首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Translational control of gene expression plays a key role in many biological processes. Consequently, the activity of the translation apparatus is under tight homeostatic control. eIF4E, the mRNA 5' cap-binding protein, facilitates cap-dependent translation and is a major target for translational control. eIF4E activity is controlled by a family of repressor proteins, termed 4E-binding proteins (4E-BPs). Here, we describe the surprising finding that despite the importance of eIF4E for translation, a drastic knockdown of eIF4E caused only minor reduction in translation. This conundrum can be explained by the finding that 4E-BP1 is degraded in eIF4E-knockdown cells. Hypophosphorylated 4E-BP1, which binds to eIF4E, is degraded, whereas hyperphosphorylated 4E-BP1 is refractory to degradation. We identified the KLHL25-CUL3 complex as the E3 ubiquitin ligase, which targets hypophosphorylated 4E-BP1. Thus, the activity of eIF4E is under homeostatic control via the regulation of the levels of its repressor protein 4E-BP1 through ubiquitination.  相似文献   

2.
A Haghighat  S Mader  A Pause    N Sonenberg 《The EMBO journal》1995,14(22):5701-5709
An important aspect of the regulation of gene expression is the modulation of translation rates in response to growth factors, hormones and mitogens. Most of this control is at the level of translation initiation. Recent studies have implicated the MAP kinase pathway in the regulation of translation by insulin and growth factors. MAP kinase phosphorylates a repressor of translation initiation [4E-binding protein (BP) 1] that binds to the mRNA 5' cap binding protein eukaryotic initiation factor (eIF)-4E and inhibits cap-dependent translation. Phosphorylation of the repressor decreases its affinity for eIF-4E, and thus relieves translational inhibition. eIF-4E forms a complex with two other polypeptides, eIF-4A and p220, that promote 40S ribosome binding to mRNA. Here, we have studied the mechanism by which 4E-BP1 inhibits translation. We show that 4E-BP1 inhibits 48S pre-initiation complex formation. Furthermore, we demonstrate that 4E-BP1 competes with p220 for binding to eIF-4E. Mutants of 4E-BP1 that are deficient in their binding to eIF-4E do not inhibit the interaction between p220 and eIF-4E, and do not repress translation. Thus, translational control by growth factors, insulin and mitogens is affected by changes in the relative affinities of 4E-BP1 and p220 for eIF-4E.  相似文献   

3.
Overexpression of P-glycoprotein, encoded by the MDR1 (multidrug resistance 1) gene, is often responsible for multidrug resistance in acute myeloid leukaemia. We have shown previously that MDR1 (P-glycoprotein) mRNA levels in K562 leukaemic cells exposed to cytotoxic drugs are up-regulated but P-glycoprotein expression is translationally blocked. In the present study we show that cytotoxic drugs down-regulate the Akt signalling pathway, leading to hypophosphorylation of the translational repressor 4E-BP [eIF (eukaryotic initiation factor) 4E-binding protein] and decreased eIF4E availability. The 5'-end of MDR1 mRNA adopts a highly-structured fold. Fusion of this structured 5'-region upstream of a reporter gene impeded its efficient translation, specifically under cytotoxic stress, by reducing its competitive ability for the translational machinery. The effect of cytotoxic stress could be mimicked in vivo by blocking the phosphorylation of 4E-BP by mTOR (mammalian target of rapamycin) using rapamycin or eIF4E siRNA (small interfering RNA), and relieved by overexpression of either eIF4E or constitutively-active Akt. Upon drug exposure MDR1 mRNA was up-regulated, apparently stochastically, in a small proportion of cells. Only in these cells could MDR1 mRNA compete successfully for the reduced amounts of eIF4E and translate P-glycoprotein. Consequent drug efflux and restoration of eIF4E availability results in a feed-forward relief from stress-induced translational repression and to the acquisition of drug resistance.  相似文献   

4.
The eukaryotic translation initiation factor (eIF) 4F facilitates the recruitment of ribosomes to the mRNA 5' end. The 4E-BPs are small proteins with hypophosphorylated forms that interact with the cap binding protein eIF4E, preventing its interaction with eIF4G, thereby preventing ribosome interaction with mRNA. In sea urchin, fertilization triggers a rapid rise in protein synthesis. Here, we demonstrate that a 4E-BP homologue exists and is associated with eIF4E in unfertilized eggs. We also show that 4E-BP/eIF4E association diminishes a few minutes following fertilization. This decrease is correlated with a decrease in the total amount of 4E-BP in combination with an increase in the phosphorylation of the protein. We propose that 4E-BP acts as a repressor of protein synthesis in unfertilized sea urchin eggs and that 4E-BP/eIF4E dissociation plays an important role in the rise in protein synthesis that occurs shortly following fertilization.  相似文献   

