首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cardiovascular effects of the stimulation of arterial chemoreceptors are different in spontaneously breathing and artificially ventilated animals. Respiratory failure and long term sojourn at high altitude coincide frequently with the occurrence of gastric ulceration. In both these situations a profound stimulation of arterial chemoreceptors is present. The purpose of the paper was to investigate the reflex effect of stimulation carotid chemoreceptors on gastric mucosal blood flow in the rat. Arterial chemoreceptors were stimulated by two methods (I) substitution gas mixture of 10% oxygen in nitrogen for room air and (II) direct injection of acid saline ( 0.05 ml, pH = 6.8) into the distal part of left common carotid artery. In artificially ventilated rats stimulation of arterial chemoreceptors caused significant increase in gastric mucosal vascular resistance, accompanied by marked decline in blood flow. This effect was mediated by adrenergic mechanism. On the contrary to artificially ventilated rats, decline of gastric mucosal vascular resistance with concomitant increase in blood flow was found in spontaneously breathing animals. This effect was not abolished either by phentolamine or atropine. As vasodilatatory effect of arterial chemoreceptors stimulation was abolished by bilateral vagotomy, we postulate that non adrenergic and non cholinergic vagal fibers mediate observed vascular changes in gastric mucosa in spontaneously breathing rats. We hypothesize that in artificially ventilated patients with respiratory failure stimulation of arterial chemoreceptors by hypoxemia and or acidosis may contribute to the development of gastric mucosal lesions.  相似文献   

2.
This study tested the hypothesis that ventilatory responses to chemoreceptor stimulation are affected by the level of arterial pressure and degree of baroreceptor activation. Carotid chemoreceptors were stimulated by injection of nicotine into the common carotid artery of anesthetized dogs. Arterial pressure was reduced by bleeding the animals and raised by transient occlusion of the abdominal aorta. The results indicate that ventilatory responses to chemoreceptor stimulation were augmented by hypotension and depressed by hypertension. In additional studies we excluded the possibility that the findings were produced by a direct effect of changes in arterial pressure on chemoreceptors. Both carotid bifurcations were perfused at constant flow. In one carotid bifurcation, perfusion pressure was raised to stimulate carotid sinus baroreceptors. In the other carotid bifurcation, pressure was constant and nicotine was injected to stimulate carotid chemoreceptors. Stimulation of baroreceptors on one side attenuated the ventilatory response to stimulation of contralateral chemoreceptors. This inhibition was observed before and after bilateral cervical vagotomy. We conclude that there is a major central interaction between baroreceptor and chemoreceptor reflexes so that changes in baroreceptor activity modulate ventilatory responses to chemoreceptor stimulation.  相似文献   

3.
Evidence is presented which indicates that in the absence of other known inputs to the nervous system and during controlled pulmonary ventilation, stimulation of the carotid body chemoreceptors causes bradycardia and selective peripheral vasoconstriction. These responses may be attenuated, however, by concomitant changes in respiration and arterial blood pressure, and by activity of higher parts of the brain stem. Stimulation of the aortic bodies in mammals in which they are functionally active, causes bradycardia or tachycardia and selective peripheral vasoconstriction. The reflex vascular effects from the peripheral arterial chemoreceptors are mediated by alpha-adrenergic sympathetic fibres. A potential mechanism exists therefore whereby the peripheral arterial chemoreceptors could contribute to the neurogenic component of hypertension.  相似文献   

4.
Respiratory failure coincides frequently with the occurrence of gastric ulceration. In advanced respiratory insufficiency hypoxemia is often accompanied by hypercapnia, which is the stimulus for central chemoreceptors as well as for carotid body chemoreceptors. The purpose of the work was to investigate the reflex effect of stimulation of central chemoreceptors on gastric mucosal blood flow (GMBF) in the rat. Central chemoreceptors were stimulated by a gas mixture composed of 10% carbon dioxide, 50% oxide and 40% nitrogen. In artificially ventilated and spontaneously breathing animals, the stimulation of central chemoreceptors caused a significant increase in gastric mucosal vascular resistance, accompanied by a marked decline in blood flow. We hypothesize that in patients with respiratory insufficiency accompanied by hypercapnia, the reflex impairment of GMBF may contribute to gastric ulceration.  相似文献   

