首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Octopamine treatment has previously been shown to increase honey bee foraging behaviour. We determined the effects of octopamine on other tasks to learn how octopamine affects division of labour in honey bee colonies. Octopamine treatment did not increase the rate of corpse removal from the hive, suggesting that elevated brain levels of octopamine do not act to increase the performance of all flight-related tasks. Octopamine treatment also did not increase attendance in the queen's retinue, suggesting that elevated brain levels of octopamine do not act to increase responsiveness to all olfactory stimuli. Consistent with these findings, octopamine treatment enhanced the foraging response to brood pheromone but not the cell capping response, a component of brood care. These results demonstrate a relatively specific form of neuromodulation by octopamine in the regulation of division of labour in honey bee colonies.  相似文献   

2.
SYNTHETIC QUEEN MANDIBULAR GLAND PHEROMONE (QMP) WAS APPLIED TO HONEY BEE COLONIES TO TEST TWO HYPOTHESES: (i) QMP acts like a primer pheromone in the regulation of age-related division of labor, and (ii) this primer effect, if present, varies in three strains of workers that show genetically-based differences in their retinue attraction response to QMP (a pheromone releaser effect). Strains of workers that were high, or low in their response to QMP in a laboratory bioassay, as well as unselected 'wild-type' workers, were fostered in queenright colonies with or without supplemental QMP. Effects of QMP on foraging ontogeny and juvenile hormone III (JH) blood titers in worker honey bees were measured. Bees in QMP-supplemented colonies showed significant delays in foraging ontogeny, and foraging activity was reduced. They also had significantly lower JH titers, although the titer curves were somewhat atypical. There were no differences in foraging ontogeny or JH titers among the three strains. We conclude that (i) QMP can delay the ontogeny of foraging by some mechanism that suppresses JH production, (ii) this QMP primer response is independent of the retinue releaser response, and (iii) QMP can play an important role in regulating division of labour.  相似文献   

3.
Sagili RR  Pankiw T  Metz BN 《PloS one》2011,6(2):e16785
Division of labor is a striking feature observed in honey bees and many other social insects. Division of labor has been claimed to benefit fitness. In honey bees, the adult work force may be viewed as divided between non-foraging hive bees that rear brood and maintain the nest, and foragers that collect food outside the nest. Honey bee brood pheromone is a larval pheromone that serves as an excellent empirical tool to manipulate foraging behaviors and thus division of labor in the honey bee. Here we use two different doses of brood pheromone to alter the foraging stimulus environment, thus changing demographics of colony division of labor, to demonstrate how division of labor associated with brood rearing affects colony growth rate. We examine the effects of these different doses of brood pheromone on individual foraging ontogeny and specialization, colony level foraging behavior, and individual glandular protein synthesis. Low brood pheromone treatment colonies exhibited significantly higher foraging population, decreased age of first foraging and greater foraging effort, resulting in greater colony growth compared to other treatments. This study demonstrates how division of labor associated with brood rearing affects honey bee colony growth rate, a token of fitness.  相似文献   

4.
Division of labor is a hallmark of eusocial insects and their ecological success can be attributed to it. Honey bee division of labor proceeds along a stereotypical ontogenetic path based on age, modulated by various internal and external stimuli. Brood pheromone is a major social pheromone of the honey bee that has been shown to affect honey bee division of labor. It elicits several physiological and behavioral responses; notably, regulating the timing of the switch from performing in-hive tasks to the initiation of foraging. Additionally, brood pheromone affects future foraging choice. In honey bees, sucrose response threshold is a physiological correlate of age of first foraging and foraging choice. Brood pheromone has been shown to modulate sucrose response threshold in young bees, but its effects on sucrose response thresholds of bees in advanced behavioral states (foragers) are not known. In this study we examined the sucrose response thresholds of two different task groups, foragers (pollen and non-pollen) and non-foraging bees, in response to honey bee brood pheromone. Sucrose response thresholds were not significantly different between brood pheromone treatment and controls among both non-pollen and pollen foragers. However, the sucrose response threshold of non-foraging bees was significantly higher in the brood pheromone treatment group than in the control group. The switch to foraging task is considered a terminal one, with honey bee lifespan being determined at least partially by risks and stress accompanying foraging. Our results indicate that foragers are physiologically resistant to brood pheromone priming of sucrose response thresholds.  相似文献   

