首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT. To identify the unknown liver cell type initially invaded by sporozoiles of mammalian malaria, young rats were inoculated intravenously with large numbers of Plasmodium berghei sporozoites obtained from infected Anopheles stephensi mosquitoes. Fine structural studies of liver specimens obtained from the rats within 2 min after inoculation demonstrated the presence of morphologically unaltered sporozoites in the cytoplasm of hepatocytes. Many sporozoites were also observed undergoing cytolysis within the lysophagosomes of Kupffer cells, as well as other phagocytic cells. These observations strongly suggest direct infection of the hepatocyte by the sporozoite.  相似文献   

2.
Employing an enzymatic method to dissociate rat liver, we prepared suspensions of liver cells from rats infected with sporozoites of Plasmodium berghei 3 to 10, 18 to 28, or 29 to 36 hr prior to liver dissociation. These suspensions of liver cells included hepatocytes, Kupffer cells, fibroblasts, and unidentified cells, as well as hepatocytes infected with exoerythrocytic schizonts (HEX) of P. berghei. These HEX were infective for recipient rodents when inoculated intraperitoneally into the recipients. The number of infective HEX present in the liver cell suspensions was quantitated by varying the number of HEX inoculated into recipients. This infectivity assay made it possible to compare the numbers of HEX in suspensions of liver cells from different donor rats. Infective HEX were obtained from donor rats in 35 of 41 experiments. The greatest number of infective HEX was obtained from donors injected with sporozoites 18 to 28 hr prior to liver dissociation. For morphological observation of mature HEX in cell suspensions, hepatic cells were prepared from donors infected with sporozoites 48 hr prior to liver dissociation. For experimental purposes, the preparation of infective HEX in suspensions of liver cells is superior to the preparation of infective HEX in liver fragments, because it is possible to quantitate the number of HEX which are present either visually or by means of the infectivity assay.  相似文献   

3.
Plasmodium sporozoites suppress the respiratory burst and antigen presentation of Kupffer cells, which are regarded as the portal of invasion into hepatocytes. It is not known whether immune modulation of Kupffer cells can affect the liver stage. In the present study, we found that sporozoites inoculated into Wistar rats could be detected in the liver, spleen, and lung; however, most sporozoites were arrested in the liver. Sporozoites were captured by Kupffer cells lined with endothelial cells in the liver sinusoid before hepatocyte invasion. Pretreatment with TLR3 agonist poly(I:C) and TLR2 agonist BCG primarily activated Kupffer cells, inhibiting the sporozoite development into the exoerythrocytic form, whereas Kupffer cell antagonists dexamethasone and cyclophosphamide promoted development of the liver stage. Our data suggests that sporozoite development into its exoerythrocytic form may be associated with Kupffer cell functional status. Immune modulation of Kupffer cells could be a promising strategy to prevent malaria parasite infection.  相似文献   

4.
A specific DNA probe has been used to quantify the neutralizing effects of monoclonal antibodies (3D11) against the circumsporozoite protein of Plasmodium berghei sporozoites. The amount of parasite DNA was measured in the livers of Norway Brown rats at the peak of proliferation of the exoerythrocytic forms (EEF). In vitro treatment of 1.5 X 10(5) sporozoites with 0.36 microgram/0.5 ml of whole 3D11 IgG neutralized about 90% of the sporozoite infectivity. When the dose was 3.6 micrograms no signal was detected, indicating that less than ten sporozoites developed into EEF in the liver. In contrast, 3.6 micrograms of Fab obtained from 3D11 neutralized sporozoite infectivity by only 60%. Although the neutralizing effect of 3D11 was very marked, the infected rats developed parasitemias after a prolonged delay in patency, suggesting that a small proportion of sporozoites was resistant to the effects of 3D11. The sporozoites were subjected to four cycles of 3D11-mediated selection, each one involving treatment of sporozoites with the antibodies, injection of the mixture into rats, infection of hamsters with blood stage parasites obtained from the rats, feeding of Anopheles stephensi on these hamsters, and obtaining sporozoites from the salivary glands of the infected mosquitoes. After four cycles of selection, the susceptibility of the resulting sporozoites to different concentrations of 3D11 was compared with that of nonselected sporozoites. No differences were detected, indicating that the capacity of a few sporozoites to escape the neutralizing effect of 3D11 antibodies is not inherited.  相似文献   