5.
Discharges from aortic and carotid body chemoreceptor afferents were simultaneously recorded in 18 anesthetized cats to test the hypothesis that aortic chemoreceptors, because of their proximity to the heart, respond to changes in arterial blood gases before carotid chemoreceptors. We found that carotid chemoreceptor responses to the onset of hypoxia and hypercapnia, and to the intravenously administered excitatory drugs (cyanide, nicotine, and doxapram), preceded those of aortic chemoreceptors. Postulating that this unexpected result was due to differences in microcirculation and mass transport, we also investigated their relative speed of responses to changes in arterial blood pressure. The aortic chemoreceptors responded to decreases in arterial blood pressure before the carotid chemoreceptors, supporting the idea that the aortic body has microcirculatory impediments not generally present in the carotid body. These findings strengthened the concept that carotid bodies are more suited for monitoring blood gas changes due to respiration, whereas aortic bodies are for monitoring circulation.  相似文献   

6.
The effect of removing the input from the peripheral arterial chemoreceptors on pulmonary vascular responses to changes in PaO2 was examined in late gestation fetal sheep. Blood flow in the left pulmonary artery and driving pressure across the pulmonary vascular bed were monitored in chronically prepared fetal sheep at 126-129 days gestation. Five fetuses had carotid sinus and vagus nerves sectioned bilaterally and four were left intact. In normoxia (PaO2 ca. 23 mmHg) pulmonary vascular resistance was slightly greater and pulmonary blood flow reduced in the denervated group relative to the intact group but these differences were not significant. When made hypoxic (PaO2 ca. 14 mmHg), pulmonary blood flow fell and pulmonary vascular resistance increased in all fetuses. However, in the intact fetuses these changes were significantly more rapid. In all fetuses the vasoconstriction was prolonged after their return to normoxia. When made hyperoxic (PaO2 ca. 27 mmHg), pulmonary blood flow increased by a similar amount in all fetuses. We conclude that in the term fetus the peripheral chemoreceptors play no appreciable role in the maintenance of the high pulmonary vascular resistance in normoxia, or the fall in resistance produced by a rise in PaO2. The chemoreceptors do however initiate the rapid phase of pulmonary vasoconstriction in hypoxia.  相似文献   

7.
In the absence of peripheral chemoreceptors, the effects of graded hypoxemia on the carotid sinus control of central and regional hemodynamics were studied in anesthetized mongrel dogs. Baroreceptor stimulation was effected by carotid sinus isolation and perfusion under controlled pressure. Blood flows were measured in the aorta and the celiac, mesenteric, left renal, and right iliac arteries. Carotid sinus reflex set-point pressures were well maintained until hypoxemia was severe. Carotid sinus reflex set-point gain was maximal during mild hypoxemia. Reflex operating point regional flows were unaffected by hypoxemia. A factorial analysis of overall reflex increases in mean aortic pressure, flow, and power during reduced baroreceptor stimulation showed potentiation by increasing hypoxemia. Corresponding effects of baroreceptor stimulation and hypoxemia on aortic resistance and heart rate were additive. Celiac, renal, and iliac blood flows increased during both hypoxemia and reduced baroreceptor stimulation. Only in the celiac bed were blood flow changes independent of concomitant changes in cardiac output. Thus, at maximum sympathetic stimulation (low carotid sinus pressure) during hypoxemia, the cardiovascular system maintained both central and regional blood flows at high systemic blood pressures independent of the peripheral chemoreceptors.  相似文献   

