首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The affinity of hyaluronic acid binding protein (HBP) to different glycosaminoglycans (GAGs) was examined. The purified protein was pretreated with hyaluronic acid (HA), heparin, glucuronic acid and N-Acetyl-glucosamine and was loaded onto Hyaluronate-Sepharose affinity column. The binding of HBP to HA immobilized on sepharose column was specifically blocked only by pretreatment of HBP to HA and the elution of HBP was decreased proportionately with the addition of higher quantity of HBP. The specificity of HBP to HA was confirmed as it did not bind to Heparin-Sepharose or Chondroitin-4-Sulphate-Sepharose columns. The complex of HBP in association with HA was further shown on Sephadex G-200 and 7.5% polyacrylamide gel. All the experimental findings indicate that HBP binds specifically to HA only.  相似文献   

2.
The protein-keratan sulphate core has been obtained by chondroztinase treatment of the proteoglycan monomers. The hyaluronic acid-binding region of the proteoglycans was prepared by trypsin treatment of the proteoglycans under their associated form. Both preparations were submitted to cyanogen bromide treatemnt. The fragments were separated by gel filtrations and polyacrylamide gel electrophoreses. The protein-keratan sulphate core gave rise to two main classes of fragments: the larger ones apparently arose from the polysaccharide attachment region of the monomers; among the smaller ones four appeared to be connected to one of the larger fragments by disulphide bridges. The hyaluronic acid-binding region gave rise to fragments whose electrophoretic mobilities were similar to those of some of the smaller fragments characterized in the cyanogen bromide treated protein keratan sulphate core. The molecular weights as well as the amino acid and sugar compositions of all the cyanogen bromide fragments are reported.  相似文献   

3.
Cartilage proteoglycan monomers associate with hyaluronic acid to form proteoglycan aggregates. Link protein, interacting with both hyaluronic acid and proteoglycan, serves to stabilize the aggregate structure. In the course of determining the primary structure of link protein, two peptides produced by digestion of rat chondrosarcoma link protein with trypsin or chymotrypsin have been selectively purified by immunoaffinity chromatography on a column of monoclonal anti-link protein antibody (8A4) immobilized to Sepharose 4B. These peptides have been sequenced using the double-coupling dimethylaminoazobenzene isothiocyanate/phenyl isothiocyanate procedure. A consensus sequence, Cys-X-Ala-Gly-Trp-Leu-X-Asp-Gly-Ser-Val-X-Tyr-Pro-Ile-X-X-Pro, obtained by comparing the affinity-isolated tryptic peptide with the affinity-isolated chymotryptic peptide and an overlapping tryptic peptide, shows homology with a sequence obtained from the NH2-terminal of a CNBr peptide from proteo glycan core protein of bovine nasal cartilage: Ser-Ser-Ala-Gly-Trp-Leu-Ala-Asp-Arg-Ser-Val-Arg-Tyr-Pro-Ile-Ser-. We suggest that the common sequence is structurally important to the function of these proteins and may be involved in the binding of both link protein and proteoglycan to hyaluronic acid.  相似文献   

4.
Pleiotrophin is an 18-kDa heparin-binding growth factor, which uses chondroitin sulfate (CS) proteoglycan, PTPzeta as a receptor. It has been suggested that the D-type structure (GlcA(2S)beta1-3GalNAc(6S)) in CS contributes to the high affinity binding between PTPzeta and pleiotrophin. Here, we analyzed the interaction of shark cartilage CS-D with pleiotrophin using a surface plasmon resonance biosensor to reveal the importance of D-type structure. CS-D was partially digested with chondroitinase ABC, and fractionated using a Superdex 75pg column. The > or =18-mer CS fractions showed significant binding to pleiotrophin, and the longer fractions had stronger affinity for pleiotrophin than the shorter ones. The approximately 46-mer CS fraction bound to densely immobilized pleiotrophin with high affinity (K(D) = approximately 30 nM), and the binding reactions fitted the bivalent analyte model. However, when the density of the immobilized pleiotrophin was lowered, the strength of affinity remarkably decreased (K(D) = approximately 2.5 microM), and the reactions no longer fitted the model and were considered to be monovalent binding. The 20 approximately 24-mer fractions showed low affinity binding to densely immobilized pleiotrophin (K(D) = 3 approximately 20 microM), which seemed to be monovalent. When approximately 22-mer CS oligosaccharides were fractionated by strong anion exchange HPLC, each fraction differed in affinity for pleiotrophin (K(D) = 0.36 approximately >10 microM), and the affinity correlated with the amounts of D- and E- (GlcAbeta1-3GalNAc(4S,6S)) type oversulfated structures. These results suggest that the binding of pleiotrophin to CS is regulated by multivalency with CS approximately 20 mer as a unit and by the amounts of oversulfated structures.  相似文献   

