首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The msh-related homeobox genes, Msx1 and Msx2, have a variety functions during murine organogenesis, Msx1 in the development of the palate and teeth, Msx2 in the skull, teeth, and skin. Msx1 mutants die perinatally. Compound Msx1-2 mutants do not survive past late gestation. The multiplicity of functions of Msx1 and 2, as well as the lethality of Msx1 and Msx1-2 mutants limits the utility of the conventional knockouts. We therefore produced conditional alleles of Msx1 and Msx2. We constructed targeting vectors with LoxP sites flanking the homeodomain-encoding second exons and Frt sites flanking a neo gene. These vectors were used to produce targeted ES cells and mice with floxed alleles. The functionality of the LoxP sites in the floxed alleles was established by crosses with K14-Cre mice (epidermis-specific), and with an Msx2-Cre line that produces a germline deletion. Analysis of progeny by PCR revealed correct Cre-mediated recombination, as well as expected phenotypes.  相似文献   

2.
3.
In mice, gene targeting by homologous recombination continues to play an essential role in the understanding of functional genomics. This strategy allows precise location of the site of transgene integration and is most commonly used to ablate gene expression ("knock-out"), or to introduce mutant or modified alleles at the locus of interest ("knock-in"). The efficacy of producing live, transgenic mice challenges our understanding of this complex process, and of the factors which influence germline competence of embryonic stem cell lines. Increasingly, evidence indicates that culture conditions and in vitro manipulation can affect the germline-competence of Embryonic Stem cell (ES cell) lines by accumulation of chromosome abnormalities and/or epigenetic alterations of the ES cell genome. The effectiveness of ES cell derivation is greatly strain-dependent and it may also influence the germline transmission capability. Recent technical improvements in the production of germline chimeras have been focused on means of generating ES cells lines with a higher germline potential. There are a number of options for generating chimeras from ES cells (ES chimera mice); however, each method has its advantages and disadvantages. Recent developments in induced pluripotent stem (iPS) cell technology have opened new avenues for generation of animals from genetically modified somatic cells by means of chimera technologies. The aim of this review is to give a brief account of how the factors mentioned above are influencing the germline transmission capacity and the developmental potential of mouse pluripotent stem cell lines. The most recent methods for generating specifically ES and iPS chimera mice, including the advantages and disadvantages of each method are also discussed.  相似文献   

4.
Two recombination steps in embryonic stem (ES) cells were adopted to generate a floxed Germ Cell Nuclear Factor (GCNF) allele. First, a targeting vector containing a loxP site upstream of exon 4, encoding the DNA binding domain (DBD), and a floxed NeoTK double selection cassette downstream of exon 4 was integrated into the GCNF locus by homologous recombination. Second, a Cre-expressing vector was transiently introduced to remove the floxed NeoTK cassette via site-specific recombination. Heterogeneous ES cell populations were found in a single colony after Cre transfection and were separated using an ES cell re-pick step. Floxed GCNF mice were generated and had normal GCNF expression in the adult gonads. Using the Msx2Cre transgenic mice, the floxed GCNF can be completely deleted in the female germline. Taken together, the floxed GCNF mice were successfully generated and female germline deletion of the floxed GCNF allele was achieved using Msx2Cre mice.  相似文献   

5.
Generation of conditional Cited2 null alleles   总被引:1,自引:0,他引:1  
  相似文献   

6.
The jumonji (jmj) gene plays important roles in multiple organ development in mouse, including cardiovascular development. Since JMJ is expressed widely during mouse development, it is essential that conditional knockout approaches be employed to ablate JMJ in a tissue-specific manner to identify the cell lineage specific roles of JMJ. In this report, we describe the establishment of a jmj conditional null allele in mice by generating a loxP-flanked (floxed) jmj allele, which allows the in vivo ablation of jmj via Cre recombinase-mediated deletion. Gene targeting was used to introduce loxP sites flanking exon 3 of the jmj allele to mouse embryonic stem cells. Our results indicate that the jmj floxed allele converts to a null allele in a heart-specific manner when embryos homozygous for the floxed jmj allele and carrying the alpha-myosin heavy chain promoter-Cre transgene were analyzed by Southern and Northern blot analyses. Therefore, this mouse line harboring the conditional jmj null allele will provide a valuable tool for deciphering the tissue and cell lineage specific roles of JMJ.  相似文献   

