of the peptide. Using intrinsic fluorescence of the single tryptophan of melittin and 2H-NMR of headgroup deuterated phosphatidylcholine, we demonstrated that the affinity of melittin for phosphatidylcholine vesicles is reduced in the presence of cholesterol; this is associated with the tighter lipid packing of the cholesterol-containing bilayer. This reduced binding is responsible for the reduced melittin-induced leakage from cholesterol-containing membranes. The pathway of release was determined to be an all-or-none mechanism. Finally, we investigated the possibility of achieving specific membrane targeting with melittin, when vesicles of different lipid composition are simultaneously present. Melittin incubated together with vesicles made of pure POPC and POPC containing 30(mol)% cholesterol can empty nearly all the cholesterol-free vesicles while the cholesterol-containing vesicles remain almost intact. Owing to the preferential interaction of melittin with the pure POPC vesicles, we were able to achieve controlled release of encapsulated material from a specific vesicle population. Received: 8 May 1996 / Accepted: 12 September 1996  相似文献   

4.
Leakage from liposomes induced by several peptides is reviewed and a pore model is described. According to this model peptide molecules become incorporated into the vesicle bilayer and aggregate reversibly or irreversibly within the surface. When a peptide aggregate reaches a critical size, peptide translocation can occur and a pore is formed. With the peptide GALA the pores are stable and persist for at least 10 minutes. The model predicts that for a given lipid/peptide ratio, the extent of leakage should decrease as the vesicle diameter decreases, and for a given amount of peptide bound per vesicle less leakage would be observed at higher temperatures due to the increase in reversibility of surface aggregates of the peptide. Effect of membrane composition on pore formation is reviewed. When cholesterol was included in the liposomes the efficiency of inducation of leakage by the peptide GALA was reduced due to reduced binding and increased reversibility of surface aggregation of the peptide. Phospholipids which contain less ordered acyl-chains and have a slightly wedge-like shape, can better accommodate peptide surface aggregates, and consequently insertion and translocation of the peptide may be less favored. Demonstrations of antagonism between pore formation and fusion are presented. The choice of factors which promote vesicle aggregation, e.g., larger peptides, increased vesicle and peptide concentration results in enhanced vesicle fusion at the expense of formation of intravesicular pores. FTIR studies with HIV-1 fusion peptides indicate that in systems where extensive vesicle fusion occurred the beta conformation of the peptides was predominant, whereas the alpha conformation was exhibited in cases where leakage was the main outcome. Antagonism between leakage and fusion was exhibited by 1-palmitoyl-2-oleoylphosphatidylglycerol vesicles, where the order of addition of peptide (HIV(arg)) or Ca(2+)dictated whether pore formation or vesicle fusion would occur. The current study emphasizes that the addition of Ca(2+), which promotes vesicle aggregation can also reduce peptide translocation in isolated vesicles.  相似文献   

5.
Interaction of wheat alpha-thionin with large unilamellar vesicles.   总被引:1,自引:0,他引:1       下载免费PDF全文
The interaction of the wheat antibacterial peptide alpha-thionin with large unilamellar vesicles has been investigated by means of fluorescence spectroscopy. Binding of the peptide to the vesicles is followed by the release of vesicle contents, vesicle aggregation, and lipid mixing. Vesicle fusion, i.e., mixing of the aqueous contents, was not observed. Peptide binding is governed by electrostatic interactions and shows no cooperativity. The amphipatic nature of wheat alpha-thionin seems to destabilize the membrane bilayer and trigger the aggregation of the vesicles and lipid mixing. The presence of distearoylphosphatidylethanolamine-poly(ethylene glycol 2000) (PEG-PE) within the membrane provides a steric barrier that inhibits vesicle aggregation and lipid mixing but does not prevent leakage. Vesicle leakage through discrete membrane channels is unlikely, because the release of encapsulated large fluorescent dextrans is very similar to that of 8-aminonaphthalene-1,3,6,trisulfonic acid (ANTS). A minimum number of 700 peptide molecules must bind to each vesicle to produce complete leakage, which suggests a mechanism in which the overall destabilization of the membrane is due to the formation of transient pores rather than discrete channels.  相似文献   