5.
Real-time interactions of collagen I, fibronectin, laminin, hyaluronic acid and chondroitin sulfate with immobilized Escherichia coli O157:H7 cells were studied with a surface plasmon resonance biosensor. Results showed that collagen I and laminin bound to the E.coli surface but fibronectin had very low binding while hyaluronic acid and chondroitin sulfate had no detectable interaction. Calcium ion inhibited laminin binding but enhanced collagen I binding. This research provides a model system to study the interactions of bacterial cells with extracellular matrix components. © Rapid Science Ltd. 1998  相似文献   

6.
Galectin-4 is a member of galectin family and has two carbohydrate recognition domains. Although galectin-4 has been thought to function in cell adhesion, its precise carbohydrate binding specificity has not yet been clarified. We studied the carbohydrate binding specificity of galectin-4 comparatively with that of galectin-3, using surface plasmon resonance, galectin-3- or -4-Sepharose column chromatography and the inhibition assay of their binding to immobilized asialofetuin. Galectin-3 broadly recognized lactose, type 1, type 2, and core 1. The substitution at the C-2 and C-3 position of beta-galactose in these oligosaccharides with alpha-fucose, alpha-GalNAc, alpha-Neu5Ac, or sulfate increased the binding ability for galectin-3, whereas the substitution at the C-4 or C-6 position diminished the affinity. In contrast, galectin-4 had quite weak affinity to lactose, type 1, and type 2 (K(d) congruent with 8 x 10(-4) M). Galectin-4 showed weak binding ability to core 1 and C-2' or -3'-substituted lactose, type 1, and type 2 with alpha-fucose, alpha-GalNAc, or sulfate (K(d) : 5 x 10(-5) approximately 3 x 10(-4) M). Interestingly, the K(d) value, 3.4 x 10(-6) M, of SO(3)(-)-->3Galbeta1-->3GalNAc-O-Bn to galectin-4 at 25 degrees C was two orders of magnitude lower than that of core 1-O-Bn. 3'-Sialylated core 1 had very weak affinity to galectin-4, suggesting that 3'-O-sulfation of core 1 is critical for the recognition. These results suggest that galectin-4 has a unique carbohydrate binding specificity and interacts with O-linked sulfoglycans.  相似文献   

7.
T Kajio  K Kawahara  K Kato 《FEBS letters》1992,306(2-3):243-246
Dextran sulfate protected bFGF from heat and acid inactivation and from proteolytic degradation. The protective effect was stronger than that of heparin which is known as a stabilizer of bFGF. Dextran sulfate and bFGF formed a high molecular weight complex via ionic interaction when mixed together in aqueous solution. The complex was dissociated when the ionic strength was increased and the protective effect was completely abolished. Successive digestion of bFGF with Staphylococcus aureus V8 protease and pepsin followed by affinity chromatography on an immobilized dextran sulfate column and reversed-phase high performance liquid chromatography yielded three positively charged fragment peptides, Tyr24-Phe30, Tyr106-Trp114 and Tyr124-Leu138. These results suggest that dextran sulfate stabilizes bFGF by binding close to the putative heparin binding sites of the bFGF molecule.  相似文献   

8.
Here we show that a large chondroitin sulfate proteoglycan, versican, derived from a renal adenocarcinoma cell line ACHN, binds L-selectin, P-selectin, and CD44. The binding was mediated by the interaction of the chondroitin sulfate (CS) chain of versican with the carbohydrate-binding domain of L- and P-selectin and CD44. The binding of versican to L- and P-selectin was inhibited by CS B, CS E, and heparan sulfate (HS) but not by any other glycosaminoglycans tested. On the other hand, the binding to CD44 was inhibited by hyaluronic acid, chondroitin (CH), CS A, CS B, CS C, CS D, and CS E but not by HS or keratan sulfate. A cross-blocking study indicated that L- and P-selectin recognize close or overlapping sites on versican, whereas CD44 recognizes separate sites. We also show that soluble L- and P-selectin directly bind to immobilized CS B, CS E, and HS and that soluble CD44 directly binds to immobilized hyaluronic acid, CH, and all the CS chains examined. Consistent with these results, structural analysis showed that versican is modified with at least CS B and CS C. Thus, proteoglycans sufficiently modified with the appropriate glycosaminoglycans should be able to bind L-selectin, P-selectin, and/or CD44.  相似文献   