7.
Retinoic acid, the active vitamin A derivative, has pleiotropic functions during vertebrate development and postnatal life. Retinaldehyde dehydrogenase 2 (RALDH2) acts as the main retinoic acid-synthesizing enzyme during development. Mouse Raldh2 germline null mutants are early embryonic lethal and exhibit complex abnormalities that include defective heart looping morphogenesis. To investigate later functions of this enzyme, we have engineered a "floxed" (loxP-flanked) allele allowing Cre-mediated somatic gene inactivations. Mice heterozygous or homozygous for the floxed Raldh2 allele are viable and fertile. We tested whether the novel Raldh2 allele behaves as a null mutation after Cre-mediated in vivo excision by crossing the conditional mutants with CMV-Cre transgenic mice. An embryonic lethal phenotype indistinguishable from that of germline mutants was obtained. The conditional allele described herein is a genetic tool for studying tissue-specific, RALDH2-dependent functions of retinoic acid during development and in adult life.  相似文献   

8.
Mouse embryonic stem (ES) cells are derived from the inner cell mass of blastocyst stage embryos and are used primarily for the creation of genetically engineered strains through gene targeting. While some inbred strains of mice are permissive to the derivation of embryonic stem cell lines and are therefore easily engineered, others are nonpermissive or recalcitrant. Genetic engineering of recalcitrant strain backgrounds requires gene targeting in a permissive background followed by extensive backcrossing of the engineered allele into the desired strain background. The inbred mouse strain DBA/2J is a recalcitrant strain that is used as a model of many human diseases, including glaucoma, deafness and schizophrenia. Here, we describe the generation of germ-line competent ES cell lines derived from DBA/2J mice. We also demonstrate the utility of DBA/2J ES cells with the creation of conditional knockout allele for Endothelin-2 (Edn2) directly on the DBA/2J strain background.  相似文献   

9.
Cre/LoxP‐mediated recombination allows for conditional gene activation or inactivation. When combined with an independent lineage‐tracing reporter allele, this technique traces the lineage of presumptive genetically modified Cre‐expressing cells. Several studies have suggested that floxed alleles have differential sensitivities to Cre‐mediated recombination, which raises concerns regarding utilization of Cre‐reporters to monitor recombination of other floxed loci of interest. Here, we directly investigate the recombination correlation, at cellular resolution, between several floxed alleles induced by Cre‐expressing mouse lines. The recombination correlation between different reporter alleles varied greatly in otherwise genetically identical cell types. The chromosomal location of floxed alleles, distance between LoxP sites, sequences flanking the LoxP sites, and the level of Cre activity per cell all likely contribute to observed variations in recombination correlation. These findings directly demonstrate that, due to non‐parallel recombination events, commonly available Cre reporter mice cannot be reliably utilized, in all cases, to trace cells that have DNA recombination in independent‐target floxed alleles, and that careful validation of recombination correlations are required for proper interpretation of studies designed to trace the lineage of genetically modified populations, especially in mosaic situations. genesis 51:436–442. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
11.
Conditional gene knockout using the Cre/loxP system is instrumental in advancing our understanding of the function of genes in a wide range of disciplines. It is becoming increasingly apparent in the literature that recombination mediated by some Cre transgenes can occur in unexpected tissues. Dermo1‐Cre (Twist2‐Cre) has been widely used to target skeletal lineage cells as well as other mesoderm‐derived cells. Here we report that Dermo1‐Cre exhibits spontaneous male germline recombination activity leading to a Cre‐mediated recombination of a floxed Ptk2 (Protein tyrosine kinase 2, also known as Fak [Focal adhesion kinase]) allele but not a floxed Rb1cc1 (RB1 inducible coiled‐coil 1, also known as Fip200 [FAK‐family Interacting Protein of 200 kDa]) allele at high frequency. This ectopic germline activity of Dermo1‐Cre occurred in all or none manner in a given litter. We demonstrated that the occurrence of germline recombination activity of Dermo1‐Cre transgene can be avoided by using female mice as parental Dermo1‐Cre carriers.  相似文献   