5.
6.
Walsh D  Perez C  Notary J  Mohr I 《Journal of virology》2005,79(13):8057-8064
As a viral opportunistic pathogen associated with serious disease among the immunocompromised and congenital defects in newborns, human cytomegalovirus (HCMV) must engage the translational machinery within its host cell to synthesize the viral proteins required for its productive growth. However, unlike many viruses, HCMV does not suppress the translation of host polypeptides. Here, we examine how HCMV regulates the cellular cap recognition complex eIF4F, a critical component of the cellular translation initiation apparatus that recruits the 40S ribosome to the 5' end of the mRNA. This study establishes that the cap binding protein eIF4E, together with the translational repressor 4E-BP1, are both phosphorylated early in the productive viral growth cycle and that the activity of the cellular eIF4E kinase, mnk, is critical for efficient viral replication. Furthermore, HCMV replication also induces an increase in the overall abundance of eIF4F components and promotes assembly of eIF4F complexes. Notably, increasing the abundance of select eIF4F core components and associated factors alters the ratio of active eIF4F complexes in relation to the 4E-BP1 translational repressor, illustrating a new strategy through which members of the herpesvirus family enhance eIF4F activity during their replicative cycle.  相似文献   

7.
Translation of cyclin mRNAs represents an important event for proper meiotic maturation and post-fertilization mitoses in many species. Translational control of cyclin B mRNA has been described to be achieved through two separate but related mechanisms: translational repression and polyadenylation. In this paper, we evaluated the contribution of global translational regulation by the cap-dependent translation repressor 4E-BP (eukaryotic initiation factor 4E-binding protein) on the cyclin B protein synthesis during meiotic maturation of the starfish oocytes. We used the immunosupressant drug rapamycin, a strong inhibitor of cap-dependent translation, to check for the involvement of this protein synthesis during this physiological process. Rapamycin was found to prevent dissociation of 4E-BP from the initiation factor eIF4E and to suppress correlatively a burst of global protein synthesis occurring at the G2/M transition. The drug had no effect on first meiotic division but defects in meiotic spindle formation prevented second polar body emission, demonstrating that a rapamycin-sensitive pathway is involved in this mechanism. While rapamycin affected the global protein synthesis, the drug altered neither the specific translation of cyclin B mRNA nor the expression of the Mos protein. The expression of these two proteins was correlated with the phosphorylation and the dissociation of the cytoplasmic polyadenylation element-binding protein from eIF4E.  相似文献   

8.
In this issue of Molecular Cell, Yanagiya et al. (2012) describe a regulatory mechanism that couples the abundance of the translational repressor 4E-BP1 with its target eIF4E via proteasomal degradation of 4E-BP1, thus maintaining translation in cells depleted of eIF4E.  相似文献   

9.
10.
Eukaryotic translation initiation factor 4E (eIF4E) is the mRNA 5' cap binding protein, which plays an important role in the control of translation. The activity of eIF4E is regulated by a family of repressor proteins, the 4E-binding proteins (4E-BPs), whose binding to eIF4E is determined by their phosphorylation state. When hyperphosphorylated, 4E-BPs do not bind to eIF4E. Phosphorylation of the 4E-BPs is effected by the phosphatidylinositol (PI) 3-kinase signal transduction pathway and is inhibited by rapamycin through its binding to FRAP/mTOR (FK506 binding protein-rapamycin-associated protein or mammalian target of rapamycin). Phosphorylation of 4E-BPs can also be induced by protein synthesis inhibitors. These observations led to the proposal that FRAP/mTOR functions as a "sensor" of the translational apparatus (E. J. Brown and S. L. Schreiber, Cell 86:517-520, 1996). To test this model, we have employed the tetracycline-inducible system to increase eIF4E expression. Removal of tetracycline induced eIF4E expression up to fivefold over endogenous levels. Strikingly, upon induction of eIF4E, 4E-BP1 became dephosphorylated and the extent of dephosphorylation was proportional to the expression level of eIF4E. Dephosphorylation of p70(S6k) also occurred upon eIF4E induction. In contrast, the phosphorylation of Akt, an upstream effector of both p70(S6k) and 4E-BP phosphorylation, was not affected by eIF4E induction. We conclude that eIF4E engenders a negative feedback loop that targets a component of the PI 3-kinase signalling pathway which lies downstream of PI 3-kinase.  相似文献   

