首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 553 毫秒
1.
Sepsis severity has been positively correlated with platelet dysfunction, which may be due to elevations in nitric oxide (NO) and cGMP levels. Protein kinase C, Src kinases, PI3K and AKT modulate platelet activity in physiological conditions, but no studies evaluated the role of these enzymes in platelet aggregation in sepsis. In the present study we tested the hypothesis that in sepsis these enzymes positively modulate upstream the NO-cGMP pathway resulting in platelet inhibition. Rats were injected with lipopolysaccharide (LPS, 1 mg/kg, i.p.) and blood was collected after 6 h. Platelet aggregation was induced by ADP (10 μM). Western blotting assays were carried out to analyze c-Src and AKT activation in platelets. Intraplatelet cGMP levels were determined by enzyme immunoassay kit. Phosphorylation of c-SRC at Tyr416 was the same magnitude in platelets of control and LPS group. Incubation of the non-selective Src inhibitor PP2 (10 μM) had no effect on platelet aggregation of LPS-treated rats. LPS increased intraplatelet cGMP levels by 5-fold compared with control group, which was accompanied by 76% of reduction in ADP-induced platelet aggregation. The guanylyl cyclase inhibitor ODQ (25 μM) and the PKG inhibitor Rp-8-Br-PET-cGMPS (25 μM) fully reversed the inhibitory effect of LPS on platelet aggregation. Likewise, the PKC inhibitor GF109203X (10 μM) reversed the inhibition by LPS of platelet aggregation and decreased cGMP levels in platelets. AKT phosphorylation at Thr308 was significantly higher in platelets of LPS compared with control group, which was not reduced by PI3K inhibition. The AKT inhibitor API-1 (20 μM) significantly increased aggregation and reduced cGMP levels in platelets of LPS group. However, the PI3K inhibitor wortmannin and LY29004 had no effect on platelet aggregation of LPS-treated rats. Therefore, inhibition of ADP-induced platelet aggregation after LPS injection is mediated by cGMP/PKG-dependent mechanisms, and PKC and AKT act upstream upregulating this pathway.  相似文献   

2.
Nitric oxide (NO) production occurs through oxidation of the amino acid L-arginine by NO synthase (NOS). NO inhibits platelet activation by increasing the levels of cyclic guanosine monophosphate (cGMP), thus maintaining vascular homeostasis. Our group previously demonstrated (da Silva et al. 2005) an enhancement of the L-arginine-NO-cGMP pathway in platelets taken from chronic renal failure (CRF) patients on haemodialysis associated with reduced platelet aggregation. We investigate the platelet L-arginine-NO-cGMP pathway, platelet function, and inflammation from patients in CRF on conservative treatment. A total of 42 CRF patients and 42 controls (creatinine clearance = 27 ± 3 vs. 93 ± 1 mL per min per 1.73 m2, respectively) participated in this study. NOS activity and expression and cGMP concentration were measured in platelets. Platelet aggregation induced by collagen or ADP was evaluated and plasma levels of fibrinogen were determined by the Clauss method. A marked increase in basal NOS activity was seen in undialysed CRF patients compared with controls, accompanied by an elevation of fibrinogen plasma levels. There were no differences in expression of NOS and in cGMP levels. In this context, platelet aggregation was not affected. We provide the first evidence of increased intraplatelet NO biosynthesis in undialysed CRF patients, which can be an early marker of future haemostatic abnormalities during dialysis treatment.  相似文献   