12.
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder caused by mutations in the TSC1 or TSC2 gene. Patients afflicted with TSC develop tumors in various organ systems, but cerebral pathology is particularly severe. Conventional gene disruption of the Tsc1 or Tsc2 gene in mice cause limited central nervous system pathology. Homozygous deletion of either gene causes midgestation lethality. To circumvent the homozygous lethality of the conventional Tsc2 knockout we have generated a conditional allele of the Tsc2 gene by homologous recombination in mouse ES cells. The homozygous Tsc2(flox/flox) mice are identical to wildtype in many organs typically affected by TSC, especially the brain. Using this Tsc2(flox) allele we have generated a null allele using Cre recombination. This allele will be useful in investigating TSC pathology with appropriate cell and organ specific Cre-transgenic mice.  相似文献   

13.
Generation of a Bmp2 conditional null allele   总被引:1,自引:0,他引:1  
Bone morphogenetic proteins (Bmp's) are known to play many important roles in embryogenesis. In addition, recent data from human genetic studies has revealed that Bmp's also have important functions in maintenance of the adult phenotype and aging. The original Bmp2 germline null allele resulted in lethality at embryonic day 7.0-10.5 due to malformation of the amnion/chorion and cardiac malformations. Because the early embryonic lethality of the Bmp2 germline null allele hinders further investigation into Bmp2 function at later stages, we generated a Bmp2 conditional null allele. Using gene targeting in mouse embryonic stem (ES) cells, we introduced LoxP sites upstream and downstream of Bmp2 exon 3 that encodes the mature peptide. Our results indicate that the Bmp2 conditional null allele is a true conditional null that encodes wildtype activity and reverts to a null allele after cre recombinase-induced recombination.  相似文献   

14.
15.
Lao Z  Raju GP  Bai CB  Joyner AL 《Cell reports》2012,2(2):386-396
Mosaic mutant analysis, the study of cellular defects in scattered mutant cells in a wild-type environment, is a powerful approach for identifying critical functions of genes and has been applied extensively to invertebrate model organisms. A highly versatile technique has been developed in mouse: MASTR (mosaic mutant analysis with spatial and temporal control of recombination), which utilizes the increasing number of floxed alleles and simultaneously combines conditional gene mutagenesis and cell marking for fate analysis. A targeted allele (R26(MASTR)) was engineered; the allele expresses a GFPcre fusion protein following FLP-mediated recombination, which serves the dual function of deleting floxed alleles and marking mutant cells with GFP. Within 24 hr of tamoxifen administration to R26(MASTR) mice carrying an inducible FlpoER transgene and a floxed allele, nearly all GFP-expressing cells have a mutant allele. The fate of single cells lacking FGF8 or SHH signaling in the developing hindbrain was analyzed using MASTR, and it was revealed that there is only a short time window when neural progenitors require FGFR1 for viability and that granule cell precursors differentiate rapidly when SMO is lost. MASTR is a powerful tool that provides cell-type-specific (spatial) and temporal marking of mosaic mutant cells and is broadly applicable to developmental, cancer, and adult stem cell studies.  相似文献   

16.
The presence in an intron of the ploxP-neo-loxP cassette often results in severe interference with gene expression. Consequently, many investigators selectively remove the ploxP-neo-loxP cassette by transient expression of Cre in ES cells. Although effective, the added manipulation of the ES cells may reduce the likelihood that a clone will be able to transmit via the germline. Therefore, we developed two novel approaches that remove the ploxP-neo-loxP by Cre-mediated recombination in mouse. First, the ploxP-neo-loxP-containing mice were crossed with EIIa-Cre transgenic mice. Second, a Cre-expression plasmid was injected into pronuclei of fertilized eggs bearing the ploxP-neo-loxP allele. Both approaches produced mosaic mice with partial and complete excision. These mosaic mice were then mated, and the neo-less conditional knockout allele was found in the offspring after screening only a few litters. These procedures provide options for removing neo directly in the mouse in addition to the commonly used approach that deletes neo in ES cells.  相似文献   

17.
常规基因剔除小鼠的获得主要是利用ES细胞的全能性先获得嵌合体小鼠,再利用:ES细胞的生殖系传递能力,通过嵌合体与野生型小鼠的交配获得杂合子小鼠.而四倍体补偿技术则可绕过嵌合体小鼠阶段,直接获得基因修饰杂合子小鼠.利用电融合技术和Piezoelectric microinjecfion显微注射技术建立了四倍体补偿技术,小鼠四倍体胚胎的获得率(电融合率)为(93.01±l.37)%,经体外培养囊胚形成率为(82.49±2.08)%.通过显微注射方法将2种129品系小鼠来源的ES细胞(CJ7和SCR012)注射到四倍体囊胚腔中,获得了完全ES细胞来源的小鼠,ES鼠的获得率分别为2.7%和8.3%.经微卫星DNA检测,成体小鼠的10个被检测组织均为129小鼠来源的.同时,也利用基因修饰的ES细胞进行了研究,获得了2种基因修饰的完全ES细胞来源的杂合子小鼠,部分小鼠具有繁殖能力,经繁育已获得了纯合子,其中凝血因子Ⅷ基因敲除小鼠获得了预期的血友病小鼠表型.上述结果说明四倍体补偿技术可应用于基因修饰小鼠的制备.  相似文献   

18.
Following gene targeting, a loxP-neo-loxP cassette was introduced into ES cells. The presence of a selectable marker such as neo in the targeted allele may result in gene interference in flox mice or unexpected phenotypes due to genetic ambiguity in direct knockout mice. Typically, the neo cassette is selectively removed by transient expression of the Cre recombinase in targeted ES cell. However, this method involves a tedious process of selecting, expanding, and screening ES cell clones which may compromise germline competency. Here, we describe a novel method of combining adenovirus-Cre mediated gene recombination with ES gene targeting to facilitate efficient loxP-neo-loxP removal in ES cells. We demonstrate that adenovirus-Cre infected ES cells can retain their germline competency. The procedures described here facilitate a rapid genetic manipulation of ES cells to obtain neo-free knockout animals, multiple gene targeting, homozygous mutant ES cells ideal for in vitro characterization, or Rag-deficient blastocyst complementation.  相似文献   

19.
Smads is a new gene family in transforming growth factor-β (TGF- β signaling pathway. Smad2 mutated in multiple human tumors and may be a candidate tumor suppressor gene. Targeted disruption of murine Smad2 gene resulted in embryonic lethality at E6.5. To study the function of Smad2 in vertebrate organgenesis and tumorigenesis, we constructed the Smad2 conditional targeting vector in which two LoxP sequences were placed to flank the sequences encoding the C terminal functional domain of Smad2. The validity of the LoxP sites in the targeting construct was tested in E. coli that express the Cre recombinase constitutively. The vector was electropo-rated into ES cells and 3 targeted ES cell clones were obtained by Southern blot screening. Targeted ES cells were introduced into C57BL/6J blastocysts by microinjection to generate germ-line chimeras. Genotyping analysis showed that 2 progeny among these chimeras carried the Smad2 conditional targeted allele. The establishment of Smad2 conditional gene targetin  相似文献   

20.
The fibroblast growth factor (FGF) signaling family controls a broad spectrum of cellular processes in development and adult tissue homeostasis and function, which is expressed in almost all tissues at all stages. FGF receptor substrate 2 alpha (FRS2alpha) is an adaptor protein that recruits downstream substrates to the FGF receptor (FGFR) tyrosine kinase. Disruption of Frs2alpha gene in mice abrogates activation of the mitogen-activated protein kinase pathway by the FGFR and leads to embryonic lethality at day E7.5 post copulation. To circumvent the embryonic lethality resulting from disruption of the Frs2alpha gene, which hinders further characterization of the role of FRS2alpha in adult tissue function and homeostasis, we generated an Frs2alpha conditional null allele for temporally- and tissue-specific disruption of the Frs2alpha gene. Using gene targeting in mouse embryonic stem cells, we introduced two loxP sites flanking the largest coding exon, exon 5, in the Frs2alpha allele. Our results indicate that the floxed Frs2alpha (Frs2alpha(flox)) allele is a true conditional null allele that encodes wildtype activity and is converted to a null allele after Cre recombinase mediated recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号