首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transforming growth factor beta (TGFbeta) is a multifunctional cytokine with effects on many cell types. We recently showed that in addition to epithelial barrier enhancing properties, TGFbeta causes diminished cAMP-driven chloride secretion in colonic epithelia, in a manner that is p38 MAPK-dependent. In this study, we sought to further delineate the mechanism behind TGFbeta diminution of chloride secretion. Using colonic and kidney epithelial cell lines, we found that exposure to TGFbeta causes dramatic changes in the expression and localization of the apical membrane chloride channel, cystic fibrosis transmembrane conductance regulator (CFTR). In TGFbeta-treated colonic epithelia (T84 and HT-29), CFTR mRNA was significantly reduced 2-24 h post-cytokine exposure. At a time consistent with decreased colonic epithelial secretory responses (16 h), TGFbeta treatment caused diminished intracellular CFTR protein expression (confocal microscopy) and reduced channel expression in the apical membrane during stimulated chloride secretion (biotinylation assay). In comparison, polarized kidney epithelia (MDCK) treated with TGFbeta displayed similarly reduced secretory responses to cAMP stimulating agents; however, a perinuclear accumulation of CFTR was observed, contrasting the diffuse cytoplasmic CFTR expression of control cells. Our data indicate that TGFbeta has profound effects on the expression and subcellular localization of an important channel involved in cAMP-driven chloride secretion, and thus suggest TGFbeta represents a key regulator of fluid movement.  相似文献   

2.
The epithelial lining of the intestine serves as a barrier to lumenal bacteria and can be compromised by pathologic Fas-mediated epithelial apoptosis. Phosphatidylinositol (PI)3-kinase signaling has been described to limit apoptosis in other systems. We hypothesized that PI3-kinase-dependent pathways regulate Fas-mediated apoptosis and barrier function in intestiynal epithelial cells (IEC). IEC lines (HT-29 and T84) were exposed to agonist anti-Fas antibody in the presence or absence of chemical inhibitors of PI3-kinase (LY294002 and wortmannin). Apoptosis, barrier function, changes in short circuit current (DeltaI(sc)), and expression of adhesion molecules were assessed. Inhibition of PI3-kinase strongly sensitized IEC to Fas-mediated apoptosis. Expression of constitutively active Akt, a principal downstream effector of the PI3-kinase pathway, protected against Fas-mediated apoptosis to an extent that was comparable with expression of a genetic caspase inhibitor, p35. PI3-kinase inhibition sensitized to apoptosis by increasing and accelerating Fas-mediated caspase activation. Inhibition of PI3-kinase combined with cross-linking Fas was associated with increased permeability to molecules that were <400 Da but not those that were >3,000 Da. Inhibition of PI3-kinase resulted in chloride secretion that was augmented by cross-linking Fas. Confocal analyses revealed polymerization of actin and maintenance of epithelial cell adhesion molecule-mediated interactions in monolayers exposed to anti-Fas antibody in the context of PI3-kinase inhibition. PI3-kinase-dependent pathways, especially Akt, protect IEC against Fas-mediated apoptosis. Inhibition of PI3-kinase in the context of Fas signaling results in increased chloride secretion and barrier dysfunction. These findings suggest that agonists of PI3-kinase such as growth factors may have a dual effect on intestinal inflammation by protecting epithelial cells against immune-mediated apoptosis and limiting chloride secretory diarrhea.  相似文献   

