首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Yakuts, Middle Age Turkic speakers (15th-16th centuries), are widely accepted as the first settlers of the Altai-Baikal area in eastern Siberia. They are supposed to have introduced horses and developed metallurgy in this geographic area during the 15th or 16th century A.D. The analysis of the Siberian grave of Pokrovsk, recently discovered near the Lena River (61 degrees 29' N) and dated by accelerator mass spectrometry from 2,400 to 2,200 years B.P., may provide new elements to test this hypothesis. The exceptional combination of various artifacts and the mitochondrial DNA data extracted from the bone remains of the Pokrovsk man might prove the existence of previous contacts between autochthonous hunters of Oriental Siberia and the nomadic horse breeders from the Altai-Baikal area (Mongolia and Buryatia). Indeed, the stone arrowhead and the harpoons relate this Pokrovsk man to the traditional hunters of the Taiga. Some artifacts made of horse bone and the pieces of armor, however, are related to the tribes of Mongolia and Buryatia of the Xiongnu period (3rd century B.C.). This affinity has been confirmed by the match of the mitochondrial haplotype of this subject with a woman of the Egyin Gol necropolis (Mongolia, 2nd/3rd century A.D.) as well as with two modern Buryats. This result allows us to postulate that contacts between southern steppe populations and Siberian tribes occurred before the 15th century.  相似文献   

2.
DNA was extracted from the skeletal remains of 62 specimens excavated from the Egyin Gol necropolis, in northern Mongolia. This burial site is linked to the Xiongnu period and was used from the 3rd century b.c. to the 2nd century a.d. Three types of genetic markers were used to determine the genetic relationships between individuals buried in the Egyin Gol necropolis. Results from analyses of autosomal and Y chromosome short tandem repeats, as well as mitochondrial DNA, showed close relationships between several specimens and provided additional background information on the social organization within the necropolis as well as the funeral practices of the Xiongnu people. To the best of our knowledge, this is the first study using biparental, paternal, and maternal genetic systems to reconstruct partial genealogies in a protohistoric necropolis.  相似文献   

3.
Mitochondrial hypervariable region I genetic data from ancient populations at two sites in Asia-Linzi in Shandong (northern China) and Egyin Gol in Mongolia-were reanalyzed to detect population affinities. Data from 51 modern populations were used to generate distance measures (Fst's) to the two ancient populations. The tests first analyzed relationships at the regional level and then compiled the top regional matches for an overall comparison to the two probe populations. The reanalysis showed that the Egyin Gol and Linzi populations have clear distinctions in genetic affinity. The Egyin Gol population as a whole appears to bear close affinities with modern populations of northern East Asia. The Linzi population seems to have some genetic affinities with the West, as suggested by the original analysis, although the original attribution of "European-like" seems to be misleading. We suggest that the Linzi individuals are potentially related to early Iranians, who are thought to have been widespread in parts of Central Eurasia and the steppe regions in the first millennium B.C., although some significant admixture between a number of populations of varying origin cannot be ruled out. We also examine the effect of sequence length on this type of genetic data analysis and discuss the results of previous studies on the Linzi sample.  相似文献   

4.
Osseous and dental nonmetric (discrete) traits have long been used to assess population variability and affinity in anthropological and archaeological contexts. However, the full extent to which nonmetric traits can reliably be used as a proxy for genetic data when assessing close or familial relationships is currently poorly understood. This study represents the unique opportunity to directly compare genetic and nonmetric data for the same individuals excavated from the Egyin Gol necropolis, Mongolia. These data were analyzed to consider the general efficacy of nonmetric traits for detecting familial groupings in the absence of available genetic data. The results showed that the Egyin Gol population is quite homogenous both metrically and genetically confirming a previous suggestion that the same people occupied the necropolis throughout the five centuries of its existence. Kinship analysis detected the presence of potential family burials in the necropolis. Moreover, individuals buried in one sector of the necropolis were differentiated from other sectors on the basis of nonmetric data. This separation is likely due to an outside Turkish influence in the paternal line, as indicated by the results of Y-chromosome analysis. Affinity matrices based on nonmetric and genetic data were correlated demonstrating the potential of nonmetric traits for detecting relationships in the absence of genetic data. However, the strengths of the correlations were relatively low, cautioning against the use of nonmetric traits when the resolution of the familial relationships is low.  相似文献   