3.
Thromboxane A2 (TXA2)-mediated platelet secretion and aggregation are important in thrombosis. Here, we present a novel finding that the stable TXA2 analogue, U46619, induces two waves of platelet secretion, each of which precedes a distinct wave of platelet aggregation. ADP released from platelets during the first wave of secretion played a major role in augmenting the first wave of platelet aggregation. The second wave of platelet secretion and aggregation required the first wave of both ADP secretion and aggregation and were blocked by either the integrin inhibitor RGDS or a P2Y12 receptor antagonist, indicating a requirement for both the integrin outside-in signal and ADP-activated Gi pathway. U46619 stimulated phosphoinositide 3-kinase (PI3K)-dependent phosphorylation of Akt, which was augmented by ADP but did not require integrin outside-in signaling. Platelets from PI3Kgamma knock-out mice or PI3K inhibitor-treated platelets showed an impaired second wave of platelet secretion and aggregation. However, the second wave of platelet aggregation was restored by addition of exogenous ADP to PI3Kgamma deficient or PI3K inhibitor-treated platelets. Thus, our data indicate that PI3K, together with the integrin outside-in signaling, play a central role in inducing the second wave of platelet secretion, which leads to the second wave of irreversible platelet aggregation.  相似文献   

4.
Nitric oxide (NO) stimulates soluble guanylyl cyclase and, thus, enhances cyclic guanosine monophosphate (cGMP) levels. It is a currently prevailing concept that NO inhibits platelet activation. This concept, however, does not fully explain why platelet agonists stimulate NO production. Here we show that a major platelet NO synthase (NOS) isoform, NOS3, plays a stimulatory role in platelet secretion and aggregation induced by low doses of platelet agonists. Furthermore, we show that NOS3 promotes thrombosis in vivo. The stimulatory role of NOS is mediated by soluble guanylyl cyclase and results from a cGMP-dependent stimulation of platelet granule secretion. These findings delineate a novel signaling pathway in which agonists sequentially activate NOS3, elevate cGMP, and induce platelet secretion and aggregation. Our data also suggest that NO plays a biphasic role in platelet activation, a stimulatory role at low NO concentrations and an inhibitory role at high NO concentrations.  相似文献   

5.
Platelet secretion (exocytosis) is critical in amplifying platelet activation, in stabilizing thrombi, and in arteriosclerosis and vascular remodeling. The signaling mechanisms leading to secretion have not been well defined. We have shown previously that cGMP-dependent protein kinase (PKG) plays a stimulatory role in platelet activation via the glycoprotein Ib-IX pathway. Here we show that PKG also plays an important stimulatory role in mediating aggregation-dependent platelet secretion and secretion-dependent second wave platelet aggregation, particularly those induced via Gq-coupled agonist receptors, the thromboxane A2 (TXA2) receptor, and protease-activated receptors (PARs). PKG I knock-out mouse platelets and PKG inhibitor-treated human platelets showed diminished aggregation-dependent secretion and also showed a diminished secondary wave of platelet aggregation induced by a TXA2 analog and thrombin receptor-activating peptides that were rescued by the granule content ADP. Low dose collagen-induced platelet secretion and aggregation were also reduced by PKG inhibitors. Furthermore PKG I knockout and PKG inhibitors significantly attenuated activation of the Gi pathway that is mediated by secreted ADP. These data unveil a novel PKG-dependent platelet secretion pathway and a mechanism by which PKG promotes platelet activation.  相似文献   

6.
In this study the effect of the endocannabinoid anandamide on platelet nitric oxide (NO)/cGMP pathway was investigated. Data report that anandamide in a dose-and time-dependent manner increased NO and cGMP levels and stimulated endothelial nitric oxide synthase (eNOS) activity. These parameters were significantly reduced by LY294002, selective inhibitor of PI3K and by MK2206, specific inhibitor of AKT. Moreover anandamide stimulated both eNOSser1177 and AKTser473 phosphorylation. Finally the anandamide effect on NO and cGMP levels, eNOS and AKT phosphorylation/activation were inhibited by SR141716, specific cannabinoid receptor 1 antagonist, supporting the involvement of anandamide binding to this receptor. Overall data of this report indicate that low concentrations of anandamide, through PI3K/AKT pathway activation, stimulates eNOS activity and increases NO levels in human platelets. In such way anandamide contributes to extend platelet survival.  相似文献   