9.
Heparan sulfate glycosaminoglycan, isolated from the cell surface of nonadhering murine myeloma cells (P3X63-Ag8653), does not bind to plasma fibronectin, but binds partially to collagen type I, as assayed by affinity chromatography with proteins immobilized on cyanogen bromide-activated Sepharose 4B. Identical results were obtained when myeloma heparan sulfate was cochromatographed, on the same fibronectin and collagen columns, with cell surface heparan sulfates collagen columns, with cell surface heparan sulfates from adhering Swiss mouse 3T3 and SV3T3 cells. These latter heparan sulfates do, however, bind to both fibronectin and collagen, as reported earlier (Stamatoglou, S.C., and J.M. Keller, 1981, Biochim. Biophys. Acta., 719:90-97). Cell adhesion assays established that hydrated collagen substrata can support myeloma cell attachment, but fibronectin cannot. Saturation of the heparan sulfate binding sites on the collagen substrata with heparan sulfate or heparin, prior to cell inoculation, abolished the ability to support cell adhesion, whereas chondroitin 4 sulfate, chondroitin 6 sulfate, and hyaluronic acid had no effect.  相似文献   

10.
Human serum amyloid P component (SAP) was found to agglutinate erythrocytes in the presence of calcium ion. The hemagglutination was strongly inhibited by hyaluronic acid as well as by heparan sulfate and dermatan sulfate, but not by chondroitin 4-sulfate and keratan sulfate. A specific binding of SAP to hyaluronic acid, heparan sulfate, and dermatan sulfate was also confirmed by the fact that these glycosaminoglycans blocked the binding of SAP to agarose, a specific ligand of SAP.  相似文献   

11.
Recombinant heparinase III (rHepIII) from Bacteroides stercoris HJ-15 was cloned, expressed, and characterized. The full-length heparinase III gene from B. stercoris HJ-15 was identified by Southern blotting, and the sequence was deposited in GenBank. The heparinase III gene, which is 2,001-bp long, was cloned and overexpressed in Escherichia coli; highly active rHepIII was easily purified using only one step of immobilized Ni2+ affinity column chromatography. Enzymatic properties and substrate specificities of rHepIII were assessed, and its kinetic constants were calculated. rHepIII was most active in 50 mM sodium phosphate buffer with 350 mM NaCl (pH 6.6) at 45°C. Through amino acid modification studies and site-directed mutagenesis assay, cysteines and histidines were identified as crucial residues for enzymatic activity. Moreover, this enzyme digested not only heparan sulfate but also heparin and hyaluronic acid, and their degradation products were verified by strong anion exchange/high-performance liquid chromatography. These characteristics, including active residues and substrate specificities were interesting compared with those of existing heparinase III from other species. We anticipate that the convenience of purification and the characteristics of this enzyme will make it a powerful tool for studies of glycosaminoglycans and their lyases.  相似文献   

12.
Glomerular basement membranes (GBM's) were subjected to digestion in situ with glycosaminoglycan-degrading enzymes to assess the effect of removing glycosaminoglycans (GAG) on the permeability of the GBM to native ferritin (NF). Kidneys were digested by perfusion with enzyme solutions followed by perfusion with NF. In controls treated with buffer alone, NF was seen in high concentration in the capillary lumina, but the tracer did not penetrate to any extent beyond the lamina rara interna (LRI) of the GBM, and litte or no NF reached the urinary spaces. Findings in kidneys perfused with Streptomyces hyaluronidase (removes hyaluronic acid) and chondroitinase-ABC (removes hyaluronic acid, chondroitin 4- and 6-sulfates, and dermatan sulfate, but not heparan sulfate) were the same as in controls. In kidneys digested with heparinase (which removes most GAG including heparan sulfate), NF penetrated the GBM in large amounts and reached the urinary spaces. Increased numbers of tracer molecules were found in the lamina densa (LD) and lamina rara externa (LRE) of the GBM. In control kidneys perfused with cationized ferritin (CF), CF bound to heparan- sulfate rich sites demonstrated previously in the laminae rarae; however, no CF binding was seen in heparinase-digested GBM's, confirming that the sites had been removed by the enzyme treatment. The results demonstrated that removal of heparan sulfate (but not other GAG) leads to a dramatic increase in the permeability of the GBM to NF.  相似文献   