8.
Zhuang J  Xu F  Campen M  Hernandez J  Shi S  Wang R 《Life sciences》2006,78(22):2654-2661
Hypoxia inhibits K+ channels of chemoreceptors of the carotid body (CB), which is reversed by transient carbon monoxide (CO), suggesting an inhibitory effect of CO on hypoxic stimulation of carotid chemoreceptors. Therefore, we hypothesized that the ventilatory responses to hypoxic stimulation of the CB might be depressed in intact rats by transient inhalation of CO. Anesthetized, spontaneously breathing rats were exposed to room air, and 1 min of 11% O2 (HYP) and CO (0.25-2%) alone and in combination (HYP+CO). We found that transient CO did not affect baseline cardiorespiratory variables, but significantly attenuated hypoxic ventilatory augmentation, predominantly via reduction of tidal volume. To distinguish whether this CO modulation occurs at the CB or within the central nervous system, the cardiorespiratory responses to electrical stimulation of the fastigial nucleus (FN), a cerebellar nucleus known excitatory to respiration, were compared before and during transient CO. Our results showed that the FN-mediated cardiorespiratory responses were not significantly changed by transient CO exposure. To evaluate the effect of CO accumulation, we also compared baseline cardiorespiratory responses to 5 min of 1% and 2% CO, respectively. Interestingly, only the latter produced a biphasic ventilatory response (initial increase followed by decrease) associated with hypotension. We conclude that eupneic breathing in anesthetized rat was not affected by transient CO, but was altered by prolonged exposure to higher levels of CO. Moreover, transient CO depresses hypoxic ventilatory responses mainly through peripherally inhibiting hypoxic stimulation of carotid chemoreceptors.  相似文献   

9.
In the present study we investigated the involvement of the hypothalamic paraventricular nucleus (PVN) in the modulation of sympathoexcitatory reflex activated by peripheral and central chemoreceptors. We measured mean arterial blood pressure (MAP), heart rate (HR), renal sympathetic nerve activity (RSNA), and phrenic nerve activity (PNA) before and after blocking neurotransmission within the PVN by bilateral microinjection of 2% lidocaine (100 nl) during specific stimulation of peripheral chemoreceptors by potassium cyanide (KCN, 75 microg/kg iv, bolus dose) or stimulation of central chemoreceptors with hypercapnia (10% CO(2)). Typically stimulation of peripheral chemoreceptors evoked a reflex response characterized by an increase in MAP, RSNA, and PNA and a decrease in HR. Bilateral microinjection of 2% lidocaine into the PVN had no effect on basal sympathetic and cardiorespiratory variables; however, the RSNA and PNA responses evoked by peripheral chemoreceptor stimulation were attenuated (P < 0.05). Bilateral microinjection of bicuculline (50 pmol/50 nl, n = 5) into the PVN augmented the RSNA and PNA response to peripheral chemoreceptor stimulation (P < 0.05). Conversely, the GABA agonist muscimol (0.2 nmol/50 nl, n = 5) injected into the PVN attenuated these reflex responses (P < 0.05). Blocking neurotransmission within the PVN had no effect on the hypercapnia-induced central chemoreflex responses in carotid body denervated animals. These results suggest a selective role of the PVN in processing the sympathoexcitatory and ventilatory component of the peripheral, but not central, chemoreflex.  相似文献   

10.
Respiratory responses arising from both chemical stimulation of vascularly isolated aortic body (AB) and carotid body (CB) chemoreceptors and electrical stimulation of aortic nerve (AN) and carotid sinus nerve (CSN) afferents were compared in the anesthetized dog. Respiratory reflexes were measured as changes in inspiratory duration (TI), expiratory duration (TE), and peak averaged phrenic nerve activity (PPNG). Tonic AN and AB stimulations shortened TI and TE with no change in PPNG, while tonic CSN and CB stimulations shortened TE, increased PPNG, and transiently lengthened TI. Phasic AB and AN stimulations throughout inspiration shortened TI with no changes in PPNG or the following TE; however, similar phasic stimulations of the CB and CSN increased both TI and PPNG and decreased the following TE. Phasic AN stimulation during expiration decreased TE and the following TI with no change in PPNG. Similar stimulations of the CB and CSN decreased TE; however, the following TI and PPNG were increased. These findings differ from those found in the cat and suggest that aortic chemoreceptors affect mainly phase timing, while carotid chemoreceptors affect both timing and respiratory drive.  相似文献   