7.
8.
The small GTP-binding protein Rap1B is activated in human platelets upon stimulation of a G(i)-dependent signaling pathway. In this work, we found that inhibition of platelet adenylyl cyclase by dideoxyadenosine or SQ22536 did not cause activation of Rap1B and did not restore Rap1B activation in platelets stimulated by cross-linking of Fcgamma receptor IIA (FcgammaRIIA) in the presence of ADP scavengers. Moreover, elevation of the intracellular cAMP concentration did not impair the G(i)-dependent activation of Rap1B. Two unrelated inhibitors of phosphatidylinositol 3-kinase (PI3K), wortmannin and LY294002, totally prevented Rap1B activation in platelets stimulated by cross-linking of FcgammaRIIA, by stimulation of the P2Y(12) receptor for ADP, or by epinephrine. However, in platelets from PI3Kgamma-deficient mice, both ADP and epinephrine were still able to normally stimulate Rap1B activation through a PI3K-dependent mechanism, suggesting the involvement of a different isoform of the enzyme. Moreover, the lack of PI3Kgamma did not prevent the ability of epinephrine to potentiate platelet aggregation through a G(i)-dependent pathway. The inhibitory effect of wortmannin on Rap1B activation was overcome by addition of phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)), but not PtdIns(3,4)P(2), although both lipids were found to support phosphorylation of Akt. Moreover, PtdIns(3,4,5)P(3) was able to relieve the inhibitory effect of apyrase on FcgammaRIIA-mediated platelet aggregation. We conclude that stimulation of a G(i)-dependent signaling pathway causes activation of the small GTPase Rap1B through the action of the PI3K product PtdIns(3,4,5)P(3), but not PtdIns(3,4)P(2), and that this process may contribute to potentiation of platelet aggregation.  相似文献   

9.
Vascular endothelial growth factor (VEGF)-D binds to VEGF receptors (VEGFR) VEGFR2/KDR and VEGFR3/Flt4, but the signaling mechanisms mediating its biological activities in endothelial cells are poorly understood. Here we investigated the mechanism of action of VEGF-D, and we compared the signaling pathways and biological responses induced by VEGF-D and VEGF-A in endothelial cells. VEGF-D induced KDR and phospholipase C-gamma tyrosine phosphorylation more slowly and less effectively than VEGF-A at early times but had a more sustained effect and was as effective as VEGF-A after 60 min. VEGF-D activated extracellular signal-regulated protein kinases 1 and 2 with similar efficacy but slower kinetics compared with VEGF-A, and this effect was blocked by inhibitors of protein kinase C and mitogen-activated protein kinase kinase. In contrast to VEGF-A, VEGF-D weakly stimulated prostacyclin production and gene expression, had little effect on cell proliferation, and stimulated a smaller and more transient increase in intracellular [Ca(2+)]. VEGF-D induced strong but more transient phosphatidylinositol 3-kinase (PI3K)-mediated Akt activation and increased PI3K-dependent endothelial nitric-oxide synthase phosphorylation and cell survival more weakly. VEGF-D stimulated chemotaxis via a PI3K/Akt- and endothelial nitric-oxide synthase-dependent pathway, enhanced protein kinase C- and PI3K-dependent endothelial tubulogenesis, and stimulated angiogenesis in a mouse sponge implant model less effectively than VEGF-A. VEGF-D-induced signaling and biological effects were blocked by the KDR inhibitor SU5614. The finding that differential KDR activation by VEGF-A and VEGF-D has distinct consequences for endothelial signaling and function has important implications for understanding how multiple ligands for the same VEGF receptors can generate ligand-specific biological responses.  相似文献   