6.
Peptide-induced vesicle leakage is a common experimental test for the membrane-perturbing activity of antimicrobial peptides. The leakage kinetics is usually very slow, requiring minutes to hours for complete release of vesicle contents, and exhibits a biphasic behavior. We report here that, in the case of the peptaibol trichogin GA IV, all processes involved in peptide-membrane interaction, such as peptide-membrane association, peptide aggregation, and peptide translocation, take place on a timescale much shorter than the leakage kinetics. On the basis of these findings, we propose a stochastic model in which the leakage kinetics is determined by the discrete nature of a vesicle suspension: peptides are continuously exchanging among vesicles, producing significant fluctuations over time in the number of peptide molecules bound to each vesicle, and in the formation of pores. According to this model, the fast initial leakage is caused by vesicles that contain at least one pore after the peptides are randomly distributed among the liposomes, whereas the slower release is associated with the time needed to occasionally reach in an intact vesicle the critical number of bound peptides necessary for pore formation. Fluctuations due to peptide exchange among vesicles therefore represent the rate-limiting step of such a slow mechanism.  相似文献   

7.
The mechanism of the interaction between the cell-penetrating peptide transportan 10 (tp10) and phospholipid membranes was investigated. Tp10 induces graded release of the contents of phospholipid vesicles. The kinetics of peptide association with vesicles and peptide-induced dye efflux from the vesicle lumen were examined experimentally by stopped-flow fluorescence. The experimental kinetics were analyzed by directly fitting to the data the numerical solution of mathematical kinetic models. A very good global fit was obtained using a model in which tp10 binds to the membrane surface and perturbs it because of the mass imbalance thus created across the bilayer. The perturbed bilayer state allows peptide monomers to insert transiently into its hydrophobic core and cross the membrane, until the peptide mass imbalance is dissipated. In that transient state tp10 "catalyzes" dye efflux from the vesicle lumen. These conclusions are consistent with recent reports that used molecular dynamics simulations to study the interactions between peptide antimicrobials and phospholipid bilayers. A thermodynamic analysis of tp10 binding and insertion in the bilayer using water-membrane transfer hydrophobicity scales is entirely consistent with the model proposed. A small bilayer perturbation is both necessary and sufficient to achieve very good agreement with the model, indicating that the role of the lipids must be included to understand the mechanism of cell-penetrating and antimicrobial peptides.  相似文献   

8.
The ability to measure the kinetics of vesicle release can help provide insight into some of the basics of neurotransmission. Here we used real-time imaging of vesicles labeled with FM dye to monitor the rate of presynaptic vesicle release. FM4-64 is a red fluorescent amphiphilic styryl dye that embeds into the membranes of synaptic vesicles as endocytosis is stimulated. Lipophilic interactions cause the dye to greatly increase in fluorescence, thus emitting a bright signal when associated with vesicles and a nominal one when in the extracellular fluid. After a wash step is used to help remove external dye within the plasma membrane, the remaining FM is concentrated within the vesicles and is then expelled when exocytosis is induced by another round of electrical stimulation. The rate of vesicles release is measured from the resulting decrease in fluorescence. Since FM dye can be applied external and transiently, it is a useful tool for determining rates of exocytosis in neuronal cultures, especially when comparing the rates between transfected synapses and neighboring control boutons.  相似文献   

9.
Tamba Y  Yamazaki M 《Biochemistry》2005,44(48):15823-15833
It is thought that magainin 2, an antimicrobial peptide, acts by binding to lipid membranes. Recent studies using a suspension of large unilamellar vesicles (LUVs) indicate that magainin 2 causes gradual leakage from LUVs containing negatively charged lipids. However, the details of the characteristics of the membrane permeability and the mechanism of pore formation remain unclear. In this report, we investigated the interaction of magainin 2 with single giant unilamellar vesicles (GUVs) composed of a dioleoylphosphatidylcholine and dioleoylphosphatidylglycerol mixture (50% DOPG/50% DOPC GUVs) containing the fluorescent dye, calcein, by phase contrast, fluorescence microscopy using the single GUV method. Low concentrations (3-10 microM) of magainin 2 caused the rapid leakage of calcein from single GUVs but did not disrupt the liposomes or change the membrane structure, showing directly that magainin 2 forms membrane pores through which calcein leaked. The rapid leakage of calcein from a GUV started stochastically, and once it began, the complete leakage occurred rapidly (6-60 s). The fraction of completely leaked GUV, P(L), increased with time and also with an increase in magainin 2 concentration. Shape changes in these GUVs occurred prior to the pore formation and also at lower concentrations of magainin 2, which could not induce the pore formation. Their analysis indicates that binding of magainin 2 to the external monolayer of the GUV increases its membrane area, thereby raising its surface pressure. The addition of lysophosphatidylcholine into the external monolayer of GUVs increased P(L). On the basis of these results, we propose the two-state transition model for the pore formation.  相似文献   