5.
Foraging for pollen is an important behavior of the honey bee because pollen is their sole source of protein. Through nurse bees, larvae are the principal consumers of pollen. Fatty acid esters extractable from the surface of larvae, called brood pheromone, release multiple colony-level and individual foraging behaviors increasing pollen intake. In this study pollen forager turnaround time was measured in observation hives supplemented with brood pheromone versus a blank control treatment. Treatment with brood pheromone significantly decreased pollen forager turnaround time in the hive between foraging bouts by approximately 72%. Concurrently, brood pheromone increased the ratio of pollen to non-pollen foragers entering colonies. Brood pheromone has been shown to release most of the mechanisms known to increase pollen intake by colonies acting as an important regulator of colony foraging decisions and growth.  相似文献   

6.
Brood pheromone modulated the foraging behavior of commercial honey bee, Apis mellifera L., colonies pollinating a 10-ha market garden of cucumber, Cucurbita pepo L., and zucchini, Cucumis saticus L., in Texas in late autumn. Six colonies were randomly selected to receive 2000 larval equivalents of brood pheromone and six received a blank control. The ratio of pollen to nonpollen foragers entering colonies was significantly greater in pheromone-treated colonies 1 h after treatment. Pheromone-treated foragers returned with pollen load weights that were significantly heavier than controls. Pollen returned by pheromone-treated foragers was 43% more likely to originate from the target crop. Number of pollen grains washed from the bodies of nonpollen foragers from pheromone-treated colonies was significantly greater than controls and the pollen was 54% more likely to originate from the target crop. Increasing the foraging stimulus environment with brood pheromone increased colony-level foraging and individual forager efforts. Brood pheromone is a promising technology for increasing the pollination activity and efficiency of commercial honey bee colonies.  相似文献   

7.
Worker honey bees treated with 250 μg of the juvenile hormone analogue methoprene shifted from the broodnest to the food storage region prematurely and displayed precocious foraging behaviour. Treatments with 25 and 2.5 μg caused slight but non-significant effects. Methoprene did not influence individual foraging performance as measured by mean number of foraging trips/h, mean amount of time spent foraging/h or mean duration of the total foraging period. Methoprene also induced premature production of two alarm pheromones, 2-heptanone and isopentyl acetate. These results support the hypothesis that juvenile hormone regulates temporal division of labour in the honey bee colony.  相似文献   

8.
A defining feature of social insects is the reproductive division of labour, in which workers usually forego all reproduction to help their mother queen to reproduce. However, little is known about the molecular basis of this spectacular form of altruism. Here, we compared gene expression patterns between nonreproductive, altruistic workers and reproductive, non-altruistic workers in queenless honeybee colonies using a whole-genome microarray analysis. Our results demonstrate massive differences in gene expression patterns between these two sets of workers, with a total of 1292 genes being differentially expressed. In nonreproductive workers, genes associated with energy metabolism and respiration, flight and foraging behaviour, detection of visible light, flight and heart muscle contraction and synaptic transmission were overexpressed relative to reproductive workers. This implies they probably had a higher whole-body energy metabolism and activity rate and were most likely actively foraging, whereas same-aged reproductive workers were not. This pattern is predicted from evolutionary theory, given that reproductive workers should be less willing to compromise their reproductive futures by carrying out high-risk tasks such as foraging or other energetically expensive tasks. By contrast, reproductive workers mainly overexpressed oogenesis-related genes compared to nonreproductive ones. With respect to key switches for ovary activation, several genes involved in steroid biosynthesis were upregulated in reproductive workers, as well as genes known to respond to queen and brood pheromones, genes involved in TOR and insulin signalling pathways and genes located within quantitative trait loci associated with reproductive capacity in honeybees. Overall, our results provide unique insight into the molecular mechanisms underlying alternative reproductive phenotypes in honeybee workers.  相似文献   