11.
To assess the ventilatory responses elicited by changes of tissue hypoxia, sodium cyanide (0.12 mg/kg-min for 10 min) was infused into the upper abdominal aorta of anesthetized dogs. These infusions produced decreases in oxygen consumption, increases in arterial lactate concentration, and increases in arterial lactate/pyruvate ratio. Coincident with these metabolic changes of hypoxia, minute ventilation (VE) increased 228 +/- SE 36% and arterial PCO2 decreased 21 +/- SE 2 mmHg; therefore, pH increased both in arterial blood in and cisternal cerebrospinal fluid. Following infusion of cyanide into the abdominal aorta, small quantities of cyanide (48 +/- SE 14 mumol/liter) appeared in carotid arterial blood. To evaluate the possibility that the observed increases in VE were due to stimulation of peripheral arterial chemoreceptors by the recirculating cyanide, the carotid and aortic chemoreceptors were denervated in four dogs. Nonetheless, after intra-aortic infusion of sodium cyanide (1.2 mg/kg), ventilation in these chemodenervated animals again increased considerably (154 +/- SE 36%). In order to explore the possibility that cyanide infusion can stimulate ventilation by an extracranial mechanism, heads of vagotomized dogs (including the carotid bodies) were perfused entirely by donor dogs. The intra-aortic infusion of sodium cyanide (0.9 mg/kg) into these head-perfused animals still caused large increases in VE (163 +/- SE 19%). It is concluded that intra-aortic cyanide infusions stimulate VE by an extracranial mechanism other than the carotid and aortic chemoreceptors.  相似文献   

12.
The carotid chemoreceptors of narcotized, vagotomized and spontaneously breathing hydropenic cats in hypertonic mannite diuresis were stimulated by perfusion with venous blood penic cats in hypertonic mannite diuresis were stimulated by perfusion with venous blood for 70 min. Elevation of blood pressure at the innervated kidneys was prevented by an automatically controlled balloon located within the aorta. Stimulation of the chemoreceptors intensified respiration and raised the arterial systemic pressure. With the renal arteries at constant pressure, the effective renal plasma flow and the glomerular filtration rate significantly declined. The filtration fraction remained unchanged. The absolute urinary and sodium excretion did not change significantly, whereas the fractional time-volume, fractional sodium excretion, and the fractional osmotic excretion significantly increased. The fractional tubular reabsorption of osmotically free water was significantly enhanced. These reactions subsided during subsequent perfusion of the glomerula carotici with arterial blood. The results suggest that tubular sodium reabsorption is inhibited by stimulation of the carotid chemoreceptors, although re-adjustment of renal perfusion and filtrate volume cannot be excluded.  相似文献   

13.
The effects of 1,3-dipropyl-8(p-sulfophenyl)xanthine (DPSPX) and enprofylline on the respiratory responses to bilateral occlusions of the common carotid arteries (CCO) were studied in rats anesthetized with sodium pentobarbitone and breathing spontaneously. CCO during periods of 5, 10 and 15 s caused increases in tidal volume (VT) and respiratory frequency (f) dependent on duration of the occlusions, these effects were markedly reduced after section of the carotid sinus nerves. Transient increases in systemic arterial blood pressure (BP) associated with the ventilatory effects of CCO were also observed. Intracarotid infusions of DPSPX (100 nmol/min, for 3 min) but not of enprofylline (100 nmol/min, for 3 min) decreased the respiratory stimulation induced by CCO without modifying significantly the increases in BP. It is concluded that adenosine may be involved in the ventilatory responses to CCO that are mediated by carotid body chemoreceptors.  相似文献   

