首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bardet-Biedl syndrome (BBS) is a rare autosomal recessive disorder characterized primarily by obesity, polydactyly, retinal dystrophy, and renal disease. The significant genetic and clinical heterogeneity of this condition have substantially hindered efforts to positionally clone the numerous BBS genes, because the majority of available pedigrees are small and the disorder cannot be assigned to any of the six known BBS loci. Consequently, the delineation of critical BBS intervals, which would accelerate the discovery of the underlying genetic defect(s), becomes difficult, especially for loci with minor contributions to the syndrome. We have collected a cohort of 163 pedigrees from diverse ethnic backgrounds and have evaluated them for mutations in the recently discovered BBS6 gene (MKKS) on chromosome 20 and for potential assignment of the disorder to any of the other known BBS loci in the human genome. Using a combination of mutational and haplotype analysis, we describe the spectrum of BBS6 alterations that are likely to be pathogenic; propose substantially reduced critical intervals for BBS2, BBS3, and BBS5; and present evidence for the existence of at least one more BBS locus. Our data also suggest that BBS6 is a minor contributor to the syndrome and that some BBS6 alleles may act in conjunction with mutations at other BBS loci to cause or modify the BBS phenotype.  相似文献   

2.
Bardet-Biedl syndrome (BBS) is a rare, autosomal recessive disorder; major phenotypic findings include dysmorphic extremities, retinal dystrophy, obesity, male hypogenitalism, and renal anomalies. In the majority of northern European families with BBS, the syndrome is linked to a 26-cM region on chromosome 11q13. However, the finding, so far, of five distinct BBS loci (BBS1, 1q; BBS2, 16q; BBS3, 3p; BBS4, 15q; BBS5, 2q) has hampered the positional cloning of these genes. We use linkage disequilibrium (LD) mapping in an isolated founder population in Newfoundland to significantly reduce the BBS1 critical region. Extensive haplotyping in several unrelated BBS families of English descent revealed that the affected members were homozygous for overlapping portions of a rare, disease-associated ancestral haplotype on chromosome 11q13. The LD data suggest that the BBS1 gene lies in a 1-Mb, sequence-ready region on chromosome 11q13, which should enable its identification.  相似文献   

3.
Bardet-Biedl syndrome (BBS) is a genetic disorder with the primary features of obesity, pigmentary retinopathy, polydactyly, renal malformations, mental retardation, and hypogenitalism. Patients with BBS are also at increased risk for diabetes mellitus, hypertension, and congenital heart disease. BBS is known to map to at least six loci: 11q13 (BBS1), 16q21 (BBS2), 3p13-p12 (BBS3), 15q22.3-q23 (BBS4), 2q31 (BBS5), and 20p12 (BBS6). Although these loci were all mapped on the basis of an autosomal recessive mode of inheritance, it has recently been suggested-on the basis of mutation analysis of the identified BBS2, BBS4, and BBS6 genes-that BBS displays a complex mode of inheritance in which, in some families, three mutations at two loci are necessary to manifest the disease phenotype. We recently identified BBS1, the gene most commonly involved in Bardet-Biedl syndrome. The identification of this gene allows for further evaluation of complex inheritance. In the present study we evaluate the involvement of the BBS1 gene in a cohort of 129 probands with BBS and report 10 novel BBS1 mutations. We demonstrate that a common BBS1 missense mutation accounts for approximately 80% of all BBS1 mutations and is found on a similar genetic background across populations. We show that the BBS1 gene is highly conserved between mice and humans. Finally, we demonstrate that BBS1 is inherited in an autosomal recessive manner and is rarely, if ever, involved in complex inheritance.  相似文献   

4.
Atopy describes a syndrome of immunoglobulin E (IgE)-mediated allergy that underlies asthma and infantile eczema. We have previously identified a locus on chromosome 13q14 that is linked to atopy and to the total serum immunoglobulin A concentration. We have therefore made a saturation genetic map of the region by typing 59 polymorphic microsatellite loci on chromosome 13q. Multipoint linkage analysis identified a 1-LOD support unit for the location of the atopy locus with a 7.5-cM region flanked by the loci D13S328 and D13S1269. The peak of linkage was at locus D13S161 with a nonparametric -log of P score of approximately 4.5. Parent of origin effects were present, with linkage primarily observed to paternally derived alleles. The genetic map of this region provides a basis for the effective identification of the chromosome 13 atopy gene.  相似文献   