13.
Uterine slices obtained from the estrogen-treated rabbits were digested with pronase. Glycosaminoglycans and acidic glycopeptides were then isolated by Dowex 1 column chromatography and preparative electrophoresis on cellulose acetate membrane (Separax), in succession. Each subfraction thus obtained was identified by the mobility on Separax electrophoresis and the digestibility with mucopolysaccharidases (Streptomyces hyaluronidase, testicular hyaluronidase, chondroitinase AC, chondroitinase ABC and heparinase). The resulting data showed that each complex saccharide (hyaluronic acid, heparan sulfate, chondroitin sulfate A, chondroitin sulfate C, dermatan sulfate, sulfated glycopeptide and sialoglycopeptide) was separated into 2-5 fractions, indicating charge and/or molecular heterogeneity of each complex saccharide.  相似文献   

14.
Uterine slices obtained from the estrogen-treated rabbits were digested with pronase. Glycosaminoglycans and acidic glycopeptides were then isolated by Dowex 1 column chromatography and preparative electrophoresis on celulose acetate membrane (Separax), in succession.Each subfraction thus obtained was identified by the mobility on Separax electrophoresis and the digestibility with mucopolysaccharidases (Streptomyces hyaluronidase, testicular hyaluronidase, chondroitinase AC, chondroitinase ABC and heparinase). The resulting data showed that each complex saccharide (hyaluronic acid, heparan sulfate, chondroitin sulfate A, chondroitin sulfate C, dermatan sulfate, sulfated glycopeptide and sialoglycopeptide) was separated into 2–5 fractions, indicating charge and/or molecular heterogeneity of each complex saccharide.  相似文献   

15.
Several cytokines and growth factors act on cells after their association with the glycosaminoglycan (GAG) moiety of cell surface proteoglycans (PGs). Interferon-gamma (IFN-gamma) binds to GAG; however, the relevance of this interaction for the biological activity of IFN-gamma on human cells remains to be established. Human arterial smooth muscle cells (HASMC), the main cells synthesizing PG in the vascular wall, respond markedly to IFN-gamma. We found that treatment of HASMC with chondroitinase ABC, an enzyme that degrades chondroitin sulfate GAG, reduced IFN-gamma binding by more than 50%. This treatment increased the affinity of 125I-IFN-gamma for cells from a Kd value of about 93 nM to a Kd value of about 33 nM. However, the total binding was reduced from 9. 3 +/- 0.77 pmol/microg to 3.0 +/- 0.23 pmol/mg (n = 4). Interestingly, pretreatment with chondroitinase ABC reduced significantly the cellular response toward IFN-gamma. The interaction of IFN-gamma with chondroitin sulfate GAG was confirmed by affinity chromatography of isolated cell-associated 35S-, 3H-labeled PG on a column with immobilized IFN-gamma. The cell-associated PG that binds to IFN-gamma was a chondroitin sulfate PG (CSPG). This CSPG had a core protein of approximately 110 kDa that was recognized by anti-CD44 antibodies on Western blots. High molecular weight complexes between IFN-gamma and chondroitin 6-sulfate were observed in gel exclusion chromatography. Additions of chondroitin 6-sulfate to cultured HASMC antagonized the antiproliferative effect and expression of major histocompatibility complex II antigens induced by IFN-gamma. These results indicate that IFN-gamma binds with low affinity to the chondroitin sulfate GAG moiety of the cell surface CSPG receptor CD44. This interaction may increase the local concentration of IFN-gamma at the cell surface, thus facilitating its binding to high affinity receptors and modulating the ability of IFN-gamma to signal a cellular response.  相似文献   

16.
Mummery RS  Mulloy B  Rider CC 《Glycobiology》2007,17(10):1094-1103
Recombinant human betacellulin binds strongly to heparin, requiring of the order of 0.8 M NaCl for its elution from a heparin affinity matrix. This is in complete contrast to the prototypic member of its cytokine superfamily, epidermal growth factor, which fails to bind to the column at physiological pH and strength. We used a well-established heparin binding ELISA to demonstrate that fucoidan and a highly sulfated variant of heparan sulfate compete strongly for heparin binding. Low sulfated heparan sulfates and also chondroitin sulfates are weaker competitors. Moreover, although competitive activity is reduced by selective desulfation, residual binding to extensively desulfated heparin remains. Even carboxyl reduction followed by extensive desulfation does not completely remove activity. We further demonstrate that both hyaluronic acid and the E. coli capsular polysaccharide K5, both of which are unsulfated polysaccharides with unbranched chains of alternating N-acetylglucosamine linked beta(1-4) to glucuronic acid, are also capable of a limited degree of competition with heparin. Heparin protects betacellulin from proteolysis by LysC, but K5 polysaccharide does not. Betacellulin possesses a prominent cluster of basic residues, which is likely to constitute a binding site for sulfated polysaccharides, but the binding of nonsulfated polysaccharides may take place at a different site.  相似文献   