9.
Summary We examined division of labor and colony demography in the antPonera pennsylvannica. Observation of three colonies with individually marked workers revealed a high degree of interindividual behavioral variation and a rough but consistent division of labor between brood tenders and foragers. This division was present both in colonies consisting entirely of workers produced in the previous summer and in colonies containing freshly eclosed ants. Two colonies showed typical age-based polyethism, with young ants focusing on brood care and overwintered ants on foraging. No such age basis was detected in the third colony. This difference may relate to variability in brood production schedules. Colonies showing temporal polyethism had two peaks of brood production and thus had relatively large brood populations when the first young workers eclosed, while the third colony had only one peak and little brood for the young workers to tend. Even if young ants have a lower threshold for brood care, it may have been concealed in the latter situation. Demographic data indicate that natural colonies produce one brood per year and that workers typically eclose into colonies with relatively low brood care demands. This suggests that overwintered workers do most of a colony's work and that the division of labor among overwintered ants is the more important one under natural conditions. The basis of this division is as yet unknown. These results also suggest that small colony size, univoltine brood schedule and a close association between foraging and brood care do not preclude division of labor among specialized castes, as has been suggested for another ponerine species (Traniello 1978).  相似文献   

10.
The responsiveness of bees to sucrose is an important indicator of honey bee foraging decisions. Correlated with sucrose responsiveness is forage choice behavior, age of first foraging, and conditioned learning response. Pheromones and hormones are significant components in social insect systems associated with the regulation of colony-level and individual foraging behavior. Bees were treated to different exposure regimes of queen and brood pheromones and their sucrose responsiveness measured. Bees reared with queen or brood pheromone were less responsive than controls. Our results suggest responsiveness to sucrose is a physiologically, neuronally mediated response. Orally administered octopamine significantly reduced sucrose response thresholds. Change in response to octopamine was on a time scale of minutes. The greatest separation between octopamine treated and control bees occurred 30 min after feeding. There was no significant sucrose response difference to doses ranging from 0.2 g to 20 g of octopamine. Topically applied methoprene significantly increased sucrose responsiveness. Handling method significantly affected sucrose responsiveness. Bees that were anesthetized by chilling or CO2 treatment were significantly more responsive than control bees 30 min after handling. Sixty minutes after handling there were no significant treatment differences. We concluded that putative stress effects of handling were blocked by anesthetic.Abbreviations BP brood pheromone - JH juvenile hormone - OA octopamine - PER proboscis extension response - PER-RT proboscis extension response threshold - QMP queen mandibular pheromone  相似文献   

11.
In social insects, resource allocation is a key factor that influences colony survival and growth. Optimal allocation to queens and brood is essential for maximum colony productivity, requiring colony members to have information on the total reproductive power in colonies. However, the mechanisms regulating egg production relative to the current labour force for brood care remain poorly known. Recently, a volatile chemical was identified as a termite queen pheromone that inhibits the differentiation of new neotenic reproductives (secondary reproductives developed from nymphs or workers) in Reticulitermes speratus. The same volatile chemical is also emitted by eggs. This queen pheromone would therefore be expected to act as an honest message of the reproductive power about queens. In this study, we examined how the queen pheromone influences the reproductive rate of queens in R. speratus. We compared the number of eggs produced by each queen between groups with and without exposure to artificial queen pheromone. Exposure to the pheromone resulted in a significant decrease in egg production in both single-queen and multiple-queen groups. This is the first report supporting the role of queen pheromones as a signal regulating colony-level egg production, using synthetically derived compounds in a termite.  相似文献   