5.
The mtDNA hypervariable region I (HVR-I) of 10 ancient individuals from Dongzhou-period ancient human populations in Helingeer county of Inner Mongolia were amplified and sequenced to investigate the genetic structure. The relationships between the ancient population and related extant populations, as well as its possible origin at the molecular level, were also studied. Moreover, phylogenetic analysis and multi-dimensional scaling analysis were also performed based on the mtDNA data of the ancient population in Helingeer and the related Eurasian population. The results showed that the ancient population in Helingeer were closer to the northern Asian populations than to the other compared populations in matrilineal lineage. Combining the research results of archaeology and anthropology as well as molecular biology, we inferred that they were nomads who migrated from Mongolia plateau and cis-Baikal region to Helingeer in Inner Mongolia, China.  相似文献   

6.
We analyzed mitochondrial DNA (mtDNA), Y‐chromosome single nucleotide polymorphisms (Y‐SNP), and autosomal short tandem repeats (STR) of three skeletons found in a 2,000‐year‐old Xiongnu elite cemetery in Duurlig Nars of Northeast Mongolia. This study is one of the first reports of the detailed genetic analysis of ancient human remains using the three types of genetic markers. The DNA analyses revealed that one subject was an ancient male skeleton with maternal U2e1 and paternal R1a1 haplogroups. This is the first genetic evidence that a male of distinctive Indo‐European lineages (R1a1) was present in the Xiongnu of Mongolia. This might indicate an Indo‐European migration into Northeast Asia 2,000 years ago. Other specimens are a female with mtDNA haplogroup D4 and a male with Y‐SNP haplogroup C3 and mtDNA haplogroup D4. Those haplogroups are common in Northeast Asia. There was no close kinship among them. The genetic evidence of U2e1 and R1a1 may help to clarify the migration patterns of Indo‐Europeans and ancient East‐West contacts of the Xiongnu Empire. Artifacts in the tombs suggested that the Xiongnu had a system of the social stratification. The West Eurasian male might show the racial tolerance of the Xiongnu Empire and some insight into the Xiongnu society. Am J Phys Anthropol, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
目前青藏高原高海拔地区古DNA研究匮乏.拉托唐古墓地位于青藏高原西南高海拔区域,本文对该墓地出土距今约700年的人骨进行古DNA提取,捕获了高质量线粒体全基因组数据,结合东亚线粒体基因组数据库,运用遗传统计方法开展分析.研究结果表明,距今3000年以内青藏高原西南部人群的遗传历史具有连续性,距今700年左右的拉托唐古墓...  相似文献   

8.
The mtDNA hypervariable region I (HVR-I) of 10 ancient individuals from Dongzhou-period ancient human populations in Helingeer county of Inner Mongolia were amplified and sequenced to investigate the genetic structure. The relationships between the ancient population and related extant populations, as well as its possible origin at the molecular level, were also studied. Moreover, phylogenetic analysis and multidimensional scaling analysis were also performed based on the mtDNA data of the ancient population in Helingeer and the related Eurasian population. The results showed that the ancient population in Helingeer were closer to the northern Asian populations than to the other compared populations in matrilineal lineage. Combining the research results of archaeology and anthropology as well as molecular biology, we inferred that they were nomads who migrated from Mongolia plateau and cis-Baikal region to Helingeer in Inner Mongolia, China. __________ Translated from Journal of Jilin University (Science Edition), 2006, 44 (5): 824–828 [译自: 吉林大学学报(理学版)]  相似文献   

9.
The population history of Southeast (SE) China remains poorly understood due to the sparse sampling of present-day populations and limited modeling with ancient genomic data. We report genome-wide genotyping data from 207 present-day Han Chinese and Hmong-Mien (HM)-speaking She people from Fujian and Taiwan Island, SE China. We coanalyzed 66 Early Neolithic to Iron Age ancient Fujian and Taiwan Island individuals obtained from previously published works to explore the genetic continuity and admixture based on patterns of genetic variations of the high-resolution time transect. We found the genetic differentiation between northern and southern East Asians was defined by a north–south East Asian genetic cline and our studied southern East Asians were clustered in the southern end of this cline. The southeastern coastal modern East Asians are genetically similar to other southern indigenous groups as well as geographically close to Neolithic-to-Iron Age populations, but they also shared excess alleles with post-Neolithic Yellow River ancients, which suggested a southward gene flow on the modern southern coastal gene pool. In addition, we identified one new HM genetic cline in East Asia with the coastal Fujian HM-speaking She localizing at the intersection between HM and Han clines. She people show stronger genetic affinity with southern East Asian indigenous populations, with the main ancestry deriving from groups related to southeastern ancient indigenous rice farmers. The southeastern Han Chinese could be modeled with the primary ancestry deriving from the group related to the Yellow River Basin millet farmers and the remaining from groups related to rice farmers, which was consistent with the northern China origin of modern southeastern Han Chinese and in line with the historically and archaeologically attested southward migrations of Han people and their ancestors. Our estimated north–south admixture time ranges based on the decay of the linkage disequilibrium spanned from the Bronze Age to historic periods, suggesting the recent large-scale population migrations and subsequent admixture participated in the formation of modern Han in SE Asia.  相似文献   

