首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Estradiol (E(2)) and tamoxifen exert their effects through two members of the nuclear receptor superfamily, estrogen receptor (ER)-alpha and -beta. We want to identify the key interactions linking ligand-binding and activity of the ERalpha. Asp-351 and Leu-536 participate in hydrogen bond (Asp-351) and hydrophobic (Leu-536) interactions at the start of helix 12 in the ligand-binding domain (LBD) of the ERalpha. Mutations at each position alter ER activity, but we do not know which is more important. We mutated these residues in combination and individually and assessed the activity of the mutated ERs in the absence and presence of E(2) and 4-OHT on an ERE-driven and an AP-1-driven promoter, as well as their ability to interact with coregulators. On an ERE-driven promoter, the residue at position 351 determined whether E(2) stimulated or reduced the activity of the ER, as well as the level of activity in the presence of 4-OHT. Surprisingly, mutation of both residues generally did not produce cumulative deleterious effects, and they exerted counterbalancing effects on the basal activity on both promoters. Our results identify the contributions of specific interactions to the activity of the hERalpha, and support the concept that this region couples ligand-binding with ER activity.  相似文献   

9.
10.
11.
雌激素或类雌激素活性物质通过细胞核雌激素受体(nuclear estrogen receptor, nER)通路发挥相应的生理性作用。当这些配体被nER的配体结合域(ligand binding domain, LBD)识别后进入疏水性配体结合空腔内并引起受体构象发生改变,使得原先处于高度活动性的helix 12(H12)被固定从而进一步稳定空腔结构|同时nER也能通过招募一系列辅助调节因子及其他共调节蛋白质,最终调控基因转录。但是,由于不同的配体和受体结合形成的晶体结构并不完全相同,导致这些复合体具有不同的性质,从而影响基因的转录活性。本文综述了nER配体结合域及结合配体后形成的相应晶体结构与活性以及不同配体对受体结构和基因转录的影响。  相似文献   

12.
13.
14.
15.
The antiestrogen tamoxifen has been widely used for decades as selective estrogen receptor (ER) modulator for ERalpha-positive breast tumors. Tamoxifen significantly reduces tumor recurrence by binding to the activation function-2 (AF-2) domain of the ER. Acquired resistance to tamoxifen in breast cancer patients is a serious therapeutic problem. Antiestrogen-resistant breast cancer often shows increased expression of the epidermal growth factor receptor (EGFR) family members, EGFR and ErbB2. In this report we now show that overexpression of EGFR or activated AKT-2 in MCF-7 cells leads to phosphorylation of Ser167 in the AF-1 domain of ERalpha, enhanced ER-amplified in breast cancer 1 (ER:AIB1) interaction in the presence of tamoxifen, and resistance to tamoxifen. In contrast, transfection of activated MAPK kinase, an immediate upstream activator of MAPK (ERK 1 and 2) into MCF-7 cells leads to phosphorylation of Ser118 in the AF-1 domain of ERalpha, inhibition of ER-amplified in breast cancer 1 (ER:AIB1) interaction in the presence of Tam, and maintenance of sensitivity to tamoxifen. Inhibition of AKT by short inhibitory RNA blocked Ser167 phosphorylation in ER and restored tamoxifen sensitivity. However, maximum sensitivity to tamoxifen was observed when both AKT and MAPK were inhibited. Taken together, these data demonstrate that different phosphorylation sites in the AF-1 domain of ERalpha regulate the agonistic and antagonistic actions of tamoxifen in human breast cancer cells.  相似文献   

16.
17.
Although the two subtypes of the human estrogen receptor (ER), ERalpha and ERbeta, share only 56% amino acid sequence identity in their ligand binding domain (LBD), the residues that surround the ligand are nearly identical; nevertheless, subtype-selective ligands are known. To understand the molecular basis by which diarylpropionitrile (DPN), an ERbeta-selective ligand, is able to discriminate between the two ERs, we examined its activity on ER mutants and chimeric constructs generated by DNA shuffling. The N-terminal region of the ERbeta LBD (through helix 6) appears to be fully responsible for the ERbeta selectivity of DPN. In fact, a single ERalpha point mutation (L384M) was largely sufficient to switch the DPN response of this ER to that of the ERbeta type, but residues in helix 3 are also important in achieving the full ERbeta selectivity of DPN. Using molecular modeling, we found an energetically favorable fit for the S-DPN enantiomer in ERbeta, in which the proximal phenol mimics the A ring of estradiol, and the nitrile engages in stabilizing interactions with residues in the ligand-binding pocket of ERbeta. Our findings highlight that a limited number of critical interactions of DPN with the ERbeta ligand-binding pocket underlie its ER subtype-selective character.  相似文献   

18.
Brooks SC  Skafar DF 《Steroids》2004,69(6):401-418
A variety of compounds, including the selective estrogen receptor (ER) modulators tamoxifen and raloxifene, phytoestrogens such as genistein, and xenoestrogens such as bisphenol, bind to the estrogen receptor and elicit biological responses. Structural studies have linked the altered activity of compounds such as 4-hydroxytamoxifen, raloxifene, genistein, and tetrahydrochrysene, which have substantially different structures from estradiol (E2), to differences in the positioning of the critical "helix 12" within the ligand-binding domain (LBD) of the ER-ligand complex. However, subtle permutations of the E2 molecule would also be expected to modulate the pattern of responses within a cell. Forty-two ligands were constructed by the addition or relocation of double bonds, hydroxyl, keto, amino, and nitro substituents throughout the estra-l,3,5(10)-triene (estratriene) ring system. In this review, we summarize the effects of subtle changes in the estratriene molecule on the ability of the receptor complex to stimulate the growth of MCF-7 cells, or affect the expression of four estrogen-regulated genes (progesterone receptor, pS2 protein, cathepsin D, and tissue plasminogen activator), as well as undergo nuclear processing and downregulate ERalpha mRNA. The affinity of these ligands for, and mechanism of their binding with, the ERalpha have been measured, along with their effect on the conformation of the ER-ERE complex. In particular, two A-ring isomers of E2, 2- and 4-hydroxyestratriene-17beta-ol, display gene selective activity within MCF-7 cells which is dependent on complex endogenous promoters, an intact AF-2 and is sensitive to the level of SRC-1. Both of these A-ring isomers function as antiestrogens. Molecular modeling of these two A-ring isomers complexed with the ER ligand-binding domain supports the idea that the conformation of the LBD is affected by subtle changes in the estratriene structure.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号