5.
《Genomics》1999,55(1):2-9
Bardet–Biedl syndrome (BBS) is a rare, autosomal recessive disease characterized by retinal dystrophy, renal structural abnormalities, obesity, dysmorphic extremities, and hypogenitalism in males. BBS is genetically heterogeneous with four known loci: BBS1 (11q), BBS2 (16q), BBS3 (3p), and BBS4 (15q). The prevalence of BBS in Newfoundland is approximately 10-fold greater than in Switzerland (1:160,000) and similar to the prevalence among the Bedouin of Kuwait (1:13,500). A population-based genetic survey was performed on 17 BBS families from the island portion of the province of Newfoundland, a comparatively isolated region of Canada. The families in the study had a total of 36 well-documented, affected individuals with 12 families having 2 or more affected individuals. Linkage at each of the four known loci was tested with two-point linkage and haplotype analysis. Three of the 17 kindreds showed linkage to 11q, 1 to 16q, and 1 to 3p. The latter is the first BBS3 family identified in a population of northern European descent. Six families remain undetermined because of poor pedigree structure or inconclusive haplotype analyses. Six families were excluded from all four known BBS loci, indicating that there is at least a fifth BBS locus (BBS5).  相似文献   

6.
Autosomal recessive spinal muscular atrophy (SMA) has been mapped to a 6-cM interval on chromosome 5q12–13.3, flanked proximally by locus D5S6 and distally by locus D5S112. In this study we describe the isolation of two new microsatellite markers (EF1/2a and EF13/14) near locus D5S125, which lies 2 cM distal to D5S6. We show by linkage analysis and the study of the recombinants in 55 SMA pedigrees that the disease lies in the 4-cM interval between EF1/2a and D5S112. Fluorescence in situ analysis of cosmids from D5S6, EF1/2a and D5S112 confirms the genetic order and relative distance of markers. The microsatellites EF1/2a and EF13/14 are the first highly polymorphic PCR based proximal markers in SMA to be described, and will be of value in prental prediction of the disorder.  相似文献   

7.
Wilson disease (WD) is an autosomal recessive disorder resulting in copper accumulation to toxic levels. Patients may present with neurologic, hepatic, or hematologic disease at any age between the first and fifth decade of life. Because of clinical heterogeneity, genetic heterogeneity in the etiology of the disease has been proposed. Recently, linkage of the WD locus to loci on 13q has been demonstrated in five Middle-Eastern kindreds. We have used esterase D and several polymorphic markers on 13q to investigate linkage in WD pedigrees from the United States and Canada. Ten kindreds, three with hepatic and seven with neurologic presentations, were informative, yielding a lod score of 2.189 at a recombination fraction of .06 with probe 7F12 at D13S1. Patients were generally of mixed European background, but one particularly informative pedigree was Hispanic. Our data confirm the provisional assignment of the gene for WD to 13q. More specifically, our findings indicate that, irrespective of ethnic background or clinical presentation, the linkage to 13q will be present in most pedigrees. The relative lack of linkage heterogeneity indicates that closely linked polymorphic loci on 13q can be useful in prenatal and presymptomatic diagnosis and in heterozygote detection.  相似文献   

8.
We describe a new dysmorphic syndrome in an inbred Saudi Arabian family with 21 members. Five males and one female have similar craniofacial features including wide open calvarial sutures with large and late-closing anterior fontanels, frontal bossing, hyperpigmentation with capillary hemangioma of the forehead, significant hypertelorism, and a broad and prominent nose. In addition, these individuals have Y-shaped sutural cataracts diagnosed by 1-2 years of age. No chromosomal or biochemical abnormalities were identified. A genome-wide scan was performed, and two-point LOD score analysis, assuming autosomal recessive inheritance, detected linkage to chromosome 14q13-q21. The highest LOD scores were obtained for marker GATA136A04 (LOD=4.58 at theta=0.00) and for the adjacent telomeric marker D14S1048 (LOD=4.32 at theta=0.00). Multipoint linkage analysis resulted in a maximum LOD score of 5.44 between markers D14S1048 and GATA136A04. Model independent analysis by SIBPAL confirmed linkage to the same chromosomal region. Haplotype analysis indicated that all affected individuals were homozygous for the interval on chromosome 14q13-q21 with two recombinants for D14S1014 (centromeric) and one recombinant for D14S301 (telomeric). These recombinations limit the disease locus to a region of approximately 7.26 Mb. Candidate genes localized to this region were identified, and analysis of PAX9 did not identify mutations in these patients. The unique clinical phenotype and the mapping data suggest that this family represents a novel autosomal recessive syndrome.  相似文献   

