首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The aim of our work was to compare the mechanisms of resistance to aminopterin, inhibitor of the dihydrofolate reductase enzyme, between different Drosophila species and those described for cultured cells. Moreover we compared the systematic species divisions based on morphological traits and those based on a molecular approach. For this purpose, the effect of aminopterin on viability and wing phenotype was studied in different Drosophila species. Dihydrofolate reductase was measured in adult flies. We found an important dihydrofolate reductase activity in the melanogaster sub-group compared to the other species studies. Wing effect was observed only in this sub-group. The effects of aminopterin on the wing phenotype were very similar to the phenotype of rudimentary mutants. Both deplete the pyrimidine pool and it has been shown by the studies of the structural genes of the nucleotide pyrimidine pathway that the wing tissue is very sensitive to every pertubation of this metabolism.The D. ananassae species was found to be fully resistant at the concentrations of the inhibitor tested. No or very little dihydrofolate reductase activity was detected. The binding of the enzyme to the inhibitor was comparable to that found in the Oregon strain of D. melanogaster. The purine and pyrimidine salvage pathways were investigated and the D. ananassae species displayed an important thymidine kinase activity. The D. ananassae flies were sensitive on Sang medium compared to the Oregon flies but were able to use exogenous bases or nucleosides more efficiently. Therefore the mechanism of resistance to aminopterin in Drosophila may be different from those described for methotrexate in mammalian cultured cells, as indicated by the results obtained for D. ananassae.  相似文献   

2.
Summary We have studied the metabolic variability within different wild-type strains of Drosophila melanogaster for resistance to antimetabolites (aminopterin, 8-azaguanine), the target enzymatic activities (dihydrofolate reductase, hypoxanthine guanine phosphoribosyltransferase) and capacity to survive on minimal medium with or without exogenous bases or nucleosides (thymidine, hypoxanthine). No correlation was found between dihydrofolate reductase activity and resistance to aminopterin. The results indicated the importance of salvage pathways in the resistance mechanisms in Drosophila.  相似文献   

3.
Antifolates, such as methotrexate (MTX), are the treatment of choice for numerous cancers. MTX inhibits dihydrofolate reductase (DHFR), which is essential for cell growth and proliferation. Mammalian cells can acquire resistance to antifolate treatment through a variety of mechanisms but decreased antifolate titers due to changes in drug efflux or influx, or alternatively, the amplification of the DHFR gene are the most commonly acquired resistance mechanisms. In Drosophila, however, a resistant phenotype has only been observed to occur by mutation resulting in a MTX-resistant DHFR. It is unclear if differences in gene structure and/or genome organization between Drosophila and mammals contribute to the observed differences in acquired drug resistance. To investigate if gene structure is involved, Drosophila Dhfr cDNA was transfected into a line of CHO cells that do not express endogenous DHFR. These transgenic cells, together with wild-type CHO cells, were selected for 19 months for resistance to increasing concentrations of MTX, from 50- to 200-fold over the initial concentration. Since Drosophila Dhfr appears to have been amplified several fold in the selected transgenic mammalian cells, a difference in genome organization may contribute to the mechanism of MTX resistance.  相似文献   

4.
The vestigal (vg) gene encodes a nuclear protein which plays a major role in the formation of the wing of Drosophila. Resistance or sensitivity to aminopterin, an inhibitor of the dihydrofolate reductase enzyme in D. melanogaster, seems to be associated with a specific alteration in vg gene function. Wild-type and vg mutant strains selected for growth on increasing concentrations of aminopterin display changes in physiological and biochemical parameters such as viability on normal and aminopterin-containing media, duration of development, wing phenotype, dihydrofolate reductase activity, and cross-resistance to fluorodeoxyuridine (FUdR) and to methotrexate. Our results indicate that the mechanisms of resistance differ in the wild-type and mutant strains. The vg 83b27 mutant, in which the major part of intron 2 of the vg gene is deleted, is associated with a high rate of resistance to FUdR, an inhibitor of thymidylate synthetase. Moreover, vg 83b27/vg BGheterozygotes, which are wild type when grown on normal medium, display a strong vg phenotype when grown on aminopterin. Our results indicate a role for the vestigial locus in mediating resistance to inhibitors of dTMP synthesis.  相似文献   