10.
Three hundred forty-three Yakuts (mongoloids of central Asian type living in Siberia) were tested for HLA-A, -B, and -C loci. The HLA antigen distribution corresponds on the whole to a mongoloid population with high frequency of the HLA-A9, -B15, and -B40 antigens (phenotype frequencies .533, .367, and .405, respectively). At the same time a strikingly high frequency for the "Indo-European" HLA-A1 antigen (phenotype frequency .282) was detected, which in Yakuts is found exclusively with HLA-B17 (haplotype frequency x 1,000 = 87.0; linkage disequilibrium value x 1,000 = 63.8). The present paper deals with a new hypothesis of the Yakut ethnogenesis according to which ancient Aryan tribes formed the substratum which was later assimilated by the mongoloid and Turkic populations. Another hypothesis that I have advanced argues that from analysis of the HLA system the ancient Aryans formed, a local group within the Indo-European entity, with high frequency for HLA-A1 and -B17 antigens and for the HLA-A1,B17 haplotype and with a complete absence of or very low frequency for the HLA-B8 antigen and for the HLA-A1,B8 haplotype. Significant linkage disequilibrium, as it is found in Indians and Yakuts, etc., could have resulted from mixing of the Aryans with non-Indo-European tribes. No significant linkage disequilibrium between A1 and B8 characteristic of the European caucasoids was produced in the mixing.  相似文献   

11.
The Yakuts are a Turkic‐speaking population from northeastern Siberia who are believed to have originated from ancient Turkic populations in South Siberia, based on archaeological and ethnohistorical evidence. In order to better understand Yakut origins, we modeled 25 demographic scenarios and tested by coalescent simulation whether any are consistent with the patterns of mtDNA diversity observed in present‐day Yakuts. The models consist of either two simulated demes that represent Yakuts and a South Siberian ancestral population, or three demes that also include a regional Northeast Siberian population that served as a source of local gene flow into the Yakut deme. The model that produced the best fit to the observed data defined a founder group with an effective female population size of only 150 individuals that migrated northwards approximately 1,000 years BP and who experienced significant admixture with neighboring populations in Northeastern Siberia. These simulation results indicate a pronounced founder effect that was primarily kin‐structured and reconcile reported discrepancies between Yakut mtDNA and Y chromosome diversity levels. Am J Phys Anthropol, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
The Wanggu tribe, which contributed significantly to the foundation of the Yuan Dynasty, was one of the groups living on the Mongolian steppes during the Jin-Yuan period (AD 1127-1368) of Chinese history. However, there has been both archaeological and historical dispute regarding the origin of the ancient tribe. Recently, we discovered human remains of the Wanggu tribe in the Chengbozi cemetery in the Siziwang Banner of Inner Mongolia, China. To investigate the genetic structure of the Wanggu tribe and to trace the origins of the tribe at a molecular level, we analyzed the control-region sequences and coding regions of mitochondrial DNA (mtDNA) from the remains by direct sequencing and restriction-fragment length polymorphism analysis. In combination with mtDNA data of 15 extant Eurasian populations, we performed phylogenetic analysis and multidimensional scaling analysis. Our results show that the genetic structure of the Wanggu tribe in the Jin-Yuan period is a complex matriline, containing admixture from both Asian and European populations. In addition, we reveal that on the basis of mtDNA data, the ancient tribe may share a recent common ancestor with the Turkic-speaking Uzbeks and Uighurs.  相似文献   

13.
云南16个少数民族群体的线粒体DNA多态性研究   总被引:7,自引:1,他引:6  
利用PCR—RFLP法对傣族、白族、蒙古族、彝族等10个少数民族的16个群体共654人进行了mtDNA编码区多态性分析,共检测到17种单倍群,其中4种为未能确认的单倍群。单倍群频率分布和主成分图共同显示,百越系的3个民族共6个群体有高频的B、F单倍群,聚集在图的下部,表现出鲜明的南方群体特征;蒙古族的2个群体有高频的A、D单倍群,聚在图的上部,具有典型的北方群体特征;氐羌系的5个民族共7个群体全部或绝大多数都兼有南北方高频单倍群,位于图的中间,提示他们同时具有南北方群体的一些母系遗传特征。同一民族不同群体间的单倍群频率分布存在差异,但差异不很大,一般小于不同族源民族间的差异,但不一定都小于同一族源民族间的差异。  相似文献   