9.
Ataxia telangiectasia (AT) is an autosomal recessive diseaseof unknown etiology associated with cerebellar ataxia, telangiectasia,immune dysfunction, higher cancer risk, genomic instabilityand hypersensitivity to ionizing radiation. The major AT loci,AT-A and AT-C, are shown to be closely linked at chromosome11q22–q23. The most recent genetic linkage mapping andlinkage disequilibrium analysis have localized the major ATloci to a sequence of approximately 850 kb between the markersD11S1819 and D11S1818. The isolation of yeast artificial chromosomesspanning the AT region is an essential step to identify thegene or genes responsible for the mutation(s). We isolated atotal of 20 YAC clones from three independent YAC libraries,using sequence tagged sites mapped in the AT region as primersfor PCR-based YAC screening. The PCR assay for the presenceor absence of 16 different DNA markers allowed us to constructand to order four YAC contigs at the AT region. One of the contigswhich consists of the 10 YAC clones, covers about 2 Mb of DNAat the boundary between Giemsa-positive band 11q22.3 and Giemsa-negativeband 11q23.1 and includes the entire region of the major ATlocus between D11S1819 and D11S1818. Thus, the YAC contigs willfacilitate the positional cloning approach for searching transcribedsequences from the defined genomic region.  相似文献   

10.
Although autosomal recessive spinal muscular atrophy (SMA) has been mapped to chromosome 5q12-q13, there is for this region no genetic map based on highly informative markers. In this study we present the mapping of two previously reported microsatellite markers in 40 CEPH and 31 SMA pedigrees. We also describe the isolation of a new microsatellite marker at the D5S112 locus. The most likely order of markers (with recombination fractions given in parentheses) is 5cen-D5S6-(.02)-D5S125-(.04)-(JK53CA1/2,D5S11 2)-(.04)-D5S39-qter. The relative order of D5S6, D5S112, and D5S39 was confirmed by in situ hybridization. Multipoint linkage analysis in 31 SMA families indicates that the SMA locus lies in the 6-cM interval between D5S6 and JK53CA1/2, D5S112.  相似文献   

11.
Progressive familial intrahepatic cholestasis (PFIC; OMIM 211600) is the second most common familial cholestatic syndrome presenting in infancy. A locus has previously been mapped to chromosome 18q21-22 in the original Byler pedigree. This chromosomal region also harbors the locus for benign recurrent intrahepatic cholestasis (BRIC) a related phenotype. Linkage analysis in six consanguineous PFIC pedigrees from the Middle East has previously excluded linkage to chromosome 18q21-22, indicating the existence of locus heterogeneity within the PFIC phenotype. By use of homozygosity mapping and a genome scan in these pedigrees, a locus designated "PFIC2" has been mapped to chromosome 2q24. A maximum LOD score of 8.5 was obtained in the interval between marker loci D2S306 and D2S124, with all families linked.  相似文献   

12.
Ghosal hemato-diaphyseal dysplasia is a rare autosomal recessive disorder characterized by a progressive sclerosing diaphyseal dysplasia and refractory anemia. The pathogenesis and genetic bases of this syndrome remain hitherto unknown. We have performed a genome wide search in two inbred families originating from Algeria and Tunisia. Here, we report on the mapping of a disease gene to chromosome 7q33–34 (Z max = 4.21 at θ = 0 at locus D7S2513) in a 3.4 Mb defined by loci D7S2560 and AC091742. Ongoing studies will hopefully lead to identification of the disease-causing gene.  相似文献   