10.
NO produced by inducible NO synthase (iNOS) has been implicated in various pathophysiological processes including inflammation. Therefore, inhibitors of NO synthesis or iNOS gene expression have been considered as potential anti-inflammatory agents. We have previously demonstrated that heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF) decreases proinflammatory cytokine IL-8 and NO production in cytokine-stimulated intestinal epithelial cells by interfering with the NF-kappaB signaling pathway. However, the upstream signaling mechanisms involved in these responses have not yet been defined. In this report, we show that in intestinal epithelial cells, HB-EGF triggered PI3K-dependent phosphorylation of Akt. Inhibition of PI3K reversed the ability of HB-EGF to block NF-kappaB activation, expression of iNOS, and NO production. Small interfering RNA of PI3K also reversed the inhibitory effect of HB-EGF on iNOS expression. Alternatively, transient expression of constitutively active PI3K decreased NO production by approximately 2-fold more than treatment with HB-EGF alone. This PI3K effect was HB-EGF dependent. Thus, activation of PI3K is essential but not sufficient for decreased NO synthesis. PI3K and HB-EGF act synergistically to decrease NO synthesis. Neither overexpression or inhibition of MEK, Ras, or Akt affected HB-EGF-mediated inhibition of NF-kappaB activation. These data demonstrate that HB-EGF decreases proinflammatory cytokine-stimulated NF-kappaB activation and NO production via activation of the PI3K signaling pathway. These results also suggest that inhibition of NF-kappaB and activation of the PI3K-dependent signaling cascade by HB-EGF may represent key signals responsible for the anti-inflammatory effects of HB-EGF.  相似文献   

11.
The healthy vascular endothelium constantly releases autacoids which cause an increase of intracellular cyclic nucleotides to tame platelets from inappropriate activation. Elevating cGMP and cAMP, in line with previous reports, cooperated in the inhibition of isolated human platelet intracellular calcium-mobilization, dense granules secretion, and aggregation provoked by thrombin. Further, platelet alpha granules secretion and, most relevant, integrin αIIaβ3 activation in response to thrombin are shown to be prominently affected by the combined elevation of cGMP and cAMP. Since stress-related sympathetic nervous activity is associated with an increase in thrombotic events, we investigated the impact of epinephrine in this setting. We found that the assessed signalling events and functional consequences were to various extents restored by epinephrine, resulting in full and sustained aggregation of isolated platelets. The restoring effects of epinephrine were abolished by either interfering with intracellular calcium-elevation or with PI3-K signalling. Finally, we show that in our experimental setting epinephrine likewise reconstitutes platelet aggregation in heparinized whole blood, which may indicate that this mechanism could also apply in vivo.  相似文献   

12.
Glycoprotein (GP) VI is a critical platelet collagen receptor. Phosphoinositide 3-kinase (PI3K) plays an important role in GPVI-mediated platelet activation, yet the major PI3K isoforms involved in this process have not been identified. In addition, stimulation of GPVI results in the activation of Akt, a downstream effector of PI3K. Thus, we investigated the contribution of PI3K isoforms to GPVI-mediated platelet activation and Akt activation. A protein kinase C inhibitor GF 109203X or a P2Y12 receptor antagonist AR-C69931MX partly reduced GPVI-induced Akt phosphorylation. Platelets from mice dosed with clopidogrel also showed partial Akt phosphorylation, indicating that GPVI-mediated Akt phosphorylation is regulated by both secretion-dependent and -independent pathways. In addition, GPVI-induced Akt phosphorylation in the presence of ADP antagonists was completely inhibited by PI3K inhibitor LY294002 and PI3Kβ inhibitor TGX-221 indicating an essential role of PI3Kβ in Akt activation directly downstream of GPVI. Moreover, GPVI-mediated platelet aggregation, secretion, and intracellular Ca2+ mobilization were significantly inhibited by TGX-221, and less strongly inhibited by PI3Kα inhibitor PIK75, but were not affected by PI3Kγ inhibitor AS252424 and PI3Kδ inhibitor IC87114. Consistently, GPVI-induced integrin αIIbβ3 activation of PI3Kγ−/− and PI3Kδ−/− platelets also showed no significant difference compared with wild-type platelets. These results demonstrate that GPVI-induced Akt activation in platelets is dependent in part on Gi stimulation through P2Y12 receptor activation by secreted ADP. In addition, a significant portion of GPVI-dependent, ADP-independent Akt activation also exists, and PI3Kβ plays an essential role in GPVI-mediated platelet aggregation and Akt activation.  相似文献   