5.
Malaria infection is initiated when Anopheles mosquitoes inject Plasmodium sporozoites into the skin. Sporozoites subsequently reach the liver, invading and developing within hepatocytes. Sporozoites contact and traverse many cell types as they migrate from skin to liver; however, the mechanism by which they switch from a migratory mode to an invasive mode is unclear. Here, we show that sporozoites of the rodent malaria parasite Plasmodium berghei use the sulfation level of host heparan sulfate proteoglycans (HSPGs) to navigate within the mammalian host. Sporozoites migrate through cells expressing low-sulfated HSPGs, such as those in skin and endothelium, while highly sulfated HSPGs of hepatocytes activate sporozoites for invasion. A calcium-dependent protein kinase is critical for the switch to an invasive phenotype, a process accompanied by proteolytic cleavage of the sporozoite's major surface protein. These findings explain how sporozoites retain their infectivity for an organ that is far from their site of entry.  相似文献   

6.
ABSTRACT. Studies of in vitro interactions between Plasmodium berghei sporozoites and peritoneal macrophages from mice and rats were performed. A videomicroscopic analysis was made of interactions observed by phase-contrast microscopy. Our results showed a diversity of dynamic interactions between sporozoites and macrophages that included no interaction, surface interaction without sporozoite interiorization, active sporozoite penetration, active penetration with subsequent sporozoite escape, macrophage destruction, and the formation of "tethers" or web-like structures by sporozoites that had actively invaded macrophages. Sporozoites are thus clearly capable of actively invading host macrophages and are not restricted to being phagocytosed for interiorization. The formation of "tethers" by the moving sporozoite might function in vivo by anchoring the sporozoite to the cells lining the lumen of the liver sinusoid. Active sporozoite motility appears to be a functional phenomenon involved in sporozoite invasion of host liver cells.  相似文献   

7.
SYNOPSIS. Schizogony and gametogony of E. tenella occurred in the liver of chick embryos inoculated intravenously with sporozoites. Gametogony occurred more freely in dexamethasonetreated embryos. Schizonts and gamonts developed within bileduct epithelial cells but many gamonts were also found within cells that appeared to be liver parenchyma type. Schizonts also developed in the chorioallantois of a corticosteroid-treated goose embryo when sporozoites were inoculated via the allantoic cavity.  相似文献   

8.
SYNOPSIS. Sporozoites of Eimeria tenella were injected into the peritoneal cavity of normal chickens and chickens immunized against E. tenella. In some experiments normal scrum and serum from resistant chickens were injected prior to the injection of sporozoites. After 15 or 30 minute periods of intraperitoneal incubation, exudates were harvested and the occurrence of intracellular sporozoites was determined. Only macrophages and degranulated granulocytes were observed to contain sporozoites. There was no significant difference between the number of macrophages obtained from normal chickens (normal macrophages) which contained sporozoites and the number of macrophages obtained from immune chickens (immune macrophages) which contained sporozoites. Significantly fewer immune macrophages treated with immune serum contained sporozoites than untreated normal or immune cells, normal macrophages treated with either serum, or immune macrophages treated with normal scrum. Sporozoites in untreated normal macrophages did not appear to be harmed by the intracellular environment, based on structural observations. The majority of sporozoites in macrophages from all other groups were difficult to distinguish within the cytoplasm and were visibly distorted. It is hypothesized that the presence of fewer infected macrophages in exudates of immune chickens and serum-treated normal chickens was caused by an enhanced ability of these cells to destroy the parasite. Similar observations were noted in the case of sporozoites within degranulated granulocytes of experimental groups. The lack of understanding of the degranulation phenomenon makes it difficult to interpret these findings.  相似文献   

9.
Sneaking in through the back entrance: the biology of malaria liver stages   总被引:5,自引:0,他引:5  
Malaria infection is caused by sporozoites, the life cycle stage of Plasmodium that is transmitted by female anopheline mosquitoes. The inoculated sporozoites migrate in the skin, enter a capillary and use the bloodstream for the long haul to the liver. Here, the parasites invade hepatocytes and differentiate to thousands of merozoites that specifically infect red blood cells. Hepatocytes, however, are not directly accessible to sporozoites entering the liver sinusoid. The liver phase of the malaria life cycle can occur only if the parasites first cross the layer of sinusoidal cells that line the liver capillaries. Experimental observations show that sporozoite entry into the liver parenchyma involves a complex cascade of events, from binding to extracellular matrix proteoglycans via passage through Kupffer cells and transmigration through several hepatocytes, until the final host cell is found. By choosing the liver as their initial site of replication, Plasmodium sporozoites can exploit the tolerogenic properties of this unique immune organ to evade the host's immune response.  相似文献   