14.
Analysis of DNA from human archaeological remains is a powerful tool for reconstructing ancient events in human history. To help understand the origin of the inhabitants of Kublai Khan's Upper Capital in Inner Mongolia, we analyzed mitochondrial DNA (mtDNA) polymorphisms in 21 ancient individuals buried in the Zhenzishan cemetery of the Upper Capital. MtDNA coding and noncoding region polymorphisms identified in the ancient individuals were characteristic of the Asian mtDNA haplogroups A, B, N9a, C, D, Z, M7b, and M. Phylogenetic analysis of the ancient mtDNA sequences, and comparison with extant reference populations, revealed that the maternal lineages of the population buried in the Zhenzishan cemetery are of Asian origin and typical of present-day Han Chinese, despite the presence of typical European morphological features in several of the skeletons.  相似文献   

15.
The Han Chinese are the largest ethnic group in the world, and their origins, development, and expansion are complex. Many genetic studies have shown that Han Chinese can be divided into two distinct groups: northern Han Chinese and southern Han Chinese. The genetic history of the southern Han Chinese has been well studied. However, the genetic history of the northern Han Chinese is still obscure. In order to gain insight into the genetic history of the northern Han Chinese, 89 human remains were sampled from the Hengbei site which is located in the Central Plain and dates back to a key transitional period during the rise of the Han Chinese (approximately 3,000 years ago). We used 64 authentic mtDNA data obtained in this study, 27 Y chromosome SNP data profiles from previously studied Hengbei samples, and genetic datasets of the current Chinese populations and two ancient northern Chinese populations to analyze the relationship between the ancient people of Hengbei and present-day northern Han Chinese. We used a wide range of population genetic analyses, including principal component analyses, shared mtDNA haplotype analyses, and geographic mapping of maternal genetic distances. The results show that the ancient people of Hengbei bore a strong genetic resemblance to present-day northern Han Chinese and were genetically distinct from other present-day Chinese populations and two ancient populations. These findings suggest that the genetic structure of northern Han Chinese was already shaped 3,000 years ago in the Central Plain area.  相似文献   

16.
The decipherment of the meager information provided by short fragments of ancient mitochondrial DNA (mtDNA) is notoriously difficult but is regarded as a most promising way toward reconstructing the past from the genetic perspective. By haplogroup-specific hypervariable segment (HVS) motif search and matching or near-matching with available modern data sets, most of the ancient mtDNAs can be tentatively assigned to haplogroups, which are often subcontinent specific. Further typing for mtDNA haplogroup-diagnostic coding region polymorphisms, however, is indispensable for establishing the geographic/genetic affinities of ancient samples with less ambiguity. In the present study, we sequenced a fragment (approximately 982 bp) of the mtDNA control region in 76 Han individuals from Taian, Shandong, China, and we combined these data with previously reported samples from Zibo and Qingdao, Shandong. The reanalysis of two previously published ancient mtDNA population data sets from Linzi (same province) then indicates that the ancient populations had features in common with the modern populations from south China rather than any specific affinity to the European mtDNA pool. Our results highlight that ancient mtDNA data obtained under different sampling schemes and subject to potential contamination can easily create the impression of drastic spatiotemporal changes in the genetic structure of a regional population during the past few thousand years if inappropriate methods of data analysis are employed.  相似文献   

17.
The Xianbei existed as a remarkable nomadic tribe in northeastern China for three dynasties: the Han, Jin, and Northern-Southern dynasties (206 BC to 581 AD) in Chinese history. A very important subtribe of the Xianbei is the Murong Xianbei. To investigate the genetic structure of the Murong Xianbei population and to address its genetic relationships with other nomadic tribes at a molecular level, we analyzed the control region sequences and coding-region single nucleotide polymorphism markers of mtDNA from the remains of the Lamadong cemetery of the Three-Yan Culture of the Murong Xianbei population, which is dated to 1,600-1,700 years ago. By combining polymorphisms of the control region with those from the code region, we assigned 17 individuals to haplogroups B, C, D, F, G2a, Z, M, and J1b1. The frequencies of these haplogroups were compared with those of Asian populations and a multidimensional scaling graph was constructed to investigate relationships with other Asian populations. The results indicate that the genetic structure of the Lamadong population is very intricate; it has haplogroups prevalent in both the Eastern Asian and the Siberian populations, showing more affinity with the Eastern Asian populations. The present study also shows that the ancient nomadic tribes of Huns, Tuoba Xianbei, and Murong Xianbei have different maternal genetic structures and that there could have been some genetic exchange among them.  相似文献   

18.