12.
It is known that juvenile hormone plays an important role in the regulation of labour division and of the different life spans, and that the microclimate of the bee hive is characterized by its high CO2 concentration and its varying temperature depending on the presence of brood.We have investigated the influence of microclimates characteristic of breeding and broodless areas on the juvenile hormone titre in the haemolymph and whole body extracts, on the corpora allata in vitro activity, on the degradation of juvenile hormone and on the dry weight of the hypopharyngeal glands using bees of known ages. A microclimate of 35°C and 1.5% CO2, as observed in the breeding area, induces a rapid and pronounced increase in the juvenile hormone titre. On the other hand, this titre remains low in bees kept at 27°C and 1.5% CO2, a microclimate associated with broodless combs. Rates of juvenile hormone synthesis by corpora allata in vitro were found to be extremely low, even in the presence of farnesenic acid, and not related to the juvenile hormone titre. In vitro incubation of juvenile hormone in haemolymph revealed no degradation while injected juvenile hormone was found to be degraded and taken up by the gut at rates only weakly correlated with the juvenile hormone titre.We propose a hypothetical model for the regulation of the juvenile hormone titre as well as the course of labour division by the varying microclimates observed in the bee hive.  相似文献   

13.
Honey bee colonies can respond to changing environmental conditions by showing plasticity in age related division of labor, and these responses are associated with changes in juvenile hormone. The shift from nest taks to foraging has been especially well characterized; foraging is associated with high juvenile hormone titers and high rates of juvenile hormone biosynthesis, and can be induced prematurely in young bees by juvenile hormone treatment or by a shortage of foragers. However, very few studies have been conducted that study plasticity in division of labor under naturally occurring changes in the environment. To gain further insight into how the environment and juvenile hormone influence foraging behavior, we measured juvenile hormone titers and rates of biosynthesis in workers during times of the year when colony activity in temperate climates is reduced: late fall, winter, and early spring. Juvenile hormone titers and rates of biosynthesis decreased in foragers in the fall as foraging diminished and bees became less active. This demonstration of a natural drop in juvenile hormone confirms and extends previous findings when bees were experimentally induced to revert from foraging to within-hive tasks. In addition, endocrine changes in foragers in the fall are part of a larger seasonally related phenomenon in which juvenile hormone levels in younger, pre-foraging bees also decline in the fall and then increase the following spring as colony activity increases. The seasonal decline in juvenile hormone in foragers was mimicked in summer by placing a honey bee colony in a cold room for 8 days. This suggests that seasonal changes in juvenile hormone are not related to photoperiod changes, but rather to changes in temperature and/or colony social structure that in turn influence endocrine and behavioral development. We also found that active foragers in the late winter and early spring had lower juvenile hormone levels than active foragers in late spring. In light of recent findings of a possible link between juvenile hormone and neuroanatomical plasticity in the bee brain, these results suggest that bees can forage with low juvenile hormone, after previous exposure to some threshold level of juvenile hormone leads to changes in brain structure.  相似文献   

14.
农药对蜜蜂行为的影响   总被引:1,自引:0,他引:1  
农药对蜜蜂的安全性评价包括在实验室以及更高层次的半大田和大田水平上的研究。蜜蜂行为是蜜蜂机体是否正常的直接表现,因此也是安全性评价的重要指标。文章概述农药对蜜蜂行为的影响,包括蜂王产卵行为,工蜂分工、采集行为、同群和外群工蜂辨别、学习行为和农药对蜜蜂的驱避性。  相似文献   

15.
Juvenile hormone paces behavioral development in the adult worker honey bee   总被引:1,自引:0,他引:1  
Behavioral development in the adult worker honey bee (Apis mellifera), from performing tasks inside the hive to foraging, is associated with an increase in the blood titer of juvenile hormone III (JH), and hormone treatment results in precocious foraging. To study behavioral development in the absence of JH we removed its glandular source, the corpora allata, in 1-day-old adult bees. The age at onset of foraging for allatectomized bees in typical colonies was significantly older compared with that of sham-operated bees in 3 out of 4 colonies; this delay was eliminated by hormone replacement in 3 out of 3 colonies. To determine the effects of corpora allata removal on sensitivity to changes in conditions that influence the rate of behavioral development, we used "single-cohort" colonies (composed of only young bees) in which some colony members initiate foraging precociously. The age at onset of foraging for allatectomized bees was significantly older compared with that of sham-operated bees in 2 out of 3 colonies, and this delay was eliminated by hormone replacement. Allatectomized bees initiated foraging at significantly younger ages in single-cohort colonies than in typical colonies. These results demonstrate that JH influences the pace of behavioral development in honey bees, but is not essential for either foraging or altering behavioral development in response to changes in conditions.  相似文献   