10.
Plasmodium sporozoite invasion of liver cells has been an extremely elusive event to study. In the prevailing model, sporozoites enter the liver by passing through Kupffer cells, but this model was based solely on incidental observations in fixed specimens and on biochemical and physiological data. To obtain direct information on the dynamics of sporozoite infection of the liver, we infected live mice with red or green fluorescent Plasmodium berghei sporozoites and monitored their behavior using intravital microscopy. Digital recordings show that sporozoites entering a liver lobule abruptly adhere to the sinusoidal cell layer, suggesting a high-affinity interaction. They glide along the sinusoid, with or against the bloodstream, to a Kupffer cell, and, by slowly pushing through a constriction, traverse across the space of Disse. Once inside the liver parenchyma, sporozoites move rapidly for many minutes, traversing several hepatocytes, until ultimately settling within a final one. Migration damage to hepatocytes was confirmed in liver sections, revealing clusters of necrotic hepatocytes adjacent to structurally intact, sporozoite-infected hepatocytes, and by elevated serum alanine aminotransferase activity. In summary, malaria sporozoites bind tightly to the sinusoidal cell layer, cross Kupffer cells, and leave behind a trail of dead hepatocytes when migrating to their final destination in the liver.  相似文献   

11.
Plasmodium sporozoite invasion of liver cells has been an extremely elusive event to study. In the prevailing model, sporozoites enter the liver by passing through Kupffer cells, but this model was based solely on incidental observations in fixed specimens and on biochemical and physiological data. To obtain direct information on the dynamics of sporozoite infection of the liver, we infected live mice with red or green fluorescent Plasmodium berghei sporozoites and monitored their behavior using intravital microscopy. Digital recordings show that sporozoites entering a liver lobule abruptly adhere to the sinusoidal cell layer, suggesting a high-affinity interaction. They glide along the sinusoid, with or against the bloodstream, to a Kupffer cell, and, by slowly pushing through a constriction, traverse across the space of Disse. Once inside the liver parenchyma, sporozoites move rapidly for many minutes, traversing several hepatocytes, until ultimately settling within a final one. Migration damage to hepatocytes was confirmed in liver sections, revealing clusters of necrotic hepatocytes adjacent to structurally intact, sporozoite-infected hepatocytes, and by elevated serum alanine aminotransferase activity. In summary, malaria sporozoites bind tightly to the sinusoidal cell layer, cross Kupffer cells, and leave behind a trail of dead hepatocytes when migrating to their final destination in the liver.  相似文献   

12.
The invasion of liver parenchymal cells by sporozoites of Plasmodium berghei Vincke & Lips, 1948, was studied in vivo using transmission electron microscopy. Livers of Brown Norway rats were examined 30 and 60 min after intraportal injection of 15 million sporozoites each. Sporozoites found after incorporation into vacuoles in hepatocytes were often located near a bile canaliculus at the lateral cell surface, surrounded by hepatocyte lysosomal structures; however, degradation of sporozoites caused by lysosomal digestion inside hepatocytes was never observed. Due to the crescent shape of sporozoites, serial sections were necessary to demonstrate the actual process of invasion of the hepatocyte. The hepatocyte's plasmalemma appeared to invaginate due to the sporozoite's action, thereby creating a parasitophorous vacuole. It was suggested that the sporozoite actively penetrated the hepatocyte; however, no visible depletion of rhoptries and micronemes was observed.  相似文献   

13.
The invasion of liver parenchymal cells by sporozoites of Plasmodium berghei Vincke & Lips, 1948, was studied in vivo using transmission electron microscopy. Livers of Brown Norway rats were examined 30 and 60 min after intraportal injection of 15 million sporozoites each. Sporozoites found after incorporation into vacuoles in hepatocytes were often located near a bile canaliculus at the lateral cell surface, surrounded by hepatocyte lysosomal structures; however, degradation of sporozoites caused by lysosomal digestion inside hepatocytes was never observed. Due to the crescent shape of sporozoites, serial sections were necessary to demonstrate the actual process of invasion of the hepatocyte. The hepatocyte's plasmalemma appeared to invaginate due to the sporozoite's action, thereby creating a parasitophorous vacuole. It was suggested that the sporozoite actively penetrated the hepatocyte; however, no visible depletion of rhoptries and micronemes was observed.  相似文献   