17.
Age-related changes in renal function have been attributed to alterations in the chemical composition of the kidney tissues. Hence, the glycosaminoglycan composition of the renal cortex and medulla at varying age intervals was investigated. Glycosaminoglycans were isolated from the tissues by means of digestion with collagenase and pronase and purified by ethanol precipitation. Subsequent separation of various polyanions was accomplished by ion exchange chromatography on a Dowex 1-X2 column, using sodium chloride buffers of increasing ionic strengths. The glycosaminoglycans in each fraction were identified and quantitated by digestion with specific enzymes, including hyaluronidase, chondroitinase AC and ABC. The enzyme resistant material was separated and further digested with nitrous acid to quantitate the proportion of heparon sulfate. The results indicate that the glycosaminoglycan content of the renal medulla was much higher than the cortex at all the age intervals studied, and age-induced reduction was mainly cortical. There was a significant reduction in the heparan sulfate content of the cortex in aging. Interestingly, the major glycosaminoglycan content of the medulla was hyaluronic acid, which showed a sharp increase during aging, whereas heparan sulfate declined. Chondroitin sulfate was not altered due to age in either tissue. The molecular weight of hyaluronic acid was determined by column chromatography. Results indicate that the size of hyaluronate in the cortex was small and did not vary with age. In the medulla of the younger age group, a considerable amount of large size hyaluronate was observed. As age increased, the size decreased. The results strongly suggest that alteration in the renal glycosaminoglycans may be partly responsible for the age related protinuria and ionic imbalance.  相似文献   

18.
Hot-water extraction of defatted skin of the fish Labeo rohita yielded a viscous, glycoprotein solution. This was extensively digested with pronase, and then treated with trichloroacetic acid to remove the proteins and nucleic acids. On precipitation with ethanol, the solution furnished a mixture of several glycosaminoglycans which was fractionated by complexing with cetylpyridinium chloride and alkaline copper solution to yield three pure fractions. From analyses, specific rotation values, i.r. data, and enzymic studies, the three fractions were fully characterized to be dermatan sulfate, chondroitin 4-sulfate, and hyaluronic acid. The viscosity-average molecular weight of dermatan sulfate was found to be 2.3 x 104, and that of hyaluronic acid, 1.78 x 105.  相似文献   

19.
We have studied the affinity between fibroblast proteoheparan sulfate (medium- and cell surface-derived species) and heparan sulfate-agaroses by affinity chromatography. The evidence for an interaction between the heparan sulfate side chains of the proteoglycans and the immobilized heparan sulfate are as follows: (a) the individual side chains released from the proteoglycan by papain bind to the affinity matrix, (b) the bound proteoglycans are desorbed by a solution of cognate heparan sulfate chains, and (c) the core protein obtained by heparan sulfate-lyase digestion of the proteoglycan does not bind to the affinity matrix. The proteoglycans interact only with one subtype of heparan sulfate. The binding of free heparan sulfate chains to the affinity matrix is completely abolished by heparan sulfate oligosaccharides provided they are composed of both iduronate- and glucuronate-containing disaccharide sequences.  相似文献   

20.
Cartilage-derived growth factor (CDGF) was found to bind tightly to columns of immobilized heparin and could be eluted with concentrations of salt in the order of 1.6-1.8 M NaCl. The molecular weight of CDGF was estimated to be 18,000-20,000 by high performance liquid-size exclusion chromatography. The affinity of CDGF for heparin greatly facilitated its purification. Highly purified CDGF active at about 1-2 ng/ml was obtained when crude cartilage extract was applied to heparin-Sepharose and the growth factor activity was recycled over heparin-Sepharose two more times. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver stain visualization of highly purified CDGF showed one major polypeptide band with a molecular weight of about 19,000 containing over 95% of the protein and one minor polypeptide band containing the rest of the protein. Only the Mr 19,000 polypeptide was active after elution from the polyacrylamide gel. Although CDGF bound tightly to immobilized heparin, it did not bind to immobilized chondroitin sulfate or hyaluronic acid. In addition, CDGF bound to heparin much more tightly than did platelet-derived growth factor even though these two growth factors had similar isoelectric points of about 10. These results suggest that the binding of CDGF to heparin was due to a specific affinity of the 2 molecules for each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号