13.
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by both population and phenotypic heterogeneity. Our group previously identified linkage to SLE at 4p16 in European Americans (EA). In the present study we replicate this linkage effect in a new cohort of 76 EA families multiplex for SLE by model-free linkage analysis. Using densely spaced microsatellite markers in the linkage region, we have localized the potential SLE susceptibility gene(s) to be telomeric to the marker D4S2928 by haplotype construction. In addition, marker D4S394 showed marginal evidence of linkage disequilibrium with the putative disease locus by the transmission disequilibrium test and significant evidence of association using a family-based association approach as implemented in the program ASSOC. We also performed both two-point and multipoint model-based analyses to characterize the genetic model of the potential SLE susceptibility gene(s), and the lod scores both maximized under a recessive model with penetrances of 0.8. Finally, we performed a genome-wide scan of the total 153 EA pedigrees and evaluated the possibility of interaction between linkage signals at 4p16 and other regions in the genome. Fourteen regions on 11 chromosomes (1q24, 1q42, 2p11, 2q32, 3p14.2, 4p16, 5p15, 7p21, 8p22, 10q22, 12p11, 12q24, 14q12, 19q13) showed evidence of linkage, among which, signals at 2p11, 12q24 and 19q13 also showed evidence of interaction with that at 4p16. These results provide important additional information about the SLE linkage effect at 4p16 and offer a unique approach to uncovering susceptibility loci involved in complex human diseases.  相似文献   

14.
Hereditary neuralgic amyotrophy (HNA) is an autosomal dominant disorder that is associated with episodic recurrent brachial plexus neuropathy. A mutation for HNA maps to chromosome 17q25. To refine the HNA locus further, we carried out genetic linkage studies in seven pedigrees with a high density set of DNA markers from chromosome 17q25. All pedigrees demonstrated linkage to chromosome 17q25, and an analysis of recombinant events placed the HNA locus within an interval of approximately 1 Mb flanked by markers D17S722 and D17S802. In order to test the power of linkage disequilibrium mapping, we compared genotypes of 12 markers from seven pedigrees that were from the United States and that showed linkage to chromosome 17q25. The haplotypes identified a founder effect in six of the seven pedigrees with a minimal shared haplotype that further refines the HNA locus to an interval of approximately 500 kb. These findings suggest that, for the pedigrees from the United States, there are at least two different mutations in the HNA gene.  相似文献   

15.
Nijmegen breakage syndrome (NBS; Seemanová II syndrome) and Berlin breakage syndrome (BBS), also known as ataxia-telangiectasia variants, are two clinically indistinguishable autosomal recessive familial cancer syndromes that share with ataxia-telangiectasia similar cellular, immunological, and chromosomal but not clinical findings. Classification in NBS and BBS was based on complementation of their hypersensitivity to ionizing radiation in cell-fusion experiments. Recent investigations have questioned the former classification into two different disease entities, suggesting that NBS/BBS is caused by mutations in a single radiosensitivity gene. We now have performed a whole-genome screen in 14 NBS/BBS families and have localized the gene for NBS/BBS to a 1-cM interval on chromosome 8q21, between markers D8S271 and D8S270, with a peak LOD score of 6.86 at D8S1811. This marker also shows strong allelic association to both Slavic NBS and German BBS patients, suggesting the existence of one major mutation of Slavic origin. Since the same allele is seen in both former complementation groups, genetic homogeneity of NBS/BBS can be considered as proved.  相似文献   

16.
Netherton syndrome (NS [MIM 256500]) is a rare and severe autosomal recessive disorder characterized by congenital ichthyosis, a specific hair-shaft defect (trichorrhexis invaginata), and atopic manifestations. Infants with this syndrome often fail to thrive; life-threatening complications result in high postnatal mortality. We report the assignment of the NS gene to chromosome 5q32, by linkage analysis and homozygosity mapping in 20 families affected with NS. Significant evidence for linkage (maximum multipoint LOD score 10.11) between markers D5S2017 and D5S413 was obtained, with no evidence for locus heterogeneity. Analysis of critical recombinants mapped the NS locus between markers D5S463 and D5S2013, within an <3.5-cM genetic interval. The NS locus is telomeric to the cytokine gene cluster in 5q31. The five known genes encoding casein kinase Ialpha, the alpha subunit of retinal rod cGMP phosphodiesterase, the regulator of mitotic-spindle assembly, adrenergic receptor beta2, and the diastrophic dysplasia sulfate-transporter gene, as well as the 38 expressed-sequence tags mapped within the critical region, are not obvious candidates. Our study is the first step toward the positional cloning of the NS gene. This finding promises a better understanding of the molecular mechanisms that control epidermal differentiation and immunity.  相似文献   