3.
Secretomotor reflexes in the gastrointestinal (GI) tract are important in the lubrication and movement of digested products, absorption of nutrients, or the diarrhea that occurs in diseases to flush out unwanted microbes. Mechanical or chemical stimulation of mucosal sensory enterochromaffin (EC) cells triggers release of serotonin (5-HT) (among other mediators) and initiates local reflexes by activating intrinsic primary afferent neurons of the submucous plexus. Signals are conveyed to interneurons or secretomotor neurons to stimulate chloride and fluid secretion. Inputs from myenteric neurons modulate secretory rates and reflexes, and special neural circuits exist to coordinate secretion with motility. Cellular components of secretomotor reflexes variably express purinergic receptors for adenosine (A1, A2a, A2b, or A3 receptors) or the nucleotides adenosine 5'-triphosphate (ATP), adenosine diphosphate (ADP), uridine 5'-triphosphate (UTP), or uridine diphosphate (UDP) (P2X(1-7), P2Y(2), P2Y(4), P2Y(6), P2Y(12) receptors). This review focuses on the emerging concepts in our understanding of purinergic regulation at these receptors, and in particular of mechanosensory reflexes. Purinergic inhibitory (A(1), A(3), P2Y(12)) or excitatory (A(2), P2Y(1)) receptors modulate mechanosensitive 5-HT release. Excitatory (P2Y(1), other P2Y, P2X) or inhibitory (A(1), A(3)) receptors are involved in mechanically evoked secretory reflexes or "neurogenic diarrhea." Distinct neural (pre- or postsynaptic) and non-neural distribution profiles of P2X(2), P2X(3), P2X(5), P2Y(1), P2Y(2), P2Y(4), P2Y(6), or P2Y(12) receptors, and for some their effects on neurotransmission, suggests their role in GI secretomotor function. Luminal A(2b), P2Y(2), P2Y(4), and P2Y(6) receptors are involved in fluid and Cl(-), HCO(3) (-), K(+), or mucin secretion. Abnormal receptor expression in GI diseases may be of clinical relevance. Adenosine A(2a) or A(3) receptors are emerging as therapeutic targets in inflammatory bowel diseases (IBD) and gastroprotection; they can also prevent purinergic receptor abnormalities and diarrhea. Purines are emerging as fundamental regulators of enteric secretomotor reflexes in health and disease.  相似文献   

4.
Invasion is an important microbial virulence strategy to overcome the barrier formed by polarized epithelial cells. Salmonella enterica is a food-borne pathogen that deploys a type III secretion system for the manipulation of the actin cytoskeleton and to trigger internalization into epithelial cells. Here we show that this function is not sufficient to enter polarized cells and report that penetration of epithelia from the luminal side requires both the type III secretion system and novel virulence functions conferred by Salmonella pathogenicity island 4. Salmonella pathogenicity island 4 encodes a type I secretion system for the giant non-fimbrial adhesin SiiE that mediates intimate contact of Salmonella to microvilli on the apical membrane. Mutant strains lacking SiiE fail to invade polarized cells, to destroy epithelial barrier functions and to efface the apical brush border. Deletion analyses of repetitive domains in SiiE indicate that the large size of the adhesin is of functional importance. Our observations demonstrate that efficient penetration of epithelial barriers requires the cooperative activity of two Salmonella pathogenicity islands encoding different secretion systems. These findings underline the role of the epithelial brush border and reveal a new mechanism used by bacterial pathogens to overcome this barrier.  相似文献   

5.
6.
Somatostatin and its analogs such as WOC 3B were compared for their ability to alter the release of 5-hydroxytryptamine (5-HT) and prostaglandins and to affect chloride secretory capacity, determined by activity of neural reflexes or by the influence of immune mediators and other secretagogues. In guinea pig colon set up in flux chambers, the multi-tyrosinated sst1/sst2 receptor preferring somatostatin agonist, WOC 3B, inhibited stroking-evoked 5-HT release without affecting basal release. WOC 3B had no effect on stroking-induced or basal prostaglandin E2 release (PGE2). Neither 5-HT nor PGE2 release was dependent on neural input. Tetrodotoxin induced a decrease in basal short circuit current (Isc) indicative of a decrease in chloride secretion. The decrease in basal Isc during neural blockade was highly correlated with the decrease in basal Isc when WOC 3B was used. In piroxicam- and atropine-treated tissues, to eliminate prostaglandins and cholinergic muscarinic input to crypts, WOC 3B further reduced the piroxicam-resistant and not the atropine resistant Isc during brush stroking the mucosa. Somatostatin and WOC 3B reduced the stroking-evoked Isc with similar half maximum concentrations of 1-2 nM. WOC 3B reduced by more than 50% dimaprit-evoked cyclical Isc. The rank order of potencies in inhibiting dimaprit-evoked Isc was: Somatostatin-14=WOC 3B>CH275=DC-32-92>DC-23-48> >DC-32-87=DC-32-97. Low nanomolar concentrations of WOC 3B primarily inhibited the neural effects of carbachol and forskolin on Isc without altering their epithelial effects. Equi-molar concentrations (4 nM) of CH275, a somatostatin sst1 receptor agonist, and the somatostatin sst2 receptor agonist, [Tyr(3)]-octreotide, inhibited dimaprit-evoked Isc by 25% and 26%, and their effects were additive. The results suggest that WOC 3B, a somatostatin analogue containing three tyrosine residues, has anti-secretory effects due to activation of somatostatin sst1 and sst2 receptors on enteric neurons.  相似文献   