11.
12.
Irrespective of their effects on ongoing host protein synthesis, productive replication of the representative alphaherpesvirus herpes simplex virus type 1, the representative gammaherpesvirus Kaposi's sarcoma herpesvirus, and the representative betaherpesvirus human cytomegalovirus [HCMV] stimulates the assembly of the multisubunit, cap-binding translation factor eIF4F. However, only HCMV replication is associated with an increased abundance of eIF4F core components (eIF4E, eIF4G, eIF4A) and the eIF4F-associated factor poly(A) binding protein (PABP). Here, we demonstrate that the increase in translation factor concentration was readily detected in an asynchronous population of HCMV-infected primary human fibroblasts, abolished by prior UV inactivation of virus, and genetically dependent upon viral immediate-early genes. Strikingly, while increased mRNA steady-state levels accompanied the rise in eIF4E and eIF4G protein levels, the overall abundance of PABP mRNA, together with the half-life of the polypeptide it encodes, remained relatively unchanged by HCMV infection. Instead, HCMV-induced PABP accumulation resulted from new protein synthesis and was sensitive to the mTORC1-selective inhibitor rapamycin, which interferes with phosphorylation of the mTORC1 substrate p70 S6K and the translational repressor 4E-BP1. While virus-induced PABP accumulation did not require p70 S6K, it was inhibited by the expression of a dominant-acting 4E-BP1 variant unable to be inactivated by mTORC1. Finally, unlike the situation in alpha- or gammaherpesvirus-infected cells, where PABP is redistributed to nuclei, PABP accumulated in the cytoplasm of HCMV-infected cells. Thus, cytoplasmic PABP accumulation is translationally controlled in HCMV-infected cells via a mechanism requiring mTORC1-mediated inhibition of the cellular 4E-BP1 translational repressor.  相似文献   

13.
Interaction of the translational repressor 4E-BP1 with the mRNA cap binding protein eIF4E plays an important role in the regulation of translation initiation. This interaction is modulated by phosphorylation of 4E-BP1 on at least six residues. However, analysis of the functional importance of the individual phosphorylation sites is complicated by the lack of information about the kinases and phosphatases involved in modulating phosphorylation of each site. The goal of the present study was to establish a system whereby alterations in the interaction of 4E-BP1 with eIF4E could be easily and directly measured. In initial studies, both eIF4E and 4E-BP1 were expressed as recombinant proteins coupled to variants of green fluorescent protein (ECFP and EYFP, respectively). Addition of purified EYFP--4E-BP1 to ECFP--eIF4E caused both a decrease in emission intensity at 480 nm and an increase at 535 nm indicating that protein-protein interaction had occurred. The interaction was stoichiometric and was blocked by eIF4G. Phosphorylation of EYFP--4E-BP1 by the mitogen-activated protein kinase ERK2, but not by casein kinase CK-II, also attenuated the interaction. Results using proteins in which the fluorescent protein tag was located at either the N- or C-terminus suggested that, in the protein complex, the N-termini of the two proteins are in close spatial proximity, as are the C-termini. Overall, the results demonstrate that fluorescence resonance energy transfer between EYFP--4E-BP1 and ECFP--eIF4E is a valuable tool in directly measuring alterations in the interaction of the two proteins.  相似文献   

14.
Changes to the translational machinery that occur during apoptosis have been described in the last few years. The two principal ways in which translational factors are modified during apoptosis are: (i) changes in protein phosphorylation and (ii) specific proteolytic cleavages. Taxol, a member of a new class of anti-tubulin drugs, is currently used in chemotherapeutic treatments of different types of cancers. We have previously demonstrated that taxol induces calpain-mediated apoptosis in NIH3T3 cells [Pi?eiro et al., Exp. Cell Res., 2007, 313:369-379]. In this study we found that translation was significantly inhibited during taxol-induced apoptosis in these cells. We have studied the phosphorylation status and expression levels of eIF2a, eIF4E, eIF4G and the regulatory protein 4E-BP1, all of which are implicated in translation regulation. We found that taxol treatment did not induce changes in eIF2alpha phosphorylation, but strongly decreased eIF4G, eIF4E and 4E-BP1 expression levels. MDL28170, a specific inhibitor of calpain, prevented reduction of eIF4G, but not of eIF4E or 4E-BP1 levels. Moreover, the calpain inhibitor did not block taxol-induced translation inhibition. All together these findings demonstrated that none of these factors are responsible for the taxol-induced protein synthesis inhibition. On the contrary, taxol treatment increased elongation factor eEF2 phosphorylation in a calpain-independent manner, supporting a role for eEF2 in taxol-induced translation inhibition.  相似文献   