10.
Defensins comprise a family of broad-spectrum antimicrobial peptides that are stored in the cytoplasmic granules of mammalian neutrophils and Paneth cells of the small intestine. Neutrophil defensins are known to permeabilize cell membranes of susceptible microorganisms, but the mechanism of permeabilization is uncertain. We report here the results of an investigation of the mechanism by which HNP-2, one of 4 human neutrophil defensins, permeabilizes large unilamellar vesicles formed from the anionic lipid palmitoyloleoylphosphatidylglycerol (POPG). As observed by others, we find that HNP-2 (net charge = +3) cannot bind to vesicles formed from neutral lipids. The binding of HNP-2 to vesicles containing varying amounts of POPG and neutral (zwitterionic) palmitoyloleoylphosphatidylcholine (POPC) demonstrates that binding is initiated through electrostatic interactions. Because vesicle aggregation and fusion can confound studies of the interaction of HNP-2 with vesicles, those processes were explored systematically by varying the concentrations of vesicles and HNP-2, and the POPG:POPC ratio. Vesicles (300 microM POPG) readily aggregated at HNP-2 concentrations above 1 microM, but no mixing of vesicle contents could be detected for concentrations as high as 2 microM despite the fact that intervesicular lipid mixing could be demonstrated. This indicates that if fusion of vesicles occurs, it is hemi-fusion, in which only the outer monolayers mix at bilayer contact sites. Under conditions of limited aggregation and intervesicular lipid mixing, the fractional leakage of small solutes is a sigmoidal function of peptide concentration. For 300 microM POPG vesicles, 50% of entrapped solute is released by 0.7 microM HNP-2. We introduce a simple method for determining whether leakage from vesicles is graded or all-or-none. We show by means of this fluorescence "requenching" method that native HNP-2 induces vesicle leakage in an all-or-none manner, whereas reduced HNP-2 induces partial, or graded, leakage of vesicle contents. At HNP-2 concentrations that release 100% of small (approximately 400 Da) markers, a fluorescent dextran of 4,400 Da is partially retained in the vesicles, and a 18,900-Da dextran is mostly retained. These results suggest that HNP-2 can form pores that have a maximum diameter of approximately 25 A. A speculative multimeric model of the pore is presented based on these results and on the crystal structure of a human defensin.  相似文献   

11.
The polymorphic phase behavior of bovine heart cardiolipin (CL) in the presence of different divalent cations and the kinetics of CL vesicle fusion induced by these cations have been investigated. (31)P-NMR measurements of equilibrium cation-CL complexes showed the lamellar-to-hexagonal (L(alpha)-H(II)) transition temperature (T(H)) to be 20-25 degrees C for the Sr(2+) and Ba(2+) complexes, whereas in the presence of Ca(2+) or Mg(2+) the T(H) was below 0 degrees C. In the presence of Sr(2+) or Ba(2+), CL large unilamellar vesicles (LUVs) (0.1 microm diameter) showed kinetics of destabilization, as assessed by determination of the release of an aqueous fluorescent dye, which strongly correlated with the L(alpha)-H(II) transition of the final complex: at temperatures above the T(H), fast and extensive leakage, mediated by vesicle-vesicle contact, was observed. On the other hand, mixing of vesicle contents was limited and of a highly transient nature. A different behavior was observed with Ca(2+) or Mg(2+): in the temperature range of 0-50 degrees C, where the H(II) configuration is the thermodynamically favored phase, relatively nonleaky fusion of the vesicles occurred. Furthermore, with increasing temperature the rate and extent of leakage decreased, with a concomitant increase in fusion. Fluorescence measurements, involving incorporation of N-NBD-phosphatidylethanolamine in the vesicle bilayer, demonstrated a relative delay in the L(alpha)-H(II) phase transition of the CL vesicle system in the presence of Ca(2+). Freeze-fracture electron microscopy of CL LUV interaction products revealed the exclusive formation of H(II) tubes in the case of Sr(2+), whereas with Ca(2+) large fused vesicles next to H(II) tubes were seen. The extent of binding of Ca(2+) to CL in the lamellar phase, saturating at a binding ratio of 0.35 Ca(2+) per CL, was close to that observed for Sr(2+) and Ba(2+). It is concluded that CL LUVs in the presence of Ca(2+) undergo a transition that favors nonleaky fusion of the vesicles over rapid collapse into H(II) structures, despite the fact that the equilibrium Ca(2+)-CL complex is in the H(II) phase. On the other hand, in the presence of Sr(2+) or Ba(2+) at temperatures above the T(H) of the respective cation-CL complexes, CL LUVs rapidly convert to H(II) structures with a concomitant loss of vesicular integrity. This suggests that the nature of the final cation-lipid complex does not primarily determine whether CL vesicles exposed to the cation will initially undergo a nonleaky fusion event or collapse into nonvesicular structures.  相似文献   