7.
Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated chloride channel expressed in a wide variety of epithelial cells, mutations of which are responsible for the hallmark defective chloride secretion observed in cystic fibrosis (CF). Although CFTR has been implicated in bicarbonate secretion, its ability to directly mediate bicarbonate secretion of any physiological significance has not been shown. We demonstrate here that endometrial epithelial cells possess a CFTR-mediated bicarbonate transport mechanism. Co-culture of sperm with endometrial cells treated with antisense oligonucleotide against CFTR, or with bicarbonate secretion-defective CF epithelial cells, resulted in lower sperm capacitation and egg-fertilizing ability. These results are consistent with a critical role of CFTR in controlling uterine bicarbonate secretion and the fertilizing capacity of sperm, providing a link between defective CFTR and lower female fertility in CF.  相似文献   

8.
Enteropathogenic Escherichia coli (EPEC) is a diarrheagenic pathogen that perturbs intestinal epithelial function. Many of the alterations in the host cells are mediated by effector molecules that are secreted directly into epithelial cells by the EPEC type III secretion system. The secreted effector molecule EspF plays a key role in redistributing tight junction proteins and altering epithelial barrier function. EspF has also been shown to localize to mitochondria and trigger membrane depolarization and eventual host cell death. The relationship, if any, between EspF-induced host cell death and epithelial barrier disruption is presently not known. Site-directed mutation of leucine 16 (L16E) of EspF impairs both mitochondrial localization and consequent host cell death. Although the mutation lies within a region critical for type III secretion, EspF(L16E) is secreted efficiently from EPEC. Despite its inability to promote cell death, EspF(L16E) was not impaired for tight junction alteration or barrier disruption. Consistent with this, the pan-caspase inhibitor Q-VD-OPH, despite reducing EPEC-induced host cell death, had no effect on infection-mediated barrier function alteration. Thus EPEC alters the epithelial barrier independent of its ability to induce host cell death.  相似文献   

9.
Although the molecular machinery and mechanism of cell secretion in acinar cells of the exocrine pancreas is well documented and clear, only recently has the pharmacophysiology of pancreatic exocrine secretion come to light. Therefore, we focus in this article on the current understanding of the pharmacophysiology of pancreatic exocrine secretion. The pancreatic secretory response to ingestion of a meal is mediated via a complex interplay of neural, humoral and paracrine mediators. A major role in the control of the intestinal phase of pancreatic secretion is attributed to vago-vagal enteropancreatic reflexes. In the scheme of this control mechanism, afferents originating in the duodenal mucosa, and efferents mediating central input on the pancreatic ganglia, activate intrapancreatic postganglionic neurons. Experiments utilizing specific receptor antagonists demonstrate the involvement of both muscarinic M1 and M3 receptors expressed in pancreatic acinar cells. Cholecystokinin (CCK), originally implicated in the humoral secretion of pancreatic enzymes, through a direct action on acinar CCK receptors, is also essential to the enteropancreatic reflex mechanism. CCK stimulation of the exocrine pancreatic secretion through excitation of sensory afferents of the enteropancreatic reflexes, is a paracrine mode of CCK action, and is probably the only one in humans and the predominant one in rats. In dogs, however, CCK acts on the pancreas via both the humoral and a paracrine route. More recent experiments suggest further possible sites of CCK action. Additionally, at the brain stem, vago-vagal enteropancreatic reflexes may be modulated by input from higher brain centres, particularly the hypothalamic-cholinergic system in the tonic stimulation of preganglionic neurons of the dorsal motor nucleus of the vagus projecting into the pancreas.  相似文献   