Objectives

Since 2010, genome-wide data from hundreds of ancient Native Americans have contributed to the understanding of Americas' prehistory. However, these samples have never been studied as a single dataset, and distinct relationships among themselves and with present-day populations may have never come to light. Here, we reassess genomic diversity and population structure of 223 ancient Native Americans published between 2010 and 2019.

Materials and Methods

The genomic data from ancient Americas was merged with a worldwide reference panel of 278 present-day genomes from the Simons Genome Diversity Project and then analyzed through ADMIXTURE, D-statistics, PCA, t-SNE, and UMAP.

Results

We find largely similar population structures in ancient and present-day Americas. However, the population structure of contemporary Native Americans, traced here to at least 10,000 years before present, is noticeably less diverse than their ancient counterparts, a possible outcome of the European contact. Additionally, in the past there were greater levels of population structure in North than in South America, except for ancient Brazil, which harbors comparatively high degrees of structure. Moreover, we find a component of genetic ancestry in the ancient dataset that is closely related to that of present-day Oceanic populations but does not correspond to the previously reported Australasian signal. Lastly, we report an expansion of the Ancient Beringian ancestry, previously reported for only one sample.

Discussion

Overall, our findings support a complex scenario for the settlement of the Americas, accommodating the occurrence of founder effects and the emergence of ancestral mixing events at the regional level.  相似文献   

19.
The population history of the East Slavs is complicated. There are still many unanswered questions relating to the origins and formation of the East Slavic gene pool. The aims of the current study were as follows: (1) to assess the degree of biological affinity in medieval East Slavic tribes and to test the hypothesis that East Slavic peoples have a common origin; (2) to show their genetic connections to the autochthonous populations of the northern part of Eastern Europe (Baltic and Finno‐Ugric tribes); and (3) to identify a genetic continuity between the bearers of Chernyakhov culture and medieval Eastern Slavs. In this study, nonmetric cranial trait data for medieval East Slavic tribes and comparative samples from unrelated groups were examined. Analyzes of phenotypic differentiation were based on Nei's standard genetic distance and hierarchical GST statistics. The results obtained suggest that the genetic affinity of the East Slavic tribes is due not only to inter‐tribal gene flow, but is, more importantly, a result of their common population history. Evidence of gene flow from the Baltic and Finno‐Ugric groups was showed in the gene pool of Eastern Slavs, as was genetic continuity between medieval East Slavic tribes and the populations of the preceding Chernyakhov culture. These findings support a “generalizing” hypothesis of East Slavic origin, in which a Slavic community was formed in some particular ancestral area, and subsequently spread throughout Eastern Europe. Am J Phys Anthropol 152:495–505, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
《Small Ruminant Research》2003,47(3):171-181
Several local strains and populations of goats distinguished by morphogenetic and performance characteristics are kept by goat breeders in different natural climatic regions of Mongolia, namely Bayandelger, Ulgii Red, Erchim Black, Dorgon and Zavkhan Buural. The genetic relationships among eight native goat populations in Mongolia at 33 biochemical genetic loci was assessed. A total of 440 animals in eight regional zones were studied. Twelve loci, i.e. the serum transferrin, serum amylase, serum alkaline phosphatase, serum prealbumin-3, cell esterase-D, hemoglobin (Hb) β, hemoglobin (Hb) α-II, cell peptidase-B, cell tetrazolium oxidase, cell esterase-1, cell esterase-2 and cell catalase loci, were found to be polymorphic. The data indicated that Mongolian native goats are not highly differentiated (D=0.0002–0.0038) genetically. To set Mongolian native goats in a larger context, the present data were compared with those on other goat breeds and populations in east and southeast Asia that were previously reported. The average heterozygosity in the Mongolian native goats did not significantly differ from those in other Asian goat populations and breeds. A phylogenetic tree of the gene constitution of the Mongolian native goats and other Asian goat breeds and populations was constructed and revealed that genetically the Mongolian native goats had diverged slightly from the group consisting of Chinese, Japanese, Korean and Indonesian native goats, but markedly from the Indian goat group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号