17.
Bardet-Biedl Syndrome (BBS) is an autosomal recessive disorder characterized by developmental abnormalities including mental retardation, obesity, retinitis pigmentosa, polydactyly, short stature, and hypogenitalism. To date, five BBS loci have been identified. BBS1, located on 11q13, is reported to be the most prevalent form of BBS in the Caucasian population. A positional cloning approach is being used to identify the gene responsible for BBS1. EHD1, a new member of the EH-domain containing proteins, was identified in this study as lying within the BBS1 disease interval. RNA analysis of many tissues revealed that expression of EHD1 is ubiquitous, with elevated levels in the testis. The genomic structure of EHD1 was elucidated by direct BAC sequencing. Following identification of the intron/exon boundaries, mutational analysis was performed by single strand conformation polymorphism and direct sequencing of affected individuals from several large kindreds linked to the BBS1 locus, as well as a cohort of unrelated probands. No disease-causing mutations were identified in this analysis, but several polymorphisms were found.  相似文献   

18.
FG syndrome (FGS, MIM 305450) is a rare X-linked recessive disorder comprising mental retardation and multiple malformations. Various families have been described to date, increasing our knowledge of the phenotype variability and making the clinical diagnosis complex, especially in sporadic patients. The first locus for FG syndrome (FGS1) was linked to chromosome region Xq12-q21.31, but other families have been excluded from this locus. The genetic heterogeneity of FG syndrome has been confirmed by analysis of an X chromosome inversion [inv(X)(q11q28)] in an affected boy and in his mentally retarded maternal uncle, suggesting that an additional locus for FG syndrome (FGS2, MIM 300321) is located at either Xq11 or Xq28. Recently, a third locus (FGS3) has been mapped to Xp22.3. We have identified and clinically characterized an Italian FG family, including 31 members with three affected males in two generations and two obligate carriers. We have excluded linkage to known FGS loci, whereas an extensive study of the whole X chromosome has yielded a maximum LOD score (Z(max)) of 2.66 (recombination fraction=0) for markers between DXS8113 and sWXD805. This new locus for FG syndrome corresponds to a region of approximately 4.6 Mb on the X chromosome.  相似文献   

19.
The transgene-induced mutation 9257 and the spontaneous mutation twirler cause craniofacial and inner ear malformations and are located on mouse chromosome 18 near the ataxia locusax.To map the human homolog of 9257, a probe from the transgene insertion site was used to screen a human genomic library. Analysis of a cross-hybridizing human clone identified a 3-kb conserved sequence block that does not appear to contain protein coding sequence. Analysis of somatic cell hybrid panels assigned the human locus to 18q11. The polymorphic microsatellite markers D18S1001 and D18S1002 were isolated from the human locus and mapped by linkage analysis using the CEPH pedigrees. The 9257 locus maps close to the centromeres of human chromosome 18q and mouse chromosome 18 at the proximal end of a conserved linkage group. To evaluate the role of this locus in human craniofacial disorders, linkage to D18S1002 was tested in 11 families with autosomal dominant nonsyndromic cleft lip and palate and 3 families with autosomal dominant cleft palate only. Obligatory recombinants were observed in 8 of the families, and negative lod scores from the other families indicated that these disorders are not linked to the chromosome 18 loci.  相似文献   

20.
Essential tremor (ET) is the most common extrapyramidal disorder of the central nervous system with autosomal dominant transmission in the majority of cases and age-dependent penetrance of the mutant gene. In a number of cases, it shares some phenotypic features with autosomal dominant idiopathic torsion dystonia (locus DYT1 on chromosome 9q32-34) and is genetically heterogeneous: distinct variants of ET were mapped to chromosomes 3q13 (ETM1) and 2p22-25 (ETM2). We performed studies of candidate loci in a group of Slavonic (11 patients) and Tajik (19 patients) families with ET. Mutational analysis of the DYT gene in probands did not reveal the major deletion 946-948delGAG characteristic of idiopathic torsion dystonia, which allows one to genetically distinguish the studied hereditary forms of ET and torsion dystonia. Based on analysis of genetic linkage in informative Tajik pedigrees with ET, linkage to locus ETM1 on chromosome 3q13 was established in four families. Maximum pairwise Lod score was 2.46 at recombination fraction of theta = 0.00; maximum combined multipoint Lod score was 3.35 for marker D3S3720 and a common "mutant" haplotype for markers D3S3620, D3S3576, and D3S3720 allowed us to locate a mutant gene in a relatively narrow chromosome region spanning 2 cM. In one informative pedigree with ET, both candidate loci ETM1 and ETM2 were definitely excluded on the basis of negative Lod scores obtained by linkage estimations, which testifies to the existence of another distinct gene for autosomal dominant ET.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号