13.
Sesamol is a potent phenolic antioxidant which possesses antimutagenic, antihepatotoxic and antiaging properties. Platelet activation is relevant to a variety of acute thrombotic events and coronary heart diseases. There have been few studies on the effect of sesamol on platelets. Therefore, the aim of this study was to systematically examine the detailed mechanisms of sesamol in preventing platelet activation in vitro and in vivo. Sesamol (2.5?5 μM) exhibited more potent activity of inhibiting platelet aggregation stimulated by collagen than other agonists. Sesamol inhibited collagen-stimulated platelet activation accompanied by [Ca2+]i mobilization, thromboxane A2 (TxA2) formation, and phospholipase C (PLC)γ2, protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) phosphorylation in washed platelets. Sesamol markedly increased cAMP and cGMP levels, endothelial nitric oxide synthase (eNOS) expression and NO release, as well as vasodilator-stimulated phosphoprotein (VASP) phosphorylation. SQ22536, an inhibitor of adenylate cyclase, markedly reversed the sesamol-mediated inhibitory effects on platelet aggregation and p38 MAPK phosphorylation, and sesamol-mediated stimulatory effects on VASP and eNOS phosphorylation, and NO release. Sesamol also reduced hydroxyl radical (OH) formation in platelets. In an in vivo study, sesamol (5 mg/kg) significantly prolonged platelet plug formation in mice. The most important findings of this study demonstrate for the first time that sesamol possesses potent antiplatelet activity, which may involve activation of the cAMP-eNOS/NO-cGMP pathway, resulting in inhibition of the PLCγ2-PKC-p38 MAPK-TxA2 cascade, and, finally, inhibition of platelet aggregation. Sesamol treatment may represent a novel approach to lowering the risk of or improving function in thromboembolism-related disorders.  相似文献   

14.
Lnk, with APS and SH2-B (Src homology 2-B), belongs to a family of SH2-containing proteins with potential adaptor functions. Lnk regulates growth factor and cytokine receptor-mediated pathways implicated in lymphoid, myeloid, and platelet homeostasis. We have previously shown that Lnk is expressed and up-regulated in vascular endothelial cells (ECs) in response to tumor necrosis factor-alpha (TNFalpha). In this study, we have shown that, in ECs, Lnk down-regulates the expression, at both mRNA and protein levels, of the proinflammatory molecules VCAM-1 and E-selectin induced by TNFalpha. Mechanistically, our data indicated that, in response to TNFalpha, NFkappaB/p65 phosphorylation and translocation as well as IkappaBalpha phosphorylation and degradation were unchanged, suggesting that Lnk does not modulate NFkappaB activity. However, Lnk activates phosphatidylinositol 3-kinase (PI3K) as reflected by Akt phosphorylation. Our results identify endothelial nitric-oxide synthase as a downstream target of Lnk-mediated activation of the PI3K/Akt pathway and HO-1 as a new substrate of Akt. We found that sustained Lnk-mediated activation of PI3K in TNFalpha-activated ECs correlated with the inhibition of ERK1/2 phosphorylation, whereas phosphorylation of p38 and c-Jun NH(2)-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs) was unchanged. ERK1/2 inhibition decreases VCAM-1 expression in TNFalpha-treated ECs. Collectively, our results identify the adaptor Lnk as a negative regulator in the TNFalpha-signaling pathway mediating ERK inhibition and suggest a role for Lnk in the interplay between PI3K and ERK triggered by TNFalpha in ECs.  相似文献   