5.
Dihydrofolate reductase has been purified from a methotrexate-resistant human lymphoid cell line (CCRF/CEM-R3) and up to 1 mg of enzyme has been obtained from 5 litres of culture. The enzyme has a molecular weight of 22000 ±500 as determined by gel filtration. The pH activity profile shows a single optimum at pH 7.7, where marked activation is observed by addition of 0.2 M NaCl. TheK m for NADPH is 3μM and dihydrofolate 0.7μM. The binding constant for the inhibitor, methotrexate, is 29 pM  相似文献   

6.
Summary A mouse dihydrofolate reductase gene (DHFR), encoding an enzyme conferring methotrexate (MTX) resistance, under the control of the cauliflower mosaic virus (CaMV) 35 S promoter, was inserted within a maize nonautonomous Ds transposable element. The presence of at least one element (Ds-DHFR) can easily be monitored using methotrexate selection in plants. This chimeric element is able to transpose at a frequency similar to its unmodified progenitor in transgenic tobacco callus containing an autonomous Ac element. The orientation of the selectable marker cassette in the Ds element does not affect relative excision frequencies. Approximately two-thirds of these elements can be detected after excision while the remaining one-third cannot. The Ds-DHFR element is useful in elucidating the mechanism by which Ac/Ds transposition occurs, and allows for a rapid identification of mutants in which methotrexate resistance cosegregates with a mutant phenotype.  相似文献   

7.
An in vitro study is a powerful method for elucidating gene functions in cellular and developmental events. However, until date, no reliable in vitro transformation, cloning, or knockdown system has been reported for Drosophila cells, with the exception of S2 and Kc cells. In this study, we demonstrated that the piggyBac vector stably integrates donor DNA into ovarian somatic sheets derived from follicle stem cells. The transformed ovarian somatic sheet cells were easily cloned with a new piggyBac selection vector carrying enhanced green fluorescent protein and dihydrofolate reductase genes, egfp, and dhfr, respectively, in culture media containing methotrexate, an inhibitor of DNA synthesis. Donor egfp continued to be expressed at a high level in long-term culture. Furthermore, the translation of donor egfp was inhibited by treatment with double-stranded RNA derived from the target gene. The transfection and cloning methods mediated by the piggyBac vector would thus be useful for future analyses of gene functions in OSS cells and possibly be applicable to other Drosophila cell lines.  相似文献   

8.
Summary In plant cells methotrexate (MTX) may exert its toxic effect through several mechanisms, including inhibition of its target protein dihydrofolate reductase. Resistance based on a mechanism operating before MTX binds to proteins should confer protection to plant cells. A methotrexate-resistant cell line of Nicotiana plumbaginifolia was isolated by a stepwise selection procedure. This cell line survived in the presence of 10 M MTX which is 50–100 fold higher than the lethal dose for the wild type cells. Neither alteration in kinetic characteristics of dihydrofolate reductase, nor elevated binding capacity of 3H-MTX to target protein(s), were observed. However, in comparison with wild type cells, markedly lower amounts of intracellular 3H-MTX were found after the selected cell line was incubated with 3H-MTX, indicating that either reduced uptake or enhanced efflux of MTX is the major reason for MTX-resistance in this cell line.  相似文献   

