首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
4 isomeric cyclopenta-derivatives of benz[e]anthracene (benz[a]aceanthrylene, benz[j]aceanthrylene, benz[l]aceanthrylene, and benz[k]acephenanthrylene) were examined for their ability to morphologically transform C3H10T1/2CL8 mouse-embryo fibroblasts. All of these polycyclic aromatic hydrocarbons studied except benz[k]acephenanthrylene transformed C3H10T1/2CL8 cells to both type II and type III foci in a concentration-dependent fashion. Benz[j]aceanthrylene was the most active, equivalent in activity to benzo[a]pyrene on a molar basis, in producing dishes of cells with transformed foci (94% at 1.0 microgram/ml). Benz[e]aceanthrylene, and benz[l]aceanthrylene produced 58% and 85% of the dishes with foci respectively at 10 micrograms/ml. Metabolism studies with [3H]benz[j]aceanthrylene in C3H10T1/2CL8 cells in which unconjugated, glucuronic acid conjugated, and sulfate conjugated metabolites were measured indicated that the dihydrodiol precursor to the bay-region diol-epoxide, 9,10-dihydroxy-9,10-dihydrobenz[j]aceanthrylene, was the major dihydrodiol formed (55%). Smaller quantities of the cyclopenta-ring dihydrodiol, 1,2-dihydroxy-1,2-dihydrobenz[j]aceanthrylene (14%), and the k-region dihydrodiol, 11,12-dihydroxy-11,12-dihydrobenz[j]aceanthrylene (5%) were also formed. Similar studies with [14C]benz[l]aceanthrylene indicated that the k-region dihydrodiol, 7,8-dihydroxy-7,8-dihydrobenz[l]aceanthrylene was the major metabolite formed (45%). The cyclopenta-ring dihydrodiol, 1,2-dihydroxy-1,2-dihydrobenz[l]aceanthrylene and 4,5-dihydroxy-4,5-dihydrobenz[l]aceanthrylene were formed in minor amounts (less than 6%). Therefore, metabolism at the cyclopenta-ring of B(j)A and B(l)A is a minor pathway in C3H10T1/2CL8 cells in contrast to previously reported studies with cyclopenta[cd]pyrene in which the cyclopenta-ring dihydrodiol was the major metabolite. These results suggest that routes of metabolic activation other than oxidation at the cyclopenta-ring such as bay region or k-region activation may play an important role with these unique polycyclic aromatic hydrocarbons in C3H10T1/2CL8 cells.  相似文献   

2.
Cyclopenta-fused polycyclic aromatic hydrocarbons are a class of environmental PAH that have been recently identified. Many of these chemicals have been found to be more active than benzo[a]pyrene in tests for genetic toxicity using bacterial and rodent cells. Benz[l]aceanthrylene, a cyclopenta-polycyclic aromatic hydrocarbon related to benz[a]anthracene, and benzo[a]pyrene were compared for their activity to induce cytotoxicity and anchorage-independent growth with normal human diploid fibroblasts. Both benz[l]aceanthrylene and benzo[a]pyrene were relatively non-cytotoxic to normal human diploid fibroblasts. However, benz[l]aceanthrylene was twice as active compared to benzo[a]pyrene over the concentration range examined as an inducer of anchorage-independent growth. The ability of benz[l]aceanthrylene to induce anchorage-independent colony growth in normal human cells, in combination with its demonstrated ability as a mouse-skin tumorigen, suggests this PAH to be a potential multi-species carcinogen.  相似文献   

3.
Three novel cyclopenta-fused polycyclic aromatic hydrocarbons were synthesized, benz[d]aceanthrylene, benz[k]aceanthrylene, and benz[j]acephenanthrylene, and evaluated for mutagenic activity in the Ames Salmonella typhimurium plate incorporation assay. The two benzaceanthrylene derivatives were active at low S9 concentrations in strain TA98 (4 and 27 rev/nmole respectively), as had been predicted from the calculated delta Edeloc/beta values of the carbocations derived from opening of the cyclopenta-fused epoxide rings, but the majority of this mutagenicity appeared to be due to free-radical decomposition products of spontaneous endo-peroxide formation. These compounds were therefore not further investigated. Benz[j]acephenanthrylene was also an indirect-acting frameshift mutagen (8-12 rev/nmole in strain TA98), but unlike most of the previously assayed cyclopenta-fused polycyclic aromatic hydrocarbons exhibited no peak of activity at low S9 protein concentration. The principal metabolites formed from this compound by microsomes from Aroclor-treated rat liver were benz[j]acephenanthrylene-4,5-dihydro-4,5-diol (necessarily derived from hydration of benz[j]acephenanthrylene 4,5-oxide) and benz[j]acephenanthrylene-9,10-dihydro-9,10-diol (precursor to benz[j]acephenanthrylene-9,10-dihydrodiol 7,8-oxide, the bay-region diol-epoxide). Consideration of the reduced activity of this compound compared to the related structure chrysene, the S9 dependence curves, and the predicted delta Edeloc/beta values of the postulate active species, suggests that in contrast to most other cyclopenta-fused polycyclic aromatic hydrocarbons, bay-region diol-epoxide formation plays a greater role than epoxidation of the cyclopenta-fused ring in the metabolic activation of benz[j]acephenanthrylene.  相似文献   

4.
The microsomal oxidation of 12 frequently occurring environmental polycyclic aromatic hydrocarbons after incubation with rat-liver microsomes has been studied and their metabolites characterized by means of gas-liquid chromatography/mass spectrometry. The method enables the detection and characterisation of phenols, diols, triols, and tetrols as trimethylsilyl ethers beside the original hydrocarbons. Moreover, the induction properties of some carcinogenic and non-carcinogenic hydrocarbons (benz[a]anthracene, pyrene, chrysene, benzo[a]-pyrene, benzo[e]pyrene, benzo[b]fluoranthene, benzo[j]fluoranthene, benzo[k]fluoranthene) have been studied. Except pyrene and benzo[e]pyrene, all compounds investigated significant but different induction factors. The relevance of the induction for an estimation of the biological effect of environmental polycyclic aromatic hydrocarbons is discussed.  相似文献   

5.
In cultured fetal human adrenocortical cells, metabolism of the carcinogen benzo[a]pyrene was found to be unresponsive to the xenobiotic inducers 3-methylcholanthrene, benz[a]anthracene and 2,3,7,8-tetrachlorodibenzo-p-dioxin. However, exposure of cultures to the hormone adrenocorticotropin (ACTH) for 48 hours stimulated benzo[a]pyrene metabolism 3-fold. The major metabolite was the 7,8-diol. Other compounds which stimulate the production of adrenocortical cell cyclic AMP (forskolin and cholera toxin) as well as monobutyryl cyclic AMP also increased benzo[a]pyrene metabolism. Human adrenocortical cells thus provide an unusual example of hormonal regulation of the metabolism of a carcinogen.  相似文献   

6.
Activation of aryl hydrocarbon receptor (AhR) by 30 polycyclic aromatic hydrocarbons (PAHs) was determined in the chemical-activated luciferase expression (CALUX) assay, using two exposure times (6 and 24h), in order to reflect the metabolization of PAHs. AhR-inducing potencies of PAHs were expressed as induction equivalency factors (IEFs) relative to benzo[a]pyrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In 24h exposure assay, the highest IEFs were found for benzo[k]fluoranthene, dibenzo[a,h]anthracene and dibenzo[a,k]fluoranthene (approximately three orders of magnitude lower than TCDD) followed by dibenzo[a,j]anthracene, benzo[j]fluoranthene, indeno[1,2,3-cd]pyrene, and naphtho[2,3-a]pyrene. The 6h exposure to PAHs led to a significantly higher AhR-mediated activity than the 24h exposure (generally by two orders of magnitude), probably due to the high rate of PAH metabolism. The strongest AhR inducers showed IEFs approaching that of TCDD. Several PAHs, including some strong mutagens, such as dibenzo[a,l]pyrene, cyclopenta[cd]pyrene, and benzo[a]perylene, elicited only partial agonist activity. Calculation of IEFs based on EC25 values and/or 6h exposure data is suggested as an alternative approach to estimation of toxic potencies of PAHs with high metabolic rates and/or the weak AhR agonists. The IEFs, together with the recently reported relative mutagenic potencies of PAHs [Mutat. Res. 371 (1996) 123; Mutat. Res. 446 (1999) 1] were combined with data on concentrations of PAHs in extracts of model environmental samples (river sediments) to calculate AhR-mediated induction equivalents and mutagenic equivalents. The highest AhR-mediated induction equivalents were found for benzo[k]fluoranthene and benzo[j]fluoranthene, followed by indeno[1,2,3-cd]pyrene, dibenzo[a,h]anthracene, benzo[a]pyrene, dibenzo[a,j]anthracene, chrysene, and benzo[b]fluoranthene. High mutagenic equivalents in the river sediments were found for benzo[a]pyrene, dibenzo[a,e]pyrene, and naphtho[2,3-a]pyrene and to a lesser extent also for benzo[a]anthracene, benzo[b]fluoranthene, indeno[1,2,3-cd]pyrene, benzo[j]fluoranthene, dibenzo[a,e]fluoranthene and dibenzo[a,i]pyrene. These data illustrate that AhR-mediated activity of PAHs, including the highly mutagenic compounds, occurring in the environment but not routinely monitored, could significantly contribute to their adverse effects.  相似文献   

7.
Two enzymatic reactions, catalyzed by mouse lung microsomes and distinguishable by selective inhibition and kinetic studies, lead to irreversible binding of benzo[a]pyrene to macromolecules present in vitro reaction systems. One type (low Km) is inducible in the lungs of mice by treatment with benz[a]anthracene and is subject to inhibition by 7,8-benzoflavone. The other type (high Km) is predominant in lungs of untreated mice, but a small amount of low-Km activity is also present. The high-Km activity may be involved in carcinogenesis by benzo[a]pyrene, for it is inhibited by butylated hydroxytoluene, retinol or disulfiram, each of which is reported to have anticarcinogenic activity in intact animals.  相似文献   

8.
Relatively little is known about the mutagenicity of C24H14 PAH, a diverse group of five- and six-ring PAH, some of which are present at trace levels in the environment. To better understand the mutagenicity of this class of compounds, 11 C24H14 PAH, including benzo[a]perylene, benzo[b]perylene, dibenzo[a,e]fluoranthene, dibenzo[a,f]fluoranthene, dibenzo[j,l]fluoranthene, dibenzo[a,h]pyrene, dibenzo[a,i]pyrene, dibenzo[e,l]pyrene, naphtho[1,2-b]fluoranthene, naphtho[2,3-a]pyrene, and naphtho[2,3-e]pyrene, were tested in a mutagenicity assay based on human h1A1v2 cells. h1A1v2 cells are a line of human B-lymphoblastoid cells that have been engineered to express cytochrome P4501A1 (CYP1A1), an enzyme capable of metabolizing promutagenic PAH. Mutagenicity was measured at the thymidine kinase (tk) locus following a 72-h exposure period. Our results show that nine of the compounds were mutagenic. Benzo[a]perylene, dibenzo[a,e]fluoranthene, dibenzo[a,i]pyrene, and naphtho[2,3-a]pyrene were the most potent mutagens, having minimum mutagenic concentrations (MMC) (i.e., the dose at which the induced response was twice that of the negative controls) in the 1-5 ng/ml range. Benzo[b]perylene, dibenzo[a,h]pyrene, dibenzo[a,f]fluoranthene, and naphtho[2,3-e]pyrene were somewhat less potent mutagens, having MMC in the 10-30 ng/ml range. Dibenzo[e,l]pyrene, which had an MMC of 280 ng/ml, was the least potent mutagen. Dibenzo[j,l]fluoranthene and naphtho[1,2-b]fluoranthene were not mutagenic at the doses tested (1-3000 ng/ml). The most mutagenic compounds were also quite toxic. At the highest doses tested, benzo[a]perylene, dibenzo[a,e]fluoranthene, dibenzo[a,i]pyrene, dibenzo[a,h]pyrene, and dibenzo[a,f]fluoranthene induced > 60% killing, and naphtho[2,3-a]pyrene and naphtho[2,3-e]pyrene induced > 50% killing. Benzo[b]perylene, dibenzo[e,l]pyrene, dibenzo[j,l]fluoranthene, and naphtho[1,2-b]fluoranthene induced < 50% killing at the highest doses tested. Comparing these results to a previous study in which nine other C24H14 PAH were tested for mutagenicity in this same assay, it was found that dibenzo[a]pyrene isomers were generally more mutagenic than the other groups of C24H14 PAH tested. These observations are discussed with emphasis given to identifying C24H14 PAH that may be important environmental mutagens.  相似文献   

9.
A novel approach to discovery of the peptide with an internal immunological image of carcinogen is suggested in this work. The hybridomas producing monoclonal antibodies (mAb) B2 against benzo[a]pyrene and benz[a]antracene were prepared. Polyclonal Ab against benzo[a]pyrene (Bp) and benz[a]antracene (Ba), antracene, chrysene, and pyrene were also prepared. We identified the related peptide-presenting phage specificity binding to mAT B2 and polyclonal Ab against Bp from 12 large random peptide libraries using phage display method. ICR mice were immunized with specific binding of positive phage clone for studying its immunogenicity. The Bp antibodies were found in the blood serum. All positive phage clones carried the sequence. Thus, the unique peptide with an internal immunological image of Bp may be the new candidate for anticarcinogenic vaccine.  相似文献   

10.
C57BL/6N (Ahb/Ahb) mice have a high-affinity Ah receptor in tissues, whereas AKR/J and DBA/2N (Ahd/Ahd) mice have a poor-affinity Ah receptor. The cytochrome P1-450 induction response (enhanced benzo[a]pyrene metabolism) occurs much more readily in Ahb/Ahb and Ahb/Ahd than in Ahd/Ahd mice, at any given dose of the inducer benzo[a]pyrene. Embryos from the AKR/J X (C57BL/6N)(AKR/J)F1 and the reciprocal backcross were studied during benzo[a]pyrene feeding of the pregnant females. Oral benzo[a]pyrene (120 mg/kg/day) given to pregnant Ahd/Ahd mice between gestational day 2 and 10 produces more intrauterine toxicity and malformations in Ahd/Ahd than Ahb/Ahd embryos. This striking allelic difference is not seen in pregnant Ahb/Ahd mice receiving oral benzo[a]pyrene. Pharmacokinetics studies with [3H]benzo[a]pyrene in the diet and high-performance liquid chromatographic analysis of benzo[a]pyrene metabolism in vitro by the maternal intestine, liver, and ovary and the embryos of control and oral benzo[a]pyrene-treated pregnant females are consistent with "first-pass elimination" kinetics and differences in benzo[a]pyrene metabolism by the embryos and/or placentas versus maternal tissues. In the pregnant Ahd/Ahd mouse receiving oral benzo[a]pyrene, little induction of benzo[a]pyrene metabolism occurs in her intestine and liver; this leads to much larger amounts of benzo[a]pyrene reaching her embryos, and genetic differences in toxicity and teratogenesis are manifest. In the pregnant Ahb/Ahd mouse receiving oral benzo[a]pyrene, benzo[a]pyrene metabolism is greatly enhanced in her intestine and liver; this leads to less benzo[a]pyrene reaching her embryos, much less intrauterine toxicity and malformations, and no genetic differences are manifest. More toxic metabolites (especially benzo[a]pyrene 1,6- and 3,6-quinones) are shown to occur in Ahd/Ahd embryos than in Ahb/Ahd embryos. In additional studies, no prenatal or neonatal "imprinting" effect in C57BL/6N mice by 2,3,7,8-tetrachlorodibenzo-p-dioxin or Aroclor 1254 on benzo[a]pyrene metabolism later in life was detectable. These genetic differences in intrauterine toxicity and teratogenicity induced by oral benzo[a]pyrene are just opposite those induced by intraperitoneal benzo[a]pyrene [Shum et al., '79; Hoshino et al., '81). The data in the present report emphasize the importance of the route of administration when the teratogen induces its own metabolism.  相似文献   

11.
When incubated with a 9,000 x g rat-liver supernatant, benzo(a)pyrene 7,8-diol and benz(a)anthracene 8,9-diol were more active than the parent hydrocarbons in inducing his+ revertant colonies of S. typhimurium TA 100. Benzo(a) pyrene 9,10-diol was less active than benzo(a)pyrene; the K-region diols, benz(a)anthracene 5,6-diol and benzo(a)pyrene 4,5-diol, were inactive. None of the diols was active when the cofactors for the microsomal mono-oxygenase were omitted. The diol-epoxides benzo(a)pyrene 7,8-diol 9,10-oxide, benz(a)anthracene 8,9-diol 10,11-oxide and 7-methylbenz(a)anthracene 8,9-diol 10,11-oxide and the K-region epoxides, benzo(a)pyrene 4,5-oxide and benz(a)anthracene 5,6-oxide, were mutagenic without further metabolism.  相似文献   

12.
This study investigated the biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons (PAHs) in liquid media and soil by bacteria (Stenotrophomonas maltophilia VUN 10,010 and bacterial consortium VUN 10,009) and a fungus (Penicillium janthinellum VUO 10, 201) that were isolated from separate creosote- and manufactured-gas plant-contaminated soils. The bacteria could use pyrene as their sole carbon and energy source in a basal salts medium (BSM) and mineralized significant amounts of benzo[a]pyrene cometabolically when pyrene was also present in BSM. P. janthinellum VUO 10,201 could not utilize any high-molecular-weight PAH as sole carbon and energy source but could partially degrade these if cultured in a nutrient broth. Although small amounts of chrysene, benz[a]anthracene, benzo[a]pyrene, and dibenz[a,h]anthracene were degraded by axenic cultures of these isolates in BSM containing a single PAH, such conditions did not support significant microbial growth or PAH mineralization. However, significant degradation of, and microbial growth on, pyrene, chrysene, benz[a]anthracene, benzo[a]pyrene, and dibenz[a,h]anthracene, each as a single PAH in BSM, occurred when P. janthinellum VUO 10,201 and either bacterial consortium VUN 10,009 or S. maltophilia VUN 10,010 were combined in the one culture, i.e., fungal-bacterial cocultures: 25% of the benzo[a]pyrene was mineralized to CO(2) by these cocultures over 49 days, accompanied by transient accumulation and disappearance of intermediates detected by high-pressure liquid chromatography. Inoculation of fungal-bacterial cocultures into PAH-contaminated soil resulted in significantly improved degradation of high-molecular-weight PAHs, benzo[a]pyrene mineralization (53% of added [(14)C]benzo[a]pyrene was recovered as (14)CO(2) in 100 days), and reduction in the mutagenicity of organic soil extracts, compared with the indigenous microbes and soil amended with only axenic inocula.  相似文献   

13.
The mutagenic activity of ethyl acetate extracts of culture medium from Cunninghamella elegans incubated 72 h with various polycyclic aromatic hydrocarbons (PAHs) was evaluated in the Salmonella typhimurium reversion assay. All of the PAH extracts were assayed in tester strains TA98 and TA100 both with and without metabolic activation using a liver fraction from Aroclor 1254-treated rats. None of the extracts from fungal incubations with the mutagenic PAHs, benzo[a]pyrene, 7,12-dimethylbenz[a]anthracene, 3-methylcholanthrene and benz[a]anthracene, as well as the non-mutagenic PAHs, naphthalene, phenanthrene and anthracene, displayed any appreciable mutagenic activity. In addition, time course experiments indicated that the rate of decrease in mutagenic activity in the extracts from cultures incubated with benzo[a]pyrene or 7,12-dimethylbenz[a]anthracene was coincident with the rate of increase in total metabolism. The results demonstrated the ability of the fungus C. elegans to detoxify known carcinogens and mutagens and suggests that this organism may play an important role in the metabolism and inactivation of PAHs in the environment.Abbreviations hplc high performance liquid chromatography - tlc thin layer chromatography - PAH polycyclic aromatic hydrocarbon  相似文献   

14.
The homogeneous 3 alpha-hydroxysteroid dehydrogenase (EC 1.1.1.50) of rat liver cytosol is indistinguishable from dihydrodiol dehydrogenase (trans-1,2-dihydrobenzene-1,2-diol dehydrogenase EC 1.3.1.20), Penning, T. M., Mukharji, I., Barrows, S., and Talalay, P. (1984) Biochem. J. 222, 601-611). Examination of the substrate specificity of the purified dehydrogenase for trans-dihydrodiol metabolites of polycyclic aromatic hydrocarbons indicates that the enzyme will catalyze the NAD(P)-dependent oxidation of trans-dihydrodiols of benzene, naphthalene, phenanthrene, chrysene, 5-methylchrysene, and benzo[a]pyrene under physiological conditions. Comparison of the utilization ratios Vmax/Km indicates that benzenedihydrodiol and the trans-1,2- and trans-7,8-dihydrodiols of 5-methylchrysene were most efficiently oxidized by the purified dehydrogenase, followed by the trans-7,8-dihydrodiol of benzo[a]pyrene and the trans-1,2-dihydrodiols of phenanthrene, chrysene, and naphthalene. The purified enzyme appears to display rigid regio-selectivity, since it will readily oxidize non-K-region trans-dihydrodiols but will not oxidize the K-region trans-dihydrodiols of phenanthrene and benzo[a]pyrene. The stereochemical course of enzymatic dehydrogenation was investigated by circular dichroism spectrometry. For the trans-1,2-dihydrodiols of benzene, naphthalene, phenanthrene, chrysene, and 5-methylchrysene, the dehydrogenase preferentially oxidized the (+)-[S,S]-isomer. Apparent inversion of this stereochemical preference occurred with the trans-7,8-dihydrodiol of 5-methylchrysene, as the (-)-enantiomer was preferentially oxidized. No change in the sign of the Cotton Effect was observed following oxidation of the racemic trans-7,8-dihydrodiol of benzo[a]pyrene, suggesting that both stereoisomers of this compound were substrates. Large-scale incubation of the [3H]-(+/-)-trans-7,8-dihydrodiol of benzo[a]pyrene with the purified dehydrogenase resulted in greater than 90% utilization of this potent proximate carcinogen, suggesting that the enzyme utilizes both the (-)-[R,R] and the (+)-[S,S]-stereoisomers, which confirms the circular dichroism result. These data show that dihydrodiol dehydrogenase displays the appropriate regio- and stereospecificity to catalyze the oxidation of both the major and minor non-K-region trans-dihydrodiols that arise from the microsomal metabolism of benzo[a]pyrene in vivo.  相似文献   

15.
Initial reactions involved in the bacterial degradation of polycyclic aromatic hydrocarbons (PAHs) include a ring-dihydroxylation catalyzed by a dioxygenase and a subsequent oxidation of the dihydrodiol products by a dehydrogenase. In this study, the dihydrodiol dehydrogenase from the PAH-degrading Sphingomonas strain CHY-1 has been characterized. The bphB gene encoding PAH dihydrodiol dehydrogenase (PDDH) was cloned and overexpressed as a His-tagged protein. The recombinant protein was purified as a homotetramer with an apparent Mr of 110,000. PDDH oxidized the cis-dihydrodiols derived from biphenyl and eight polycyclic hydrocarbons, including chrysene, benz[a]anthracene, and benzo[a]pyrene, to corresponding catechols. Remarkably, the enzyme oxidized pyrene 4,5-dihydrodiol, whereas pyrene is not metabolized by strain CHY-1. The PAH catechols produced by PDDH rapidly auto-oxidized in air but were regenerated upon reaction of the o-quinones formed with NADH. Kinetic analyses performed under anoxic conditions revealed that the enzyme efficiently utilized two- to four-ring dihydrodiols, with Km values in the range of 1.4 to 7.1 microM, and exhibited a much higher Michaelis constant for NAD+ (Km of 160 microM). At pH 7.0, the specificity constant ranged from (1.3 +/- 0.1) x 10(6) M(-1) s(-1) with benz[a]anthracene 1,2-dihydrodiol to (20.0 +/- 0.8) x 10(6) M(-1) s(-1) with naphthalene 1,2-dihydrodiol. The catalytic activity of the enzyme was 13-fold higher at pH 9.5. PDDH was subjected to inhibition by NADH and by 3,4-dihydroxyphenanthrene, and the inhibition patterns suggested that the mechanism of the reaction was ordered Bi Bi. The regulation of PDDH activity appears as a means to prevent the accumulation of PAH catechols in bacterial cells.  相似文献   

16.
To test the hypothesis that electrophilic radical cations are the major ultimate electrophilic and carcinogenic forms of benz[a]anthracene (BA), dibenz[a,h]anthracene (DBA), and benzo[a]pyrene (BP), we have focused on a chemical model of metabolism which parallels and duplicates known or potential metabolites of some polycyclic hydrocarbons formed in cells. Studies of this model system show that radical cations are hardly formed, if at all, in the case of BA or DBA but are definitely formed in the cases of the carcinogen BP as well as the non-carcinogenic hydrocarbons, pyrene and perylene. We conclude that the carcinogenicities of BA, DBA, BP, pyrene, and perylene are independent of one-electron oxidation to radical cation intermediates.  相似文献   

17.
Studies were performed to determine the direct mutagenicity of the acetates and some bromides and sulfates of hydroxymethyl polycyclic aromatic hydrocarbons in S. typhimurium strains TA98 and TA100. Benzylic acetates, bromides and sulfates were synthesized and characterized. The compounds tested were benzyl alcohol, 5-hydroxymethylchrysene, 1-hydroxymethylpyrene, 6-hydroxymethylbenzo[a]pyrene, 6-(2-hydroxyethyl)benzo[a]pyrene, 6-hydroxymethylanthanthrene, 9-hydroxymethylanthracene, 9-hydroxymethyl-10-methylanthracene, 7-hydroxymethylbenz[a]anthracene, 7-(2-hydroxyethyl)benz[a]anthracene, 12-hydroxymethylbenz[a]anthracene, 7-hydroxymethyl-12-methylbenz[a]anthracene, 12-hydroxymethyl-7-methylbenz[a]anthracene, 1-hydroxy-3-methylcholanthrene, 2-hydroxy-3-methylcholanthrene, 3-hydroxy-3, 4-dihydrocyclopental[cd]pyrene and 4-hydroxy-3, 4-dihydrocyclopental[cd]pyrene. The benzylic sulfate esters of 6-hydroxymethylbenzo[a]pyrene and 7-hydroxymethylbenz[a]anthracene were the most mutagenic compounds, whereas the aliphatic sulfate ester of 7-hydroxyethylbenz[a]anthracene did not cause an increase in mutations above background. All meso-anthracenic benzylic acetate esters were mutagenic in both strains with various degrees of activity, whereas the corresponding non-benzylic esters were inactive, as expected. Of the non-meso-benzylic acetate esters, only the 3-acetoxy-3, 4-dihydrocyclopenta[cd]pyrene was mutagenic. In the benzylic bromide series, only the eight mesoanthracenic were mutagenic, whereas benzyl bromide and 5-bromomethylchrysene were inactive. The aliphatic bromides, 6-(2-bromoethyl)benzo[a]pyrene and 7-(2-bromoethyl)benz[a]anthracene did not display significant activity. The potencies of the acetate esters more accurately reflect the mutagenicity because the rate of solvolysis did not compete with the reactivity of the esters with bacterial DNA. In the case of benzylic sulfates and bromides, the rate of solvolysis was very rapid and could have diminished the level of mutagenicity, depending on the assay conditions. These results demonstrate that meso-anthracenic benzylic acetates, sulfates and bromides are mutagenic, whereas benzylic acetate esters attached to other carbon atoms are inactive.  相似文献   

18.
Rat liver dihydrodiol dehydrogenase (DDH, E.C. 1.3.1.20) has recently been shown to oxidize the highly carcinogenic benz[a]anthracene-3,4- dihydrodiol in an NADP(+)-dependent reaction to its corresponding catechol. The present study is a systematic investigation of the substrate specificity of the purified enzyme towards synthetic trans-dihydrodiol metabolites of phenanthrene, benz[a]anthracene, chrysene, dibenz[a, h]anthracene and benzo[a]pyrene. DDH exhibited a remarkable regiospecificity of enzymatic catalysis with regard to the site of the dihydrodiol moiety of the parent hydrocarbon. M-region- and, with lower efficiency, bay-region dihydrodiols were found to be good substrates of the enzyme with maximal velocities between 20-80 nmol/min per mg enzyme and Km values in the micromolar range. K-region dihydrodiols were not accepted as substrates. Dihydrodiols situated at the terminal ring of an anthracene-type structure such as benz[a]anthracene-8,9-dihydrodiol as well as the corresponding dihydrodiol epoxides were also not oxidized by DDH at measurable rates. The results provide evidence for a detoxifying role of DDH in the metabolism of the chemical carcinogens benz[a]anthracene, chrysene and dibenz[a, h]anthracene.  相似文献   

19.
Degradation of benzo[a]pyrene by Mycobacterium vanbaalenii PYR-1   总被引:2,自引:0,他引:2  
Metabolism of the environmental pollutant benzo[a]pyrene in the bacterium Mycobacterium vanbaalenii PYR-1 was examined. This organism initially oxidized benzo[a]pyrene with dioxygenases and monooxygenases at C-4,5, C-9,10, and C-11,12. The metabolites were separated by reversed-phase high-performance liquid chromatography (HPLC) and characterized by UV-visible, mass, nuclear magnetic resonance, and circular dichroism spectral analyses. The major intermediates of benzo[a]pyrene metabolism that had accumulated in the culture media after 96 h of incubation were cis-4,5-dihydro-4,5-dihydroxybenzo[a]pyrene (benzo[a]pyrene cis-4,5-dihydrodiol), cis-11,12-dihydro-11,12-dihydroxybenzo[a]pyrene (benzo[a]pyrene cis-11,12-dihydrodiol), trans-11,12-dihydro-11,12-dihydroxybenzo[a]pyrene (benzo[a]pyrene trans-11,12-dihydrodiol), 10-oxabenzo[def]chrysen-9-one, and hydroxymethoxy and dimethoxy derivatives of benzo[a]pyrene. The ortho-ring fission products 4-formylchrysene-5-carboxylic acid and 4,5-chrysene-dicarboxylic acid and a monocarboxylated chrysene product were formed when replacement culture experiments were conducted with benzo[a]pyrene cis-4,5-dihydrodiol. Chiral stationary-phase HPLC analysis of the dihydrodiols indicated that benzo[a]pyrene cis-4,5-dihydrodiol had 30% 4S,5R and 70% 4R,5S absolute stereochemistry. Benzo[a]pyrene cis-11,12-dihydrodiol adopted an 11S,12R conformation with 100% optical purity. The enantiomeric composition of benzo[a]pyrene trans-11,12-dihydrodiol was an equal mixture of 11S,12S and 11R,12R molecules. The results of this study, in conjunction with those of previously reported studies, extend the pathways proposed for the bacterial metabolism of benzo[a]pyrene. Our study also provides evidence of the stereo- and regioselectivity of the oxygenases that catalyze the metabolism of benzo[a]pyrene in M. vanbaalenii PYR-1.  相似文献   

20.
Harman and norharman, two β-carboline derivatives known to exist in certain foods and to be formed during pyrolysis of tobacco and meat, were tested for mutagenic activity in the presence of benzo[a]pyrene, mouse liver enzymes, and Salmonella typhimurium TA98 in vitro. Both harman and norharman inhibit benzo[a]pyrene mutagenicity, benzo[a]pyrene metabolism (as measured by aryl hydrocarbon hydroxylase activity), and the binding of all benzo[a]pyrene metabolites to DNA in vitro. Moreover, harman and norharman are quite toxic to cultures of hepatoma-derived H-4-II-E and Hepa-1 established cell lines and therefore were found to be very weak inducers of aryl hydrocarbon hydroxylase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号