16.
Infection of the adult worker honeybee with Nosema apis reduces or obviates brood feeding and causes her to commence foraging earlier than a healthy bee. The length of foraging activity and the total length of life of infected bees is reduced.
In colonies infected with N. apis the rate of brood rearing is severely depressed during April, May and June, the degree of depression being proportional to the percentage infection.
Infection decreases during July, August and September, and consequently the rate of brood rearing increases, but the resulting addition in foraging population is usually too late to increase the honey crop.  相似文献   

17.
郑火青  赵慧霞  胡福良 《昆虫知识》2010,47(6):1066-1071
本文对蜜蜂群内生殖分工体系的形成及其维持机制进行综述。蜜蜂群体具有完善的劳动分工(包括生殖分工)体系,蜂王垄断生殖权力,而工蜂生殖器官发育不完全,在蜂王信息素和幼虫信息素的作用下产卵受到抑制。蜂王的多雄交配机制降低了群内个体间的亲缘关系,但也促进了工蜂间相互监督机制的形成。工蜂间的相互监督,结合蜂王和幼虫信息素对工蜂卵巢发育的影响,解决了蜂王与工蜂、工蜂与工蜂间的生殖利益冲突,保障了蜂群内的生殖分工体系,提高了群体效率,维护了蜂群的真社会性。  相似文献   

18.
Honeybee workers generally refrain from personal reproduction when a queen is present. Workers discern the presence and fecundity of the queen via volatile pheromones that permeate throughout the colony. Pheromones are emitted both by the queen herself and by the brood that she produces. If pheromone production is disrupted, some workers initiate egg laying. The Eastern honeybee Apis cerana is unusual in that workers have high levels of ovary activation even in the presence of a queen. To investigate the effect of disruption to pheromone dispersal, we fitted three A. cerana colonies with vertical queen excluders, thus splitting the colonies into a half containing a queen and a half without a queen. We regularly sampled adult workers from both sides of the excluder for 3 weeks. We also sampled workers from three control colonies that did not contain excluders. We found a significant increase in worker ovary activation 3 days after addition of excluders, suggesting that the reduced dispersal of pheromones allowed some workers to become reproductively active. Workers attempted to rear queen cells on the queenless halves of all three colonies. Queen-rearing ceased on day 9, at which time no queen-laid brood remained on the queenless halves of the colonies. Ovary activation rates continued to climb until day 9 and then gradually began to decline. With the exception of one egg, we did not observe worker-laid brood on the queenless side of the colonies, suggesting that workers continued policing eggs laid by workers. We conclude that if the distribution of brood pheromone is impeded, workers prepare to supersede their queen, accompanied by high levels of worker ovary activation. However, because workers continue to police each other, high ovary activation does not result in worker-produced drones.  相似文献   

19.
A hallmark of eusociality is cooperative brood care. In most social insect systems brood rearing labor is divided between individuals working in the nest tending the queen and larvae, and foragers collecting food outside the nest. To place brood rearing division of labor within an evolutionary context, it is necessary to understand relationships between individuals in the nest engaged in brood care and colony growth in the honey bee. Here we examined responses of the queen, queen-worker interactions, and nursing behaviors to an increase in the brood rearing stimulus environment using brood pheromone. Colony pairs were derived from a single source and were headed by open-mated sister queens, for a total of four colony pairs. One colony of a pair was treated with 336 μg of brood pheromone, and the other a blank control. Queens in the brood pheromone treated colonies laid significantly more eggs, were fed longer, and were less idle compared to controls. Workers spent significantly more time cleaning cells in pheromone treatments. Increasing the brood rearing stimulus environment with the addition of brood pheromone significantly increased the tempo of brood rearing behaviors by bees working in the nest resulting in a significantly greater amount of brood reared.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号