9.
Summary The purification of dihydrofolate reductase (5, 6, 7, 8 tetrahydrofolate: NADP+ oxidoreductase, E.C.: 1.5.1.3) from Daucus carota to apparent homogeneity, is described. The enzyme is a soluble protein with a molecular weight of 183 000±2 500, composed of identical subunits of 58 400±1 000. The enzyme is only weakly recognized by antibodies against human DHFR. The carrot DHFR is characterized by a pH optimum of 5.9, Km values for dihydrofolate and NADPH of 3.7 M and 2.2 M, respectively and a turnover number of 4 750 or 1 500 when referring to the 183 K form or the 58 K monomer, respectively. Molecular and kinetic properties are remarkably different from those reported for the soybean enzyme. Sensitivity to methotrexate is similar to that of bacterial and mammalian enzymes while sensitivity to trimethoprim and dihydrotriazine is intermediate between the two groups of organisms.  相似文献   

10.
A liquid chromatographic-fluorometric assay has been developed to study the role of dihydrofolate reductase in adult rat brain since low levels of the enzyme preclude measurement by current spectrophotometric procedures. This method involves in vitro incubation of desalted, cell-free brain extracts with 7,8-dihydrobiopterin, NADPH, and an NADPH-regenerating system. The tetrahydrobiopterin formed is quantitatively converted to pterin using alkaline iodine oxidation, and the pterin formed is separated by liquid chromatography and detected fluorometrically. The method is linear from 100 fmol to ≥ 1 nmol of product, and the sensitivity is at least 100 times greater than that of existing spectrophotometric assays. Enzyme activity of desalted brain extracts is linear with both time (to 100 min) and protein (from 50 to 620 μg). The enzyme shows an absolute requirement for NADPH, does not use NADH, and is completely inhibited by 10 n methotrexate. The Km of the enzyme for NADPH was found to be 7.5 μ , while the Km for 7,8-dihydrobiopterin was 88 μ . Since brain dihydrobiopterin reductase has the same properties as dihydrofolate reductase, this fluorometric procedure can serve as a sensitive assay for dihydrofolate reductase.  相似文献   

11.
We report that Drosophila retinal photoreceptors express inwardly rectifying chloride channels that seem to be orthologous to mammalian ClC-2 inward rectifier channels. We measured inwardly rectifying Cl currents in photoreceptor plasma membranes: Hyperpolarization under whole-cell tight-seal voltage clamp induced inward Cl currents; and hyperpolarization of voltage-clamped inside-out patches excised from plasma membrane induced Cl currents that have a unitary channel conductance of ∼3.7 pS. The channel was inhibited by 1 mM Zn2+ and by 1 mM 9-anthracene, but was insensitive to DIDS. Its anion permeability sequence is Cl = SCN> Br>> I, characteristic of ClC-2 channels. Exogenous polyunsaturated fatty acid, linolenic acid, enhanced or activated the inward rectifier Cl currents in both whole-cell and excised patch-clamp recordings. Using RT-PCR, we found expression in Drosophila retina of a ClC-2 gene orthologous to mammalian ClC-2 channels. Antibodies to rat ClC-2 channels labeled Drosophila photoreceptor plasma membranes and synaptic regions. Our results provide evidence that the inward rectification in Drosophila retinal photoreceptors is mediated by ClC-2-like channels in the non-transducing (extra-rhabdomeral) plasma membrane, and that this inward rectification can be modulated by polyunsaturated fatty acid. G. Ugarte and R. Delgado contributed equally to this work.  相似文献   

12.
The biochemical basis of the different sensitivity to methotrexateof Daucus carota and Oryza sativa cell cultures has been investigated.Carrot cells have a dihydrofolate reductase activity about tentimes higher than rice cells. In addition, they show a loweruptake rate of the inhibitor. No relevant differences have beenfound in the Km value for the dihydrofolate of the two enzymesand in the degree of inhibition of their activity by methotrexate. Key words: Dihydrofolate reductase, Methotrexate resistance, Plant cell suspension cultures, Oryza sativa, Daucus carota  相似文献   