14.
Studies of in vitro interactions between Plasmodium berghei sporozoites and peritoneal macrophages from mice and rats were performed. A videomicroscopic analysis was made of interactions observed by phase-contrast microscopy. Our results showed a diversity of dynamic interactions between sporozoites and macrophages that included no interaction, surface interaction without sporozoite interiorization, active sporozoite penetration, active penetration with subsequent sporozoite escape, macrophage destruction, and the formation of "tethers" or web-like structures by sporozoites that had actively invaded macrophages. Sporozoites are thus clearly capable of actively invading host macrophages and are not restricted to being phagocytosed for interiorization. The formation of "tethers" by the moving sporozoite might function in vivo by anchoring the sporozoite to the cells lining the lumen of the liver sinusoid. Active sporozoite motility appears to be a functional phenomenon involved in sporozoite invasion of host liver cells.  相似文献   

15.
The taxonomic status of the extraintestinal piscine coccidium Calyptospora funduli is based in part on its requirement of an intermediate host (the daggerblade grass shrimp Palaemonetes pugio). In the present study, grass shrimp fed livers of Gulf killifish (Fundulus grandis) infected with sporulated oocysts of C. funduli exhibited numerous sporozoites suspended in the intestinal contents when fresh squash preparations were examined by light microscopy. Using this method, sporozoites were not seen in intestinal epithelial cells of the grass shrimp or in any other cell types. Ultrastructural examination, however, revealed sporozoites in the cytoplasm of the gut basal cells. Cross-sections of 1-13 sporozoites were seen within a single cell, and those sporozoites each appeared to be situated in individual membrane-bound vesicles, rather than in a single parasitophorous vacuole. These ultrastructural observations indicate that in the grass shrimp intermediate host, sporozoites that develop into an infective stage probably undergo that development in gut mucosal basal cells. Prior studies revealed that these sporozoites modified their structure over 4-5 days and that before that time, they were not infective to the fish host. Following ingestion of an infected shrimp by a killifish, the infective sporozoites apparently reach the liver of their killifish definitive hosts through the bloodstream. Sporozoites were seen in blood smears from the longnose killifish, Fundulus similis, 4 hr after fish were fed experimentally infected grass shrimp. Additionally, coccidian trophozoites and early meronts were seen in hepatocytes from several longnose killifish at 48, 72, and 96 hr postinfection. This study, in conjunction with previous findings, clearly confirms that a true intermediate host is required in the life cycle of C. funduli, that a developmental period of about 5 days in grass shrimp is necessary for sporozoites to become infective to killifishes, and that sporozoites do occur intracellularly in gut basal cells of the grass shrimp.  相似文献   

16.
The interactions between Plasmodium berghei sporozoites and Kupffer cells in rat liver were studied by transmission electron microscopy. Between 10 and 45 min after inoculation, sporozoites were found in the process of entering Kupffer cells and inside phagolysosomes. The sporozoites entered the Kupffer cells by phagocytosis as determined by the presence of pseudopods and local accumulations of aggregated microfilaments and the resulting exclusion of other organelles in the phagocyte cytoplasm beneath the attached parasite. Sporozoites were taken up either with their anterior end first, or backwards. Scanning electron microscopy of in vitro sporozoite Kupffer cell interaction confirmed these observations. It was concluded that sporozoites are taken up in a normal phagocytic way by the Kupffer cells, regardless of their initial place of contact or position. Thirty min after inoculation sporozoites found in phagolysosomes were still morphologically intact but after 45 min we could encounter completely digested sporozoites.  相似文献   

17.
Sporocysts of Hepatozoon griseisciuri obtained from laboratory-reared spiny rat mites (Echinolaelaps echidninus) and laboratory-reared squirrel mites (Haemogamasus reidi) were made bacteria-free and incubated in trypsin-bile for 30 min at 37 C to release sporozoites. Hepatozoon griseisciuri sporozoites were inoculated into monolayer cultures of primary adult squirrel kidney (PSK) cells and cell line cultures of neonatal squirrel kidney (SK), heart (SH), and spleen (SS) cells. Extracellular sporozoites underwent flexing, gliding, and pivoting movements similar to other coccidian sporozoites. Sporozoites entered cells in all the cultures used and were found intracellularly as early as 1 hr and as late as 10 days after inoculation. In SK, SH, and SS cells, development proceeded only to the trophozoite stage. In PSK cells, immature schizonts and mature schizonts containing 12–40 merozoites were present from 5 through 10 days after inoculation. The finding of pairs of intracellular organisms within a single parasitophorous vacuole in PSK cells suggested that endodyogeny or limited schizogony had occurred.  相似文献   