15.
To test the hypothesis that the phosphatidylinositol 3-kinase (PI3 kinase)/protein kinase Akt signaling pathway is involved in nitric oxide (NO)-induced endothelial cell migration and angiogenesis, we treated human and bovine endothelial cells with NO donors, S-nitroso-L-glutathione (GSNO) and S-nitroso-N-penicillamine (SNAP). Both GSNO and SNAP increased Akt phosphorylation and activity, which were blocked by cotreatment with the PI3 kinase inhibitor wortmannin. The mechanism was due to the activation of soluble guanylyl cyclase because 8-bromo-cyclic GMP activated PI3 kinase and the soluble guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-alpha]quinoxalin-1-one (ODQ) blocked NO-induced PI3 kinase activity. Indeed, transfection with adenovirus containing endothelial cell NO synthase (eNOS) or protein kinase G (PKG) increased endothelial cell migration, which was inhibited by cotransfection with a dominant-negative mutant of PI3 kinase (dnPI3 kinase). In a rat model of hind limb ischemia, adenovirus-mediated delivery of human eNOS cDNA in adductor muscles resulted in time-dependent expression of recombinant eNOS, which was accompanied by significant increases in regional blood perfusion and capillary density. Coinjection of adenovirus carrying dnPI3 kinase abolished neovascularization in ischemic hind limb induced by eNOS gene transfer. These findings indicate that NO promotes endothelial cell migration and neovascularization via cGMP-dependent activation of PI3 kinase and suggest that this pathway is important in mediating NO-induced angiogenesis.  相似文献   

16.
Leptin is a regulator of body weight and affects nitric oxide (NO) production. This study was designed to determine whether the myocardial NO-cGMP signal transduction system was altered in leptin-deficient obese mice. Contractile function, guanylyl cyclase activity, and cGMP-dependent protein phosphorylation were assessed in ventricular myocytes isolated from genetically obese (B6.V-Lepob) and age-matched lean (C57BL/6J) mice. There were no differences in baseline contraction between the lean and obese groups. After stimulation with the NO donor S-nitroso-N-acetyl-penicillamine (SNAP, 10-6 and 10-5 M) or a membrane-permeable cGMP analog 8-bromo-cGMP (8-Br-cGMP, 10(-6) and 10(-5) M), cell contractility was depressed. However, 8-Br-cGMP had significantly greater effects in obese mice than in lean controls with percent shortening reduced by 47 vs. 39% and maximal rate of shortening decreased by 46 vs. 36%. The negative effects of SNAP were similar between the two groups. Soluble guanylyl cyclase activity was not attenuated. This suggests that the activity of the cGMP-independent NO pathway may be enhanced in obesity. The phosphorylated protein profile of cGMP-dependent protein kinase showed that four proteins were more intensively phosphorylated in obese mice, which suggests an explanation for the enhanced effect of cGMP. These results indicate that the NO-cGMP signaling pathway was significantly altered in ventricular myocytes from the leptin-deficient obese mouse model.  相似文献   

17.
The nitric-oxide (NO)-cyclic-guanosine-monophosphate (cGMP) pathway plays a key role in penile erection. Erectile dysfunction (ED) is a complication in male diabetic patients that impacts their quality of 1ife. Recently, Yidiyin, a Chinese herbal decoction, is used to treat diabetic ED, but convincing evidence is lacking, and the potential mechanisms remain uncertain. In the study, diabetic ED patients had low scores on international index of erectile function-5 (IIEF-5), and administration of Yidiyin and hypoglycemic drugs for 16 weeks ameliorated patients' scores on IIEF-5 more than the hypoglycemic drug alone. Moreover, streptozotocin-induced diabetes severely impaired rats' erectile function and the activity of the NO-cGMP pathway in the corpora cavernosum, and treatment with Yidiyin for 4 weeks obviously increased the rats' erectile function, remarkably enhanced the activity of nitric oxide synthase (NOS), and elevated the contents of NO and cGMP. Our findings indicate that Yidiyin improves diabetic ED probably by enhancing the NO-cGMP pathway.  相似文献   

