首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Similar to the higher vertebrates, the pituitary in bony fishes express three glycoprotein hormones: thyroid-stimulating hormone (TSH), follicle-stimulating hormone (FSH) and luteinizing hormone (LH). In addition to the appropriate secretion of these hormones, the timely and quantitative expression of their specific receptors (TSHR, FSHR and LHR) in the target tissues is an essential requirement for their physiological action. In fishes that constitute a very diverse group of vertebrates, there are only a few published reports of primary structure of these receptors although other examples have been communicated briefly. This review will summarize these reports as well as to describe the insights gained from what is known about the mammalian receptors. The structural organization of the fish receptors (as deduced from the encoding cDNAs) is highly homologous to the higher vertebrate receptors in that there is a 7-pass transmembrane region and an N-terminal extracellular domain, which contributes to ligand specificity. In mammals, the FSHR and the TSHR genes are composed of 10 exons whereas the LHR gene is composed of 11 exons. The position of the 'extra intron' is conserved in the catfish LHR gene. In the mammals, the transmembrane domain of each of the three glycoprotein hormone receptors is encoded by a single exon, however, in the salmon genes and homologous invertebrate genes, this portion of the receptor is encoded by multiple exons. In general, the tissue-specific expression of these receptors is similar to that seen in mammals, however, the gonadal expression of TSHR in the striped bass and sunrise sculpin and the renal expression of LHR in the channel catfish are unique.  相似文献   

3.
FSH levels begin to rise 3-5 days after male Siberian hamsters are transferred from inhibitory short photoperiods to stimulatory long photoperiods. In contrast, LH levels do not increase for several weeks. This differential pattern of FSH and LH secretion represents one of the most profound in vivo examples of differential regulation of the gonadotropins. The present study was undertaken to characterize the molecular mechanisms controlling differential FSH and LH synthesis and secretion in photostimulated Siberian hamsters. First, we cloned species-specific cDNAs for the three gonadotropin subunits: the common alpha subunit and the unique FSHbeta and LHbeta subunits. All three subunits share high nucleotide and predicted amino acid sequence identity with the orthologous cDNAs from rats. We then used these new molecular probes to examine the gonadotropin subunit mRNA levels from pituitaries of short-day male hamsters transferred to long days for 2, 5, 7, 10, 15, or 20 days. Short-day (SD) and long-day (LD) controls remained in short and long days, respectively, from the time of weaning. We measured serum FSH and LH levels by RIA. FSHbeta, LHbeta, and alpha subunit mRNA levels were measured from individual pituitaries using a microlysate ribonuclease protection assay. Serum FSH and pituitary FSHbeta mRNA levels changed similarly following long-day transfer. Both were significantly elevated after five long days (2.3- and 3.6-fold, respectively; P < 0.02) and declined thereafter, but they remained above SD control values through 20 long days. Alpha subunit mRNA levels also increased significantly relative to SD control values (maximum 2-fold increase after seven long days; P < 0.03), although to a lesser extent than FSHbeta. Neither serum LH nor pituitary LHbeta mRNA levels changed significantly following long-day transfer. The results indicate that long-day-associated increases in serum FSH levels in Siberian hamsters reflect an underlying increase in pituitary FSHbeta and alpha subunit mRNA accumulation.  相似文献   

4.
Insulin-like growth factor-I (IGF-I) has been shown to be involved in pubertal activation of gonadotropin (GTH) secretion. The aim of this study was to determine if IGF-I directly stimulates synthesis and release of GTH at an early stage of gametogenesis. The effects of IGF-I on expression of genes encoding glycoprotein alpha (GPalpha), follicle-stimulating hormone (FSH) beta, and luteinizing hormone (LH) beta subunits and release of FSH and LH were examined using primary pituitary cells of masu salmon at three reproductive stages: early gametogenesis, maturing stage, and spawning. IGF-I alone or IGF-I + salmon GnRH (sGnRH) were added to the primary pituitary cell cultures. Amounts of GPalpha, FSHbeta, and LHbeta mRNAs were determined by real-time PCR. Plasma and medium levels of FSH and LH were determined by RIA. In males, IGF-I increased the amounts of all three subunit mRNAs early in gametogenesis in a dose-dependent manner, but not in the later stages. In females, IGF-I stimulated release of FSH and LH early in gametogenesis, whereas no stimulatory effects on the subunit mRNA levels were observed at any stage. IGF-I + sGnRH stimulated release of FSH and LH at all stages in both sexes, but had different effects on the subunit mRNA levels depending on subunit and stage. The present results suggest that IGF-I itself directly stimulates synthesis and release of GTH early in gametogenesis in masu salmon, possibly acting as a metabolic signal that triggers the onset of puberty.  相似文献   

5.
A steroidogenic tilapia gonadotropin (taGtH=LH) was purified from pituitaries of hybrid tilapia (Oreochromis niloticus x O. aureus) and a homologous RIA was established. This RIA enabled the study of the endocrine regulation of GtH release, the transduction pathways involved in its secretion and its profile during the spawning cycle. Discrepancies between steroid and taGtH peaks during the cycle led to the conclusion that an additional gonadotropin similar to salmonid FSH operates early in the cycle. In order to identify this hormone and to study the endocrine control of synthesis of all gonadotropin (GtH) subunits, a molecular approach was taken. The cDNA sequences and the entire gene sequences encoding the FSHbeta and LHbeta subunits, as well as an incomplete sequence of the glycoprotein hormone alpha subunit (GPalpha), were cloned. Salmon gonadotropin-releasing hormone (sGnRH) elevated mRNA steady-state levels of all three GtH subunits in cultured pituitary cells. Pituitary adenylate cyclase-activating polypeptide (PACAP) and neuropeptide Y (NPY) also stimulated the expression of these subunits and potentiated the effect of GnRH, except that NPY did not affect FSHbeta. The GnRH and NPY effects were found to be mediated mainly through protein kinase C (PKC), while protein kinase A (PKA) cascade was involved to a lesser extent. Mitogen-activated protein kinase (MAPK) cascade takes part in mediating GnRH effects, possibly via PKC. Testosterone (T) and estradiol (E2), but not 11-ketotestosterone (KT), are able to elevate GPalpha and LHbeta mRNAs in pituitary cells of early maturing or regressing males. Low levels of T exposure are associated with elevated FSHbeta mRNA in cells of mature fish, while higher levels suppress it, but elevate LHbeta mRNA. In vivo observations also showed the association of low T levels with increased FSHbeta mRNA and high T levels with elevated LHbeta mRNA. In accordance with these findings, analysis of LHbeta and FSHbeta 5' gene-flanking regions revealed on both gene promoters a GtH-specific element (GSE), half site estrogen response elements (ERE), cAMP response element (CRE) and AP1. In vitro experiments showed that recombinant human activin-A leads to higher levels of GPalpha, FSHbeta and LHbeta mRNAs in pituitary cell culture. Porcine inhibin marginally decreased the mRNA levels of GPalpha and FSHbeta, but at a low level (1 ng/ml) it stimulated that of LHbeta. These results shed some light on certain hypothalamic and gonadal hormones regulating the expression of GtH subunit genes in tilapia. In addition, they provide evidence for their differential regulation, and insight into their mode of action.  相似文献   

6.
7.
8.
Immature 1-year-old Atlantic salmon Salmo salar parr were implanted with Silastic capsules of different sizes filled with testosterone (T). Testosterone had both positive and negative effects on testicular weights, spermatogenesis and steroidogenesis. The positive effects: higher incidence of males with enlarged gonads, spermiation, and high plasma levels of 11-ketotestosterone (11-KT) and 17,20β-dihydroxy-4-pregnen-3-one (17,20β-P), were most pronounced in males treated with small T capsules. The negative effects: suppression of gonadal development and depressed plasma levels of 11-KT and 17,20β-P compared with mature controls, were most evident in fish treated with large T capsules.  相似文献   

9.
The participation of gonadotropins in ovarian carcinogenesis is well known and is supported by studies with inhibition of pituitary gonadotropin secretion, which results in a diminished risk of cancer. However, there are few data on localization and expression of Follicle Stimulating Hormone and Luteinising Hormone Receptors (FSHR and LHR) in ovaries of healthy postmenopausal women, and their correlation with FSH and LH concentration in blood serum is unknown. The aim of our study was to analyze gonadotropin concentration in blood serum and the expression of FSHR and LHR in ovaries of 207 postmenopausal women. Patients included in the study were divided into three groups depending on the number of years since menopause. We analyzed the concentration of FSH and LH in blood serum and the expression of FSHR and LHR in ovaries. Ovaries of postmenopausal women showed numerous morphological changes in the cortex and medulla when compared to the structure of ovaries of women at reproductive age. In all groups of patients clefts in the surface epithelium and epithelial inclusion cysts were found. The concentration of FSH and LH in the blood serum of women studied increased significantly with time from menopause. Significant differences between analyzed menopausal groups were found. The highest FSH and LH concentration in blood serum were found in women with the longest period of time from menopause. Quantitatively similar expression of FSHR and LHR was found in ovarian surface epithelial cells, in epithelial inclusion cysts and in the connective tissue cells of ovarian stroma. The intensity of the immunohistochemical reaction decreased with time from menopause and with age.  相似文献   

10.
Two distinct cDNAs encoding beta subunits of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were cloned from the cDNA library constructed for the pituitary of the red-bellied newt, Cynops pyrrhogaster, and sequenced. The newt FSHbeta and LHbeta cDNAs encode polypeptides of 129 and 131 amino acids, including signal peptides of 20 and 19 amino acids, respectively. The number and position of cysteine and N-glycosylation in each of the beta subunits of FSH and LH, which are considered essential for assembly of the alpha subunit, are well conserved between the newt and other tetrapods. The high homology (41.6%) between the beta subunits of newt FSH and LH imply less specificity of FSH and LH in gonadal function. One cDNA encoding the common polypeptide chain alpha subunit of FSH and LH was also isolated from the newt pituitary gland. The mRNAs of FSHbeta, LHbeta, and the alpha subunit were expressed only in the pituitary gland among various newt tissues. Double-staining with in situ hybridization and immunohistochemistry revealed coexpression of FSHbeta and LHbeta in the same newt pituitary cells. Ovariectomy induced a significant increase in FSHbeta mRNA levels, but there was no significant change in LHbeta or alpha subunit mRNA levels compared with those in control animals. Taken together, these data suggest that two kinds of gonadotropins, namely FSH and LH, are expressed in the same gonadotropin-producing cells in the pars distalis of the newt as well as in other tetrapods and that the expression of FSHbeta is negatively regulated by the ovaries.  相似文献   

11.
Manganese (Mn) is an essential element required for normal development and reproduction. However, little is known about the reproductive toxicity of Mn in birds. To investigate the Mn-induced toxicity on testicular trace element levels and crucial hormonal parameters on male reproduction in birds, 50-day-old male Hyline cocks were fed either a commercial diet or a Mn-supplemented diet. The changes in contents of copper (Cu), iron (Fe), zinc (Zn), and calcium (Ca) in testis were detected. Hormonal parameters were evaluated including the levels of testosterone (T), luteinizing hormone (LH), follicle-stimulating hormone (FSH), thyroid-stimulating hormone (TSH), triiodothyronine (T3), and thyroxine (T4) in the serum. The mRNA levels of luteinizing hormone receptor (LHR) and follicle-stimulating hormone receptor (FSHR) were determined in this study. The results showed that Mn was accumulated in testis, and the content of Cu, Fe, Zn, and Ca decreased. Exposure to Mn significantly lowered the content of T, LH, FSH, and the mRNA expression levels of LHR and FSHR. Levels of T3 and T4 appeared with a decreased tendency, and TSH presented no obvious regularity. It indicated that Mn exposure resulted in the disbalance of testicular trace elements and influenced hormone levels in the molecular level, which may be possible underlying reproductive toxicity mechanism induced by Mn.  相似文献   

12.
Sex steroids differentially regulate gonadotropin (GTH) beta subunits (FSHbeta and LHbeta) gene expression in the pituitary of goldfish: a strong in vivo inhibitory effect on FSHbeta mRNA production, but a weak stimulatory effect on LHbeta in sexually immature and recrudescent fish. In the present study, to examine a direct effect of testosterone (T) and gonadotropin-releasing hormone (GnRH) on the mRNA levels of FSHbeta and LHbeta subunits in the pituitary, in vitro experiments were performed using dispersed pituitary cells of sexually immature, recrudescent, mature and regressed goldfish. T treatment in vitro did not significantly decrease FSHbeta mRNA levels, but increased that of LHbeta only in the cells of immature fish. Salmon-type GnRH increased FSHbeta mRNA levels in cells of mature fish, but decreased the levels in cells of sexually regressed fish. From these results, it was suggested that: (1) in vivo effect of sex steroids on gene expression of GTH beta subunits is not always exerted on the pituitary; and (2) the different responses of GTH beta subunits by sex steroids between in vivo and in vitro are partly due to a complex pathway through hypothalamic factors, such as GnRH, in the case of in vivo.  相似文献   

13.
Although mutations in human gonadotrophin and gonadotrophin receptor genes are rare, they have greatly elucidated the physiology and pathophysiology of gonadotrophin action. These 'nature's transgenics' have been corroborated by mouse transgenic and knock-out models. An inactivating mutation of the human LHbeta chain and knock-out of the mouse common alpha-chain show that pituitary LH is not needed to stimulate fetal testicular steroidogenesis and male sexual differentiation. In mice, early testicular steroidogenesis is apparently gonadotrophin-independent and, in humans, it is regulated by placental hCG. Pituitary LH becomes necessary only after birth. Inactivating LH receptor mutations block prenatal hCG action, thus inhibiting male-type sexual differentiation. In females, this process is autonomous, and LH becomes important only at puberty; inactivation of LH receptor causes anovulatory infertility. Activating LH receptor mutations cause male-limited gonadotrophin-independent precocious puberty in males, but no apparent phenotype in females. Animal models for LH or LH receptor inactivation are not yet available. Inactivating FSH ligand and receptor mutations cause infertility because of a lack of follicular maturation in women. Findings in men are controversial, since FSHbeta inactivation is related to azoospermia, whereas the cognate receptor inactivation only suppresses spermatogenesis without causing absolute infertility. The FSHbeta and FSH receptor knock-out mice display phenocopies of the human FSH receptor mutation. Information about activating FSH receptor mutations is still insufficient. Hence, the above human mutations have brought important new information about the role of gonadotrophins in reproductive functions. The genetically modified animal models provide useful tools to explore the pathogenesis and new treatment modalities of infertility, and to develop new contraceptive strategies.  相似文献   

14.
目的:探讨蒙药乌力吉-18对大鼠下丘脑-垂体-卵巢轴相关激素及受体的影响。方法:选取40只健康雌性未孕SD大鼠,随机分为空白组、对照组、乌力吉-18高、低2个剂量组,每组10只。空白组灌胃等体积蒸馏水,对照组灌胃逍遥丸,高、低剂量组分别灌胃2.0 g·kg-1·d-1、1.0 g·kg-1·d-1乌力吉-18,连续给药31学艺术d。采用酶联免疫吸附法测定血清促性腺激素释放激素(GnRH)、促卵泡生成素(FSH)、黄体生成素(LH)、雌二醇(E2)及孕酮(PROG)的含量;免疫组化法检测下丘脑组织促性腺激素释放激素(GnRH)、垂体组织促性腺激素释放激素受体(GnRHR)的表达;以蛋白免疫印迹技术检测卵巢组织促卵泡生成素受体(FSHR)、黄体生成素受体(LHR)蛋白表达量。以实时荧光定量PCR检测卵巢组织中FSHR、LHR基因表达量。结果:与空白组比较,乌力吉-18低剂量组可明显升高血清LH含量(P<0.05),上调下丘脑组织GnRH、垂体组织GnRHR表达及卵巢组织FSHR、LHR蛋白表达(P<0.05);乌力吉-18高剂量组可显著升高血清FSH、LH、E2含量(P<0.05),上调下丘脑组织GnRH表达及卵巢组织FSHR表达量(P<0.05),并可显著升高卵巢组织中FSHR、LHR基因表达量(P<0.05);对照组可明显升高血清E2含量(P<0.05)。结论:蒙药乌力吉-18可明显升高血清FSH、LH及E2的含量,促进下丘脑组织GnRH、垂体组织GnRHR及卵巢组织中FSHR、LHR的表达,表明乌力吉-18能够对下丘脑-垂体-卵巢轴相关激素及受体表达产生影响。  相似文献   

15.
A possible role for gonadotrophins luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in the prostate physiology has been suggested in humans and rats. This study aimed at investigating the presence of receptors for LH and FSH (LHR and FSHR) in the canine prostate. Prostates were collected at post mortem from 6 clinically healthy, sexually intact beagles free from any prostatic disorder. Tissue was sampled from dorsal, middle and ventral regions of each prostate. Immunohistochemical localization was performed on wax-embedded sections using polyclonal antibodies for LHR or FSHR. The pattern and intensity of staining in the parenchyma (glandular epithelium) and stroma were determined using a semiquantitative histologic assessment. Receptors for LH and FSH were consistently present in both the glandular epithelium and the stroma in all tissue samples examined. Expression for both receptors was higher in the glandular epithelium than the stroma of all prostatic regions (P < 0.001). In the glandular epithelium, LHR (P < 0.01) and FSHR (P < 0.05) expression was lower in the lateral than the other regions, and there was no difference between dorsal and ventral regions. However, variations in the expression for LHR and FSHR among prostatic regions were not found in the stroma. These findings have demonstrated that LHR and FSHR are expressed in the dog prostate, and the variation observed in their levels of expression among its regions and tissue layers suggests a potential role of gonadotrophins LH and FSH in the regulation of the prostate physiology, particularly the glandular epithelium.  相似文献   

16.
The present experiments were conducted to evaluate the mRNA levels of luteinizing hormone receptor (LHR) and follicle-stimulating hormone receptor (FSHR) in granulosa layers during the ovulatory cycle of hens, in relation to the release of LH and steroid hormones. After the release of LH, progesterone (P4) and estradiol-17beta (E2), found 4-5 h before ovulation, LHR and FSHR mRNA levels were observed to decrease in the granulosa layers of the largest (F1) and second largest (F2) preovulatory follicles, with the greatest in the LHR mRNA level of F1. P4 concentrations in the granulosa layers of F1 and F2 increased 4-5 h before ovulation, with greater in F1 than in F2. F2 concentrations in the theca layers were greater in F2 than in F1 throughout the ovulatory cycle. Also, the injection of ovine LH caused decreases in the mRNA levels of LHR and FSHR in the granulosa layers. However, these decreases were abolished by the injection of aminoglutethimide, an inhibitor of steroid synthesis. These results suggest that in hen granulosa cells, the mRNA levels of not only LHR but also FSHR are down-regulated by LH and the down-regulation may be mediated steroid hormones.  相似文献   

17.
The asynchronous secretion of gonadotrope LH and FSH under the control of GnRH is crucial for ovarian cyclicity but the underlying mechanism is not fully resolved. Because prostaglandins (PG) are autocrine regulators in many tissues, we determined whether they have this role in gonadotropes. We first demonstrated that GnRH stimulates PG synthesis by induction of cyclooxygenase-2, via the protein kinase C/c-Src/phosphatidylinositol 3'-kinase/MAPK pathway in the LbetaT2 gonadotrope cell line. We then demonstrated that PGF(2alpha) and PGI2, but not PGE2 inhibited GnRH receptor expression by inhibition of phosphoinositide turnover. PGF(2alpha), but not PGI2 or PGE2, reduced GnRH-induction of LHbeta gene expression, but not the alpha-gonadotropin subunit or the FSHbeta subunit genes. The prostanoid receptors EP1, EP2, FP, and IP were expressed in rat gonadotropes. Incubations of rat pituitaries with PGF(2alpha), but not PGI2 or PGE2, inhibited GnRH-induced LH secretion, whereas the cyclooxygenase inhibitor, indomethacin, stimulated GnRH-induced LH secretion. None of these treatments had any effect on GnRH-induced FSH secretion. The findings have thus elaborated a novel GnRH signaling pathway mediated by PGF(2alpha)-FP and PGI2-IP, which acts through an autocrine/paracrine modality to limit autoregulation of the GnRH receptor and differentially inhibit LH and FSH release. These findings provide a mechanism for asynchronous LH and FSH secretions and suggest the use of combination therapies of GnRH and prostanoid analogs to treat infertility, diseases with unbalanced LH and FSH secretion and in hormone-dependent diseases such as prostatic cancer.  相似文献   

18.
We exposed, in two successive spawning seasons, individually placed precocious male Atlantic salmon ( Salmo salar ) and brown trout ( Salmo trutta ) parr to odour stimuli (ovarian fluid and urine mix) from ovulated conspecific or heterospecific anadromous females. Atlantic salmon parr had significantly higher plasma concentrations of the hormones 17α,20β-dihydroxy-4-pregnen-3-one (17,20β-P), 11-ketotestosterone (11-KT) and testosterone (T) after exposure to odours from conspecific females or from brown trout females compared to parr exposed to a control solution (0.9% NaCl). We did not observe any significant differences between the hormone levels in salmon parr exposed to the two female odours. The salmon parr exposed to conspecific odours had significantly higher volumes of strippable milt compared to the controls, but we did not find any significant differences when comparing the effect of the two female odours. Brown trout parr had significantly higher plasma 17,20β-P levels following exposure to heterospecific female odours compared to control males, but there was no significant difference between males exposed to the different female odours. We did not observe any significant differences in plasma levels of T and 11-KT and in milt volumes between exposed and control trout. Taken together, the results from both tested species indicate that the potency of heterospecific stimuli in stimulating increased plasma sex steroid hormone levels in male parr was as strong as stimuli from conspecific females. The results are discussed in connection to observed hybridisation between the two sympatric species.  相似文献   

19.
20.
From May through July when masu salmon, Oncorhynchus masou, commence downstream migration under natural conditions, yearling precocious male masu salmon (resident form) showed higher GSI and plasma levels of testosterone (T) and 11-ketotestosterone (11-KT) in contrast to immature smolts (migratory form). From March through September coinciding with the upstream migration period, 2-year-old male and female adults also showed higher GSI and plasma levels of T, estradiol-17beta (E(2)) 11-KT, 17alpha-hydroxyprogesterone and 17alpha