14.
In urethane-anesthetized rabbits, 209 spontaneously active neurons that responded to stimulation of aortic nerve A fibers were found within the ventrolateral medulla (VLM). The neurons, termed barosensory VLM neurons, were inhibited, except for three instances, by stimulation of A fibers. Forty-seven percent of barosensory VLM neurons tested (74 of 159) were activated antidromically by electrical stimulation of the dorsolateral funiculus at the C2 level. Activity of barosensory VLM neurons was enhanced by stimulation of carotid body chemoreceptors or the posterior hypothalamic area, whereas it was diminished by increases in arterial pressure elicited by injection of phenylephrine. Barosensory VLM neurons responded variously to stimulation, with two to three pulses at 40 or 100 Hz, of spinal afferents of cutaneous and muscle origins and the spinal trigeminal complex. Although stimulation of one group of somatosensory fibers could evoke different patterns of neuronal responses consisting of excitatory and inhibitory components, the following responses were most often encountered. Group II cutaneous afferents caused an inhibition. Recruitment of group III afferents brought about a brief excitatory component preceding it. Activation of group IV cutaneous fibers added a long latency excitatory component. Excitation of groups III and IV muscle afferents most often resulted in an inhibition, whereas stimulation of the spinal trigeminal complex elicited various combinations of excitatory and inhibitory components. These results are consistent with the view that neurons in the ventrolateral medulla receive barosensory and nonbarosensory inputs from various peripheral and central sources and participate in the control of sympathetic vasomotor activity and arterial pressure.  相似文献   

15.
Active parasympathetic coronary vasodilation in excess of any changes in myocardial metabolism has been observed in a number of circumstances. Electrical stimulation of the cardiac end of the cut vagus nerve produces a cholinergic coronary vasodilation that is blocked by atropine. Activation of carotid body chemoreceptors, carotid sinus baroreceptors, or left ventricular receptors elicits reflex parasympathetic coronary vasodilation. The coronary vasodilation produced by these reflexes can be prevented by vagotomy or atropine. The relative importance of parasympathetic coronary control in relation to sympathetic and local metabolic coronary control awaits further research.  相似文献   

16.
To explore the role of arterial chemoreceptors, the effect of hypobaric hypoxia on urinary sodium excretion and systolic blood pressure was investigated in conscious spontaneously hypertensive rats (SHR) with carotid body denervation (CBD) or after sham-operation (SO). Denervation of the carotid bodies was performed by section of the carotid sinus nerves. Exposure to hypobaric hypoxia equivalent to high altitude of 4000 m led to a more pronounced decrease in systolic blood pressure in CBD-rats than in SO-rats. The pattern of urinary sodium excretion observed on the first two days of hypoxia in both groups was not affected by the chemodenervation. It is being suggested that arterial chemoreceptors do not play a critical role in blood pressure and natriuretic responses to hypobaric hypoxia in conscious SHR.  相似文献   

17.
Several neural and vascular mechanisms regulate the sensitivity of carotid body chemoreceptors to hypoxia, hypercapnia, and acidosis. Factors that control blood flow and oxygen delivery in the carotid body along with those that augment or diminish catecholamine release from glomus cells can have major effects on chemoreceptor function. In addition, the sensory nerves themselves may participate in the regulation of chemoreceptor sensitivity. A portion of the carotid body's sensory nerves are presynaptic to glomus cells. In response to stimulation, the sensory nerve terminals exhibit ultrastructural changes that resemble changes associated with increased release of transmitter from motor nerves: 1) the number of small (synaptic) vesicles decreases; and 2) coated vesicles and coated regions of cisternal membrane increase in number during stimulation. If sensory nerves of the carotid body release a neurotransmitters, sensory nerve activity could influence glomus cell secretion of catecholamines or other substances tha modify chemoreceptor sensitivity. Such an effect could be produced in the carotid body by hypoxia and other conditions that stimulate the sensory nerves or it could result from antidromic activity evoked in the sensory nerves by primary afferent depolarization of their terminals in the CNS.  相似文献   