12.
We have investigated the temperature dependence of the fusion of phospholipid vesicles composed of pure bovine brain phosphatidylserine (PS) induced by Ca2+ or Mg2+. Aggregation of the vesicles was monitored by 90 degrees light-scattering measurements, fusion by the terbium/dipicolinic acid assay for mixing of internal aqueous volumes, and release of vesicle contents by carboxyfluorescein fluorescence. Membrane fluidity was determined by diphenylhexatriene fluorescence polarization measurements. Small unilamellar vesicles (SUV, diameter 250 A) or large unilamellar vesicles (LUV, diameter 1000 A) were used, and the measurements were done in 0.1 M NaCl at pH 7.4. The following results were obtained: (1) At temperatures (0-5 degrees C) below the phase transition temperature (Tc) of the lipid, LUV (PS) show very little fusion in the presence of Ca2+, although vesicle aggregation is rapid and extensive. With increasing temperature, the initial rate of fusion increases dramatically. Leakage of contents at the higher temperatures remains limited initially, but subsequently complete release occurs as a result of collapse of the internal aqueous space of the fusion products. (2) SUV (PS) are still in the fluid state down to 0 degree C, due to the effect of bilayer curvature, and fuse rapidly in the entire temperature range from 0 to 35 degrees C in the presence of Ca2+. The initial rate of leakage is low relative to the rate of fusion. At higher temperatures (15 degrees C and above), subsequent collapse of the vesicles' internal space causes complete release.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Interactions of the peptides melittin and magainin with phospholipid vesicle membranes have been studied using fluorescence correlation spectroscopy. Molecular interactions of melittin and magainin with phospholipid membranes are performed in rhodamine-entrapped vesicles (REV) and in rhodamine-labelled phospholipid vesicles (RLV), which did not entrap free rhodamine inside. The results demonstrate that melittin makes channels into vesicle membranes since exposure of melittin to vesicles causes rhodamine release only from REV but not from RLV. It is obvious that rhodamine can not be released from RLV because the inside of RLV is free of dye molecules. In contrast, magainin breaks vesicles since addition of magainin to vesicles results in rhodamine release from both REV and RLV. As the inside of RLV is free of rhodamine, the appearance of rhodamine in solution confirms that these vesicles are broken into rhodamine-labelled phospholipid fragments after addition of magainin. This study is of pharmaceutical significance since it will provide insights that fluorescence correlation spectroscopy can be used as a rapid protocol to test incorporation and release of drugs by vesicles.  相似文献   

14.
Exocytotic release of ATP from cultured astrocytes   总被引:2,自引:0,他引:2  
Astrocytes appear to communicate with each other as well as with neurons via ATP. However, the mechanisms of ATP release are controversial. To explore whether stimuli that increase [Ca(2+)](i) also trigger vesicular ATP release from astrocytes, we labeled ATP-containing vesicles with the fluorescent dye quinacrine, which exhibited a significant co-localization with atrial natriuretic peptide. The confocal microscopy study revealed that quinacrine-loaded vesicles displayed mainly non-directional spontaneous mobility with relatively short track lengths and small maximal displacements, whereas 4% of vesicles exhibited directional mobility. After ionomycin stimulation only non-directional vesicle mobility could be observed, indicating that an increase in [Ca(2+)](i) attenuated vesicle mobility. Total internal reflection fluorescence (TIRF) imaging in combination with epifluorescence showed that a high percentage of fluorescently labeled vesicles underwent fusion with the plasma membrane after stimulation with glutamate or ionomycin and that this event was Ca(2+)-dependent. This was confirmed by patch-clamp studies on HEK-293T cells transfected with P2X(3) receptor, used as sniffers for ATP release from astrocytes. Glutamate stimulation of astrocytes was followed by an increase in the incidence of small transient inward currents in sniffers, reminiscent of postsynaptic quantal events observed at synapses. Their incidence was highly dependent on extracellular Ca(2+). Collectively, these findings indicate that glutamate-stimulated ATP release from astrocytes was most likely exocytotic and that after stimulation the fraction of quinacrine-loaded vesicles, spontaneously exhibiting directional mobility, disappeared.  相似文献   