10.
Chronic bronchitis, a disease mainly of cigarette smokers, shares many clinical features with cystic fibrosis, a disease of altered ion transport, suggesting that the negative effects of cigarette smoke on mucociliary clearance may be mediated through alterations in ion transport. We tested the hypothesis that cigarette smoke extract would inhibit chloride secretion in human bronchial epithelial cells. In agreement with studies in canine trachea, cigarette smoke extract inhibited net chloride secretion without affecting sodium transport. We performed microelectrode impalements and impedance analysis studies to investigate the physiological mechanisms of this inhibition. These data demonstrated that cigarette smoke extract caused an acute increase in membrane resistances in conjunction with apical membrane hyperpolarization, an effect consistent with inhibition of an apical membrane anion conductance. After this acute phase, both membrane resistances decreased while membrane potentials continued to hyperpolarize, indicating that cigarette smoke extract also inhibited the basolateral entry of chloride into the cell. Furthermore, cigarette smoke extract caused an increase in mucin secretion. Therefore, the ion transport phenotype of human bronchial epithelial cells exposed to cigarette smoke extract is similar to that of cystic fibrosis epithelia in which there is sodium absorption out of proportion to chloride secretion in the setting of increased mucus secretion.  相似文献   

11.
Summary Voltage-clamped colonic epithelia were fixed for morphological observation minutes after bradykinin was added to produce its well-characterized increase in short circuit current representing net chloride secretion. With respect to paired controls, the average distance from the luminal epithelial surface to the underlying muscularis mucosa decreased significantly with time, and was accompanied by marked structural alterations in the crypts of Lieberkühn and surrounding lamina propria. This rapid reconfiguration of epithelial architecture suggests that kinin-receptor interaction leads to epithelial contractile events which occur simultaneously with net chloride secretion.  相似文献   

12.
The effect of human alpha-calcitonin gene-related peptide (CGRP) on epithelial ion transport was investigated in guinea pig distal colon set up in Ussing flux chambers. Addition of CGRP to the serosal bathing solution evoked a dose-dependent increase in short-circuit current in whole-thickness tissues with intact myenteric and submucosal ganglia, but not in whole-thickness preparations when neural connections between myenteric and submucosal ganglia were severed, nor in sheets of submucosa/mucosa with intact submucosal ganglia. The effects of CGRP were nearly abolished in chloride-free solutions or after treatment with furosemide. Tetrodotoxin and hexamethonium abolished the effects of CGRP on basal short-circuit current whereas atropine did not. CGRP enhanced neurally evoked chloride secretion both in whole thickness and submucosa/mucosa preparations, but the effect in the latter was considerably smaller. These observations suggest that CGRP stimulates chloride secretion primarily by activating myenteric neurons that project either to submucosal ganglia or to the mucosa of the guinea pig distal colon. Furthermore, CGRP appears to have a greater effect on excitability of myenteric neurons than submucosal neurons.  相似文献   

13.
Excessive fluid and electrolyte secretion, resulting symptomatically in diarrhea, has been associated with mast cell activation in a variety of experimental and clinical settings. The present study has used a human colonic epithelial cell line to examine mechanisms underlying this phenomenon. Acute addition of mixed mast cell mediators (as a lysate of rat basophilic leukemia cells) to epithelial cells led to prompt and sustained chloride secretion. The response was partially inhibitable by an antihistaminic drug and an adenosine antagonist, suggesting that histamine, adenosine, and possibly other mediators are responsible for producing the acute effect. Supernatants from immunologically activated rat basophilic leukemia cells had similar effects. Chronic exposure of epithelial cells to the lysate mediator preparation, followed by washing, had no effect on their basal electrical or electrolyte-transporting properties. However, the chloride secretory response of the cells to subsequent addition of vasoactive intestinal peptide, carbachol, and heat-stable enterotoxin of Escherichia coli was significantly enhanced, whereas responses to an adenosine agonist or PGE1 were unaffected. This study has, therefore, demonstrated two ways in which mast cell mediators can directly influence intestinal epithelial cells to secrete more chloride and, hence, to enhance fluid secretion in the gut. The findings may be of relevance to our understanding of inflammatory diarrhea and may aid the development of novel therapies for this disorder.  相似文献   