15.
BACKGROUND INFORMATION: The translational inhibitor protein 4E-BP1 [eIF4E (eukaryotic initiation factor 4E)-binding protein 1] regulates the availability of polypeptide chain initiation factor eIF4E for protein synthesis. Initiation factor eIF4E binds the 5' cap structure present on all cellular mRNAs. Its ability to associate with initiation factors eIF4G and eIF4A, forming the eIF4F complex, brings the mRNA to the 43S complex during the initiation of translation. Binding of eIF4E to eIF4G is inhibited in a competitive manner by 4E-BP1. Phosphorylation of 4E-BP1 decreases the affinity of this protein for eIF4E, thus favouring the binding of eIF4G and enhancing translation. We have previously shown that induction or activation of the tumour suppressor protein p53 rapidly leads to 4E-BP1 dephosphorylation, resulting in sequestration of eIF4E, decreased formation of the eIF4F complex and inhibition of protein synthesis. RESULTS: We now report that activation of p53 also results in modification of 4E-BP1 to a truncated form. Unlike full-length 4E-BP1, which is reversibly phosphorylated at multiple sites, the truncated protein is almost completely unphosphorylated. Moreover, the latter interacts with eIF4E in preference to full-length 4E-BP1. Inhibitor studies indicate that the p53-induced cleavage of 4E-BP1 is mediated by the proteasome and is blocked by conditions that inhibit the dephosphorylation of full-length 4E-BP1. Measurements of the turnover of 4E-BP1 indicate that the truncated form is much more stable than the full-length protein. CONCLUSIONS: The results suggest a model in which proteasome activity gives rise to a stable, hypophosphorylated and truncated form of 4E-BP1, which may exert a long-term inhibitory effect on the availability of eIF4E, thus contributing to the inhibition of protein synthesis and the growth-inhibitory and pro-apoptotic effects of p53.  相似文献   

16.
17.
18.
19.
Although the central α-helical Y(X)4LΦ motif (X, variable amino acid; Φ, hydrophobic amino acid) of the translational regulator 4E-BP [eIF (eukaryotic initiation factor) 4E-binding protein] is the core binding region for the mRNA cap-binding protein eIF4E, the functions of its N- and C-terminal flexible regions for interaction with eIF4E remain to be elucidated. To identify the role for the C-terminal region in such an interaction, the binding features of full-length and sequential C-terminal deletion mutants of 4E-BPn (n=1-3) subtypes were investigated by SPR (surface plasmon resonance) analysis and ITC (isothermal titration calorimetry). Consequently, the conserved PGVTS/T motif within the C-terminal region was shown to act as the second binding region and to play an important role in the tight binding to eIF4E. The 4E-BP subtypes increased the association constant with eIF4E by approximately 1000-fold in the presence of this conserved region compared with that in the absence of this region. The sequential deletion of this conserved region in 4E-BP1 showed that deletion of Val81 leads to a considerable decrease in the binding ability of 4E-BP. Molecular dynamics simulation suggested that the conserved PGVTS/T region functions as a kind of paste, adhering the root of both the eIF4E N-terminal and 4E-BP C-terminal flexible regions through a hydrophobic interaction, where valine is located at the crossing position of both flexible regions. It is concluded that the conserved PGVTS/T motif within the flexible C-terminus of 4E-BP plays an auxiliary, but indispensable, role in strengthening the binding of eIF4E to the core Y(X)4LΦ motif.  相似文献   

20.
Eukaryotic initiation factor 4E (eIF4E) binding proteins (4E-BPs) regulate the assembly of initiation complexes required for cap-dependent mRNA translation. 4E-BP1 undergoes insulin-stimulated phosphorylation, resulting in its release from eIF4E, allowing initiation complex assembly. 4E-BP1 undergoes caspase-dependent cleavage in cells undergoing apoptosis. Here we show that cleavage occurs after Asp24, giving rise to the N-terminally truncated polypeptide Delta4E-BP1, which possesses the eIF4E-binding site and all the known phosphorylation sites. Delta4E-BP1 binds to eIF4E and fails to become sufficiently phosphorylated upon insulin stimulation to bring about its release from eIF4E. Therefore, Delta4E-BP1 acts as a potent inhibitor of cap-dependent translation. Using a mutagenesis approach, we identify a novel regulatory motif of four amino acids (RAIP) which lies within the first 24 residues of 4E-BP1 and which is necessary for efficient phosphorylation of 4E-BP1. This motif is conserved among sequences of 4E-BP1 and 4E-BP2 but is absent from 4E-BP3. Insulin increased the phosphorylation of 4E-BP3 but not sufficiently to cause its release from eIF4E. However, a chimeric protein that was generated by replacing the N terminus of 4E-BP3 with the N-terminal sequence of 4E-BP1 (containing this RAIP motif) underwent a higher degree of phosphorylation and was released from eIF4E. This suggests that the N-terminal sequence of 4E-BP1 is required for optimal regulation of 4E-BPs by insulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号