13.
We report here a new selectable marker for tobacco immature pollen transformation based on the expression of dihydrofolate reductase (dhfr) gene which confers resistance to methotrexate (Mtx). Two immature pollen transformation approaches, i.e., male germ line transformation and particle bombardment of embryogenic mid-bicellular pollen have been used for the production of stable transgenic tobacco plants. In the first method, two methotrexate-resistant plants were selected from a total of 7161 seeds recovered after transformation experiments. In the second method, four methotrexate-resistant plants were obtained from 29 bombardments using 3.7×105 pollen grains per bombardment. Southern analysis confirmed the transgenic nature of T0 and T1 candidate transgenic plants, and a genetic analysis showed that the transgenes are transmitted to subsequent generations.  相似文献   

14.
Nicotinic acetylcholine receptors (nAChRs) mediate fast synaptic transmission in the insect nervous system and are targets of a major group of insecticides, the neonicotinoids. Analyses of genome sequences have shown that nAChR gene families remain compact in diverse insect species, when compared to their mammalian counterparts. Thus, Drosophila melanogaster and Anopheles gambiae each possess 10 nAChR genes while Apis mellifera has 11. Although these are among the smallest nAChR gene families known, receptor diversity can be considerably increased by alternative splicing and mRNA A-to-I editing, thereby generating species-specific subunit isoforms. In addition, each insect possesses at least one highly divergent nAChR subunit. Species-specific subunit diversification may offer promising targets for future rational design of insecticides that act on particular pests while sparing beneficial insects. Electrophysiological studies on cultured Drosophila cholinergic neurons show partial agonist actions of the neonicotinoid imidacloprid and super-agonist actions of another neonicotinoid, clothianidin, on native nAChRs. Recombinant hybrid heteromeric nAChRs comprising Drosophila Dα2 and a vertebrate β2 subunit have been instructive in mimicking such actions of imidacloprid and clothianidin. Unitary conductance measurements on native nAChRs indicate that more frequent openings of the largest conductance state may offer an explanation for the superagonist actions of clothianidin.  相似文献   

15.
Dopamine modulates several behavioral and developmental events; in the fruit fly Drosophila melanogaster, dopamine is a neurotransmitter, a neuromodulator, and a developmental signal. Studies in mammals suggest that these diverse roles for dopamine have been evolutionarily conserved. Fundamental regulation of dopamine occurs via tyrosine hydroxylase (TH), the first and rate-limiting enzyme in the catecholamine biosynthetic pathway. Mammalian TH is acutely regulated via phosphorylation–dephosphorylation mechanisms, which occur as a direct consequence of nerve stimulation. We have shown that the Drosophila homolog of TH, DTH, shares over 50% sequence identity with mammalian TH, and the serine residue corresponding to the major site of phosphorylation is conserved. We demonstrate using recombinant DTH protein generated in E. coli that its regulatory biochemical mechanisms closely parallel those from mammals. Drosophila thus provides a highly conserved and tractable model system in which to test the functional consequences of perturbing TH activity by acute regulatory mechanisms.  相似文献   

16.
Fluorescein isothiocyanate coupled via a diaminopentyl-linking group to methotrexate (G.R. Gapski, J. M. Whiteley, J. I. Rader, P. L. Cramer, G. B. Henderson, V. Neef, and F. M. Huennekens, 1975, J. Med. Chem.18, 526–528) produces a fluorescent compound which is a strong inhibitor of dihydrofolate reductase (Ki = 60 nM) purified from L1210 murine leukemia cells. The fluorescent methotrexate derivative is preferentially taken up by methotrexate-resistant rather than wild-type L1210 cells grown in culture and acts as a visual marker for dihydrofolate reductase (KD = 50 nM) during both purification and polyacrylamide electrophoresis. Uptake, which is proportional to the level of dihydrofolate reductase (often an indicator of the degree of acquired cellular methotrexate resistance), occurs slowly and via a route that is distinct from the carrier-mediated system utilized by these cells to transport methotrexate.  相似文献   

17.
We investigated various parameters associated with the initial selection of mouse 3T6 cells for resistance to single concentrations of methotrexate and characterized resistant colonies for the presence of additional (amplified) copies of the dihydrofolate reductase gene. Our results indicate that the frequency of occurrence of dihydrofolate reductase gene amplification varies with the selecting concentration of methotrexate and is highly variable between clonally derived sublines of mouse 3T6 cells. Second, we increased the frequency of occurrence of cells with amplified dihydrofolate reductase genes by transiently inhibiting DNA synthesis with hydroxyurea before the selection of cells in single concentrations of methotrexate. This effect was dependent on the concentration of hydroxyurea, the time of exposure to the drug, and the time interval between the removal of hydroxyurea and the selection of cells in methotrexate.  相似文献   

18.
动物胃肠道是食物消化和营养吸收器官,对机体健康至关重要。果蝇与哺乳动物的肠道在细胞组成、遗传调控等方面高度相似,是研究肠道发育的良好模型。体外培养细胞中的研究发现,Nprl2通过作用于Rag GTPase,抑制雷帕霉素靶点复合物1(target of rapamycin complex 1,TORC1)的活性,参与细胞代谢的调节。前期报道nprl2突变果蝇具有前胃增大、消化能力降低等肠道衰老相关表型。但对于Nprl2是否通过Rag GTPase调控肠道发育等方面尚不清楚。为了探究Rag GTPase在Nprl2调控果蝇肠道发育中的作用,本研究利用遗传杂交结合免疫荧光等方法对RagA敲减和nprl2突变果蝇的肠道形态、肠道细胞组成等方面进行研究。发现单独敲减RagA可以引起肠变粗、前胃增大等表型,敲减RagA能挽救nprl2突变体中肠道变细、分泌型细胞减少的表型,但并不能挽救nprl2突变体中前胃增大的表型。以上结果表明,RagA在肠道发育中发挥重要作用,Nprl2通过作用于Rag GTPase调节肠道细胞分化和肠道形态,但Nprl2对前胃发育和肠道的消化功能的调节可能通过不依赖于Rag GTPase的机制实现。  相似文献   

19.
Summary The pathogenic yeast, Candida albicans, is insensitive to the anti-mitotic drug, benomyl, and to the dihydrofolate reductase inhibitor, methotrexate. Genes responsible for the intrinsic drug resistance were sought by transforming Saccharomyces cerevisiae, a yeast sensitive to both drugs, with genomic C. albicans libraries and screening on benomyl or methotrexate. Restriction analysis of plasmids isolated from benomyl- and methotrexate-resistant colonies indicated that both phenotypes were encoded by the same DNA fragment. Sequence analysis showed that the fragments were nearly identical and contained a long open reading frame of 1694 bp (ORF1) and a small ORF of 446 bp (ORF2) within ORF1 on the opposite strand. By site-directed mutagenesis, it was shown that ORF1 encoded both phenotypes. The protein had no sequence similarity to any known proteins, including -tubulin, dihydrofolate reductase, and the P-glycoprotein of the multi-drug resistance family. The resistance gene was detected in several C. albicans strains and in C. stellatoidea by DNA hybridization and by the polymerase chain reaction.  相似文献   

20.
Summary In-galactosidase ofEscherichia coli residues 820–934 are similar to residues in dihydrofolate reductase ofE. coli. Dihydrofolate reductase ofE. coli and chicken are also similar and have identical tertiary structures. I used the similarity of the three-dimensional structure of prokaryotic and eukaryotic dihydrofolage reductases to align the chicken dihydrofolate reductase and the similar residues of-galactosidase. The positions of introns 1 and 5 of the chicken dihydrofolate reductase gene correspond exactly to the start and the end of the dihydrofolate reductase-like domain in the-galactosidase polypeptide chain. This equivalence of intron positions in a eukaryotic gene and domain structure in a prokaryotic protein was interpreted as evidence for a common origin of both genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号