18.
Invasion of hepatocytes by Plasmodium sporozoites deposited by Anopheles mosquitoes, and their subsequent transformation into infective merozoites is an obligatory step in the initiation of malaria. Interactions between the sporozoites and hepatocytes lead to a distinct, complex and coordinated cellular and systemic host response. Little is known about host liver cell response to sporozoite invasion, or whether it is primarily adaptive for the parasite, for the host, or for both. Our present study used gene expression profiling of human HepG2-A16 liver cells infected with Plasmodium falciparum sporozoites to understand the host early cellular events and factors influencing parasite infectivity and sporozoite development. Our results show that as early as 30 min following wild-type, non-irradiated sporozoite exposure, the expressions of at least 742 genes was selectively altered. These genes regulate diverse biological functions, such as immune processes, cell adhesion and communications, metabolism pathways, cell cycle regulation, and signal transduction. These functions reflect cellular events consistent with initial host cell defense responses, as well as alterations in host cells to sustain sporozoites growth and survival. Irradiated sporozoites gave very similar gene expression pattern changes, but direct comparative analysis between liver gene expression profiles caused by irradiated and non-irradiated sporozoites identified 29 genes, including glypican-3, that were specifically up-regulated only in irradiated sporozoites. Elucidating the role of this subset of genes may help identify the molecular basis for the irradiated sporozoites inability to develop intrahepatically, and their usefulness as an immunogen for developing protective immunity against pre-erythrocytic stage malaria.  相似文献   

19.
Proteoglycans mediate malaria sporozoite targeting to the liver   总被引:9,自引:0,他引:9  
Malaria sporozoites are rapidly targeted to the liver where they pass through Kupffer cells and infect hepatocytes, their initial site of replication in the mammalian host. We show that sporozoites, as well as their major surface proteins, the CS protein and TRAP, recognize distinct cell type-specific surface proteoglycans from primary Kupffer cells, hepatocytes and stellate cells, but not from sinusoidal endothelia. Recombinant Plasmodium falciparum CS protein and TRAP bind to heparan sulphate on hepatocytes and both heparan and chondroitin sulphate proteoglycans on stellate cells. On Kupffer cells, CS protein predominantly recognizes chondroitin sulphate, whereas TRAP binding is glycosaminoglycan independent. Plasmodium berghei sporozoites attach to heparan sulphate on hepatocytes and stellate cells, whereas Kupffer cell recognition involves both chondroitin sulphate and heparan sulphate proteoglycans. CS protein also interacts with secreted proteoglycans from stellate cells, the major producers of extracellular matrix in the liver. In situ binding studies using frozen liver sections indicate that the majority of the CS protein binding sites are associated with these matrix proteoglycans. Our data suggest that sporozoites are first arrested in the sinusoid by binding to extracellular matrix proteoglycans and then recognize proteoglycans on the surface of Kupffer cells, which they use to traverse the sinusoidal cell barrier.  相似文献   

20.
Malaria sporozoites must leave the bloodstream and cross a layer of sinusoidal lining cells in order to infect hepatocytes and undergo exoerythrocytic schizogony. To determine whether Kupffer cells (KC) derived from this layer interact with sporozoites, murine KC were isolated from perfused livers of BALB/cJ mice and incubated in vitro with Plasmodium berghei sporozoites. Isolated KC had characteristic macrophage surface Ag and were phagocytic, ingesting both latex particles and Leishmania major amastigotes. In the absence of immune serum, sporozoites associated with fewer than 10% of these KC. By 30 min, 10% of the cell-associated sporozoites were completely ingested, 30% were in the process of being ingested, and 60% were attached to the surface of the cells. Opsonization of sporozoites with monoclonal or polyclonal antibodies directed against P. berghei circumsporozoite protein markedly enhanced sporozoite association with KC. Up to 40% of cells exposed to opsonized sporozoites had parasites inside or attached to their surfaces. Sporozoites attached to or ingested by KC were uniformly destroyed within 240 min in all cultures; there was no evidence of conversion of sporozoites to the exoerythrocytic stage within KC by light microscopy, and there was no evidence of residual sporozoites, either inside or outside of cells, by either light or electron microscopy. These data suggest that under nonimmune conditions, KC play a minor role in resistance to infection by malaria sporozoites. However, when sporozoites are opsonized by circumsporozoite antibodies, phagocytosis by KC may be an important immune mechanism that prevents parasitization of hepatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号