18.
Previous work has shown that the carotid body glomus cells can function as glucose sensors. The activation of these chemoreceptors, and of its afferent nucleus in the brainstem (solitary tract nucleus - STn), induces rapid changes in blood glucose levels and brain glucose retention. Nitric oxide (NO) in STn has been suggested to play a key role in the processing of baroreceptor signaling initiated in the carotid sinus. However, the relationship between changes in NO in STn and carotid body induced glycemic changes has not been studied. Here we investigated in anesthetized rats how changes in brain glucose retention, induced by the local stimulation of carotid body chemoreceptors with sodium cyanide (NaCN), were affected by modulation of NO levels in STn. We found that NO donor sodium nitroprusside (SNP) micro-injected into STn completely blocked the brain glucose retention reflex induced by NaCN chemoreceptor stimulation. In contrast, NOS inhibitor N(ω)-nitro-L-arginine methyl ester (L-NAME) increased brain glucose retention reflex compared to controls or to SNP rats. Interestingly, carotid body stimulation doubled the expression of nNOS in STn, but had no effect in iNOS. NO in STn could function to terminate brain glucose retention induced by carotid body stimulation. The work indicates that NO and STn play key roles in the regulation of brain glucose retention.  相似文献   

19.
We wished to see whether aortic chemoreceptors and other vagal afferent traffic played an essential role in the circulatory adjustments to hypoxic hypoxia. Aortic chemoreceptors were denervated (AD) in one group (n = 6) of anesthetized dogs, bilateral cervical vagotomy (V) was done on a second group (n = 6), and a third group (n = 6) was sham-operated to serve as a control. Venous outflow from the left hindlimb was isolated. After a 20-min control period of ventilation with room air, the animals were ventilated for 60 min with 9% of O2 in N2. Arterial, mixed venous, and hindlimb venous blood samples were taken every 20 min. The cardiac output response to hypoxic hypoxia was attenuated at 40 and 60 min in both the AD and V groups (p less than 0.05). Hindlimb blood flow increased equally in all three groups during hypoxia. The pressor response at the onset of hypoxia (20 min) was abolished in the AD and V groups, but mean arterial pressure fell to similar levels in all three groups by 60 min of hypoxia. We concluded that reflex aortic chemoreceptor stimulation during hypoxia augmented cardiac output mostly by effects on the venous side of the circulation but played no role in skeletal muscle vascular responses to hypoxic hypoxia.  相似文献   

20.
Spontaneously hypertensive rats (SHR), like patients with sleep apnea, have hypertension, increased sympathetic activity, and increased chemoreceptor drive. We investigated the role of carotid chemoreceptors in cardiovascular responses induced by obstructive apnea in awake SHR. A tracheal balloon and vascular cannulas were implanted, and a week later, apneas of 15 s each were induced. The effects of apnea were more pronounced in SHR than in control rats (Wistar Kyoto; WKY). Blood pressure increased by 57±3 mmHg during apnea in SHR and by 28±3 mmHg in WKY (p<0.05, n = 14/13). The respiratory effort increased by 53±6 mmHg in SHR and by 34±5 mmHg in WKY. The heart rate fell by 209±19 bpm in SHR and by 155±16 bpm in WKY. The carotid chemoreceptors were then inactivated by the ligation of the carotid body artery, and apneas were induced two days later. The inactivation of chemoreceptors reduced the responses to apnea and abolished the difference between SHR and controls. The apnea-induced hypertension was 11±4 mmHg in SHR and 8±4 mmHg in WKY. The respiratory effort was 15±2 mmHg in SHR and 15±2 mmHg in WKY. The heart rate fell 63±18 bpm in SHR and 52±14 bpm in WKY. Similarly, when the chemoreceptors were unloaded by the administration of 100% oxygen, the responses to apnea were reduced. In conclusion, arterial chemoreceptors contribute to the responses induced by apnea in both strains, but they are more important in SHR and account for the exaggerated responses of this strain to apnea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号