18.
Laminar shear stress activates c-Jun NH(2)-terminal kinase (JNK) by the mechanisms involving both nitric oxide (NO) and phosphatidylinositide 3-kinase (PI3K). Because protein kinase B (Akt), a downstream effector of PI3K, has been shown to phosphorylate and activate endothelial NO synthase, we hypothesized that Akt regulates shear-dependent activation of JNK by stimulating NO production. Here, we examined the role of Akt in shear-dependent NO production and JNK activation by expressing a dominant negative Akt mutant (Akt(AA)) and a constitutively active mutant (Akt(Myr)) in bovine aortic endothelial cells (BAEC). As expected, pretreatment of BAEC with the PI3K inhibitor (wortmannin) prevented shear-dependent stimulation of Akt and NO production. Transient expression of Akt(AA) in BAEC by using a recombinant adenoviral construct inhibited the shear-dependent stimulation of NO production and JNK activation. However, transient expression of Akt(Myr) by using a recombinant adenoviral construct did not induce JNK activation. This is consistent with our previous finding that NO is required, but not sufficient on its own, to activate JNK in response to shear stress. These results and our previous findings strongly suggest that shear stress triggers activation of PI3K, Akt, and endothelial NO synthase, leading to production of NO, which (along with O(2-), which is also produced by shear) activates Ras-JNK pathway. The regulation of Akt, NO, and JNK by shear stress is likely to play a critical role in its antiatherogenic effects.  相似文献   

19.
Moderate but not heavy drinking has been found to have a protective effect against cardiovascular morbidity. We investigated the effects of ethanol (EtOH) treatment on the cell survival-promoting phosphatidylinositol 3-kinase (PI3K)/Akt pathway in cultured human umbilical vein endothelial cells (HUVEC). Exposure of cells to 2-20 mm EtOH resulted in rapid (<10 min) induction of Akt phosphorylation that could be prevented by pertussis toxin or the PI3K inhibitors wortmannin and LY294002. Among the downstream effectors of PI3K/Akt, p70S6 kinase, glycogen synthase kinase 3alpha/beta, and IkappaB-alpha were phosphorylated, the latter resulting in 3-fold activation of NF-kappaB. EtOH also activated p44/42 mitogen-activated protein kinase in a PI3K-dependent manner. Low concentrations of EtOH increased endothelial nitric-oxide synthase activity, which could be blocked by transfection of HUVEC with dominant-negative Akt, implicating the PI3K/Akt pathway in this effect. The adenosine A1 receptor antagonist 1,3-dipopylcyclopentylxanthine prevented the phosphorylation of Akt observed in the presence of EtOH, adenosine, or the A1 agonist N(6)-cyclopentyladenosine. Incubation of HUVEC with 50-100 mm EtOH resulted in mitochondrial permeability transition and caspase-3 activation followed by apoptosis, as documented by DNA fragmentation and TUNEL assays. EtOH-induced apoptosis was unaffected by DPCPX and was potentiated by wortmannin or LY294002. We conclude that treatment with low concentrations of EtOH activates the cell survival promoting PI3K/Akt pathway in endothelial cells by an adenosine receptor-dependent mechanism and activation of the proapoptotic caspase pathway by higher concentrations of EtOH via an adenosine-independent mechanism can mask or counteract such effects.  相似文献   

20.
The vasodilator-stimulated phosphoprotein (VASP) is associated with actin filaments and focal adhesions, which form the interface between the cytoskeleton and the extracellular matrix. VASP is phosphorylated by both the cAMP- and cGMP-dependent protein kinases in a variety of cells, including platelets and smooth muscle cells. Since both the cAMP and cGMP signalling cascades relax smooth muscle and inhibit platelet activation, it was speculated that VASP mediates these effects by modulating actin filament dynamics and integrin activation. To study the physiological relevance of VASP in these processes, we inactivated the VASP gene in mice. Adult VASP-deficient mice had normal agonist-induced contraction, and normal cAMP- and cGMP-dependent relaxation of intestinal and vascular smooth muscle. In contrast, cAMP- and cGMP-mediated inhibition of platelet aggregation was significantly reduced in the absence of VASP. Other cAMP- and cGMP-dependent effects in platelets, such as inhibition of agonist-induced increases in cytosolic calcium concentrations and granule secretion, were not dependent on the presence of VASP. Our data show that two different cyclic, nucleotide-dependent mechanisms are operating during platelet activation: a VASP-independent mechanism for inhibition of calcium mobilization and granule release and a VASP-dependent mechanism for inhibition of platelet aggregation which may involve regulation of integrin function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号