15.
The interaction between apolipoprotein A-I and small unilamellar vesicles of dipalmitoylphosphatidylcholine at the lipid phase transition resulted in complete release of vesicle contents at molar ratios of lipid to protein from 4000:1 down to 50:1. This indicated the existence of two types of stable complexes: a vesicular apo-A-I complex with a maximum of two to three apo-A-Is/vesicle, and a micellar complex (disc) with a stoichiometry of about 50 phosphatidylcholines/apo-A-I (mol/mol). We characterized the complexes by density gradient centrifugation, by gel filtration, and by immunoprecipitation using an anti-apo-A-I antibody. The morphology of the discs was similar to that of previously reported discs. Apo-A-I-induced release of vesicle contents was monitored by the relief of self-quenching of vesicle-encapsulated carboxyfluorescein. Using this assay we characterized the nature of the interaction between apo-A-I and phospholipid vesicles. The formation of complexes between vesicles and apo-A-I followed a two-step process; below or above the lipid phase transition temperature (Tc), apo-A-I bound to phosphatidylcholine vesicles but caused little leakage of contents. Kinetic analysis of the interaction between apo-A-I and dipalmitoylphosphatidylcholine vesicles below Tc indicated that about 1 in 500 collisions leads to a stable apo-A-I-vesicle complex. The second step involved passage of those complexes through Tc, which resulted in a very rapid transition into discs or vesicular complexes. Vesicular complexes contain apo-A-I which was no longer capable of interacting with pure lipid. Discs, on the other hand, interacted with vesicles at their phase transition.  相似文献   

16.
M E Haque  A J McCoy  J Glenn  J Lee  B R Lentz 《Biochemistry》2001,40(47):14243-14251
The effects of hemagglutinin (HA) fusion peptide (X-31) on poly(ethylene glycol)- (PEG-) mediated vesicle fusion in three different vesicle systems have been compared: dioleoylphosphatidylcholine (DOPC) small unilamellar vesicles (SUV) and large unilamellar vesicles (LUV) and palmitoyloleoylphosphatidylcholine (POPC) large unilamellar perturbed vesicles (pert. LUV). POPC LUVs were asymmetrically perturbed by hydrolyzing 2.5% of the outer leaflet lipid with phospholipase A(2) and removing hydrolysis products with BSA. The mixing of vesicle contents showed that these perturbed vesicles fused in the presence of PEG as did DOPC SUV, but unperturbed LUV did not. Fusion peptide had different effects on the fusion of these different types of vesicles: fusion was not induced in the absence of PEG or in unperturbed DOPC LUV even in the presence of PEG. Fusion was enhanced in DOPC SUV at low peptide surface occupancy but hindered at high surface occupancy. Finally, fusion was hindered in proportion to peptide concentration in perturbed POPC LUV. Contents leakage assays demonstrated that the peptide enhanced leakage in all vesicles. The peptide enhanced lipid transfer between both fusogenic and nonfusogenic vesicles. Peptide binding was detected in terms of enhanced tryptophan fluorescence or through transfer of tryptophan excited-state energy to membrane-bound diphenylhexatriene (DPH). The peptide had a higher affinity for vesicles with packing defects (SUV and perturbed LUV). Quasi-elastic light scattering (QELS) indicated that the peptide caused vesicles to aggregate. We conclude that binding of the fusion peptide to vesicle membranes has a significant effect on membrane properties but does not induce fusion. Indeed, the fusion peptide inhibited fusion of perturbed LUV. It can, however, enhance fusion between highly curved membranes that normally fuse when brought into close contact by PEG.  相似文献   

17.
Synaptic vesicles are central to neurotransmission and cognition. Studies of the Alzheimer's disease (AD) associated peptide, amyloid beta (Abeta), suggest that it has the potential to non-specifically solubilize or permeabilize membranes and that it has detergent and pore-forming properties. Damage to the membrane or integrity of synaptic vesicles could compromise its function. We test the hypothesis that the intact synaptic vesicle is a direct site of attack by Abeta1-42 in AD pathology by examining the properties of individual isolated vesicles exposed to Abeta1-42. In particular, we compared the rate of leakage of dye molecules from synaptic vesicles, the rate of proton permeation across the membrane of the vesicle, and the rate of active proton transport into the vesicle interior in the presence and absence of Abeta1-42. From these experiments, we conclude that isolated synaptic vesicles are not disrupted by Abeta1-42.  相似文献   

18.
Abstract

Two mechanisms of leakage from liposomes are discussed, (i) Cations such as Ca2+ induce graded release whose rate depends mainly on vesicle collisions and is associated in the case of several acidic phospholipids with fusion events. A certain degree of leakage also occurs in between collisions. Consequently, the leakage per fusion is reduced at larger lipid and Ca concentrations, (n) Certain peptides induce leakage by pore formation, which shows selectivity to the size of the entrapped molecules and occurs by an all or none mechanism; vesicles either leak or retain all of their contents. A model for final extents and kinetics of leakage due to pore forming peptides is described. This model assumes that pore forming peptides become incorporated into the vesicle bilayer and aggregate to form a pore. Recent developments in the model enable considerations of a reversible or irreversible surface aggregation of peptides. Results of final extents and kinetics of leakage induced by pore forming peptides can be well explained and predicted by this formalism. Studies demonstrate that Ca can play a dual role in affecting leakage. A case is presented where Ca + inhibits and can even arrest pore formation by a peptide, while promoting vesicle fusion. Conversely, formation of pore structures by a peptide can inhibit vesicle fusion.  相似文献   

19.
Peptides that induce apoptosis have potential as anticancer therapeutics. The design of safe, effective cancer therapeutic peptides requires characterization of the physical and chemical properties that influence activation of cell death in neoplastic cells. NTR365 is a synthetic pro-apoptotic peptide with an amino acid sequence derived from the death domain of p75(NTR). These studies were initiated to identify a potential mechanism for the apoptotic activity of NTR365 identified by Rabizadeh et al. We examined the interactions of this synthetic pro-apoptotic peptide with phospholipid vesicles. Fluorescence experiments demonstrate that the peptide induces leakage from large unilamellar vesicles. Leakage activity is transient and dependent on the presence of anionic lipid in the vesicles. Circular dichroism studies show that the NTR365 adopts a different conformation and may have altered vesicle affinity under conditions conducive to leakage. The active conformation of NTR365 differs from that of the NMR derived conformation. A related peptide with a single substitution is not apoptotically active, does not form a helical structure in the presence of vesicles and does not induce appreciable vesicle leakage under the same conditions as NTR365. These studies suggest that the demonstrated apoptotic activity of a closely related NTR364 peptide is linked to disruption of a membrane barrier and to the ability of the peptide to form a helical structure.  相似文献   

20.
D Rapaport  R Peled  S Nir    Y Shai 《Biophysical journal》1996,70(6):2502-2512
The mechanism of leakage induced by surface active peptides is not yet fully understood. To gain insight into the molecular events underlying this process, the leakage induced by the peptide pardaxin from phosphatidylcholine/ phosphatidylserine/cholesterol large unilamellar vesicles was studied by monitoring the rate and extent of dye release and by theoretical modeling. The leakage occurred by an all-or-none mechanism: vesicles either leaked or retained all of their contents. We further developed a mathematical model that includes the assumption that certain peptides become incorporated into the vesicle bilayer and aggregate to form a pore. The current experimental results can be explained by the model only if the surface aggregation of the peptide is reversible. Considering this reversibility, the model can explain the final extents of calcein leakage for lipid/peptide ratios of > 2000:1 to 25:1 by assuming that only a fraction of the bound peptide forms pores consisting of M = 6 +/- 3 peptides. Interestingly, less leakage occurred at 43 degrees C, than at 30 degrees C, although peptide partitioning into the bilayer was enhanced upon elevation of the temperature. We deduced that the increased leakage at 30 degrees C was due to an increase in the extent of reversible surface aggregation at the lower temperature. Experiments employing fluorescein-labeled pardaxin demonstrated reversible aggregation of the peptide in suspension and within the membrane, and exchange of the peptide between liposomes. In summary, our experimental and theoretical results support reversible surface aggregation as the mechanism of pore formation by pardaxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号