14.
Chloride secretion by airway epithelial cells is defective in cystic fibrosis (CF). The conventional paradigm is that CFTR is activated through cAMP and protein kinase A (PKA), whereas the Ca2+-activated chloride channel (CaCC) is activated by Ca2+ agonists like UTP. We found that most chloride current elicited by Ca2+ agonists in primary cultures of human bronchial epithelial cells is mediated by CFTR by a mechanism involving Ca2+ activation of adenylyl cyclase I (AC1) and cAMP/PKA signaling. Use of selective inhibitors showed that Ca2+ agonists produced more chloride secretion from CFTR than from CaCC. CFTR-dependent chloride secretion was reduced by PKA inhibition and was absent in CF cell cultures. Ca2+ agonists produced cAMP elevation, which was blocked by adenylyl cyclase inhibition. AC1, a Ca2+/calmodulin-stimulated adenylyl cyclase, colocalized with CFTR in the cell apical membrane. RNAi knockdown of AC1 selectively reduced UTP-induced cAMP elevation and chloride secretion. These results, together with correlations between cAMP and chloride current, suggest that compartmentalized AC1–CFTR association is responsible for Ca2+/cAMP cross-talk. We further conclude that CFTR is the principal chloride secretory pathway in non-CF airways for both cAMP and Ca2+ agonists, providing a novel mechanism to link CFTR dysfunction to CF lung disease.  相似文献   

15.
Cystic fibrosis (CF), an inherited disease characterized by defective epithelial Cl- transport, damages lungs via chronic inflammation and oxidative stress. Glutathione, a major antioxidant in the epithelial lung lining fluid, is decreased in the apical fluid of CF airway epithelia due to reduced glutathione efflux (Gao L, Kim KJ, Yankaskas JR, and Forman HJ. Am J Physiol Lung Cell Mol Physiol 277: L113-L118, 1999). The present study examined the question of whether restoration of chloride transport would also restore glutathione secretion. We found that a Cl- channel-forming peptide (N-K4-M2GlyR) and a K+ channel activator (chlorzoxazone) increased Cl- secretion, measured as bumetanide-sensitive short-circuit current, and glutathione efflux, measured by high-performance liquid chromatography, in a human CF airway epithelial cell line (CFT1). Addition of the peptide alone increased glutathione secretion (181 +/- 8% of the control value), whereas chlorzoxazone alone did not significantly affect glutathione efflux; however, chlorzoxazone potentiated the effect of the peptide on glutathione release (359 +/- 16% of the control value). These studies demonstrate that glutathione efflux is associated with apical chloride secretion, not with the CF transmembrane conductance regulator per se, and the defect of glutathione efflux in CF can be overcome pharmacologically.  相似文献   

16.
Cystic fibrosis (CF) causing mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) lead to mislocalization of CFTR protein from the brush border membrane of epithelial tissues and/or its dysfunction as a chloride channel. In initial reports, it was proposed that certain channels from the ClC family of chloride channels may provide compensatory or alternative pathways for epithelial chloride secretion in tissues from cystic fibrosis patients. In the present work, we provide the first evidence that ClC-4 protein is functionally expressed on the surface of the intestinal epithelium and hence, is appropriately localized to act as a therapeutic target in this CF-affected tissue. We show using confocal and electron microscopy that ClC-4 co-localizes with CFTR in the brush border membrane of the epithelium lining intestinal crypts in mouse and human tissues. In Caco-2 cells, a cell line thought to model human enterocytes, ClC-4 protein is expressed on the cell surface and also partially co-localizes with EEA1 and transferrin, marker molecules of early and recycling endosomes, respectively. Hence, like CFTR, ClC-4 may cycle between the plasma membrane and endosomal compartment. Furthermore, we show that ClC-4 functions as a chloride channel on the surface of these epithelial cells as antisense ClC-4 cDNA expression reduced the amplitude of endogenous chloride currents by 50%. These studies provide the first evidence that ClC-4 is endogenously expressed and may be functional in the brush border membrane of enterocytes and hence should be considered as a candidate channel to provide an alternative pathway for chloride secretion in the gastrointestinal tract of CF patients.  相似文献   

17.
肠道黏膜屏障具有防止致病性抗原侵入、维护肠道健康的功能。而肠道菌群是肠道黏膜屏障的重要构成部分,肠道菌群失调会导致肠道黏膜屏障的损伤,引起炎性肠病、肠易激综合征及肝、肾等多种疾病的发生发展。因此,本文从肠道黏膜的结构与功能及肠道菌群对其的影响等方面归纳总结肠道菌群对屏障系统的调控作用,从调节肠道微生态平衡、促进黏液分泌、影响紧密连接和肠道上皮通透性、激发肠黏膜免疫、调控肠上皮凋亡、影响肠上皮DNA稳定性及产生特殊代谢产物等方面阐述其作用机制,为临床胃肠道疾病及其并发症的治疗提供新的思路和方法。  相似文献   

18.
19.
AMP-activated protein kinase (AMPK) is activated in response to fluctuations in cellular energy status caused by oxidative stress. One of its targets is the cystic fibrosis transmembrane conductance regulator (CFTR), which is the predominant Cl- secretory channel in colonic tissue. The aim of this study was to determine the role of AMPK in the modulation of colonic chloride secretion under conditions of oxidative stress and chronic inflammation. Chloride secretion and AMPK activity were examined in colonic tissue from adult IL-10-deficient and wild-type 129 Sv/Ev mice in the presence and absence of pharmacological AMPK inhibitors and activators, respectively. Apical levels of CFTR were measured in brush-border membrane vesicles. Cell culture studies in human colonic T84 monolayers examined the effect of hydrogen peroxide and pharmacological activation of AMPK on forskolin-stimulated chloride secretion. Inflamed colons from IL-10-deficient mice exhibited hyporesponsiveness to forskolin stimulation in association with reductions in surface CFTR expression and increased AMPK activity. Inhibition of AMPK restored tissue responsiveness to forskolin, whereas stimulation of AMPK with 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) induced tissue hyporesponsivness in wild-type mice. T84 cells exposed to hydrogen peroxide demonstrated a time-dependent increase in AMPK activity and reduction of forskolin-stimulated chloride secretion. Inhibition of AMPK prevented the reduction in chloride secretion. Treatment of cells with the AMPK activator, AICAR, resulted in a decreased chloride secretion. In conclusion, AMPK activation is linked with reductions in cAMP-mediated epithelial chloride flux and may be a contributing factor to the hyporesponsiveness seen under conditions of chronic inflammation.  相似文献   

20.
High concentrations of manufactured carbon nanoparticles (CNP) are known to cause oxidative stress, inflammatory responses and granuloma formation in respiratory epithelia. To examine the effects of lower, more physiologically relevant concentrations, the human airway epithelial cell line, Calu-3, was used to evaluate potential alterations in transepithelial permeability and cellular function of airway epithelia after exposure to environmentally realistic concentrations of carbon nanoparticles. Three common carbon nanoparticles, fullerenes, single- and multi-wall carbon nanotubes (SWCNT, MWCNT) were used in these experiments. Electrophysiological measurements were performed to assay transepithelial electrical resistance (TEER) and epinephrine-stimulated chloride (Cl(-)) ion secretion of epithelial cell monolayers that had been exposed to nanoparticles for three different times (1 h, 24 h and 48 h) and over a 7 log unit range of concentrations. Fullerenes did not have any effect on the TEER or stimulated ion transport. However, the carbon nanotubes (CNT) significantly decreased TEER and inhibited epinephrine-stimulated Cl(-) secretion. The changes were time dependent and at more chronic exposures caused functional effects which were evident at concentrations substantially lower than have been previously examined. The functional changes manifested in response to physiologically relevant exposures would inhibit mucociliary clearance mechanisms and compromise the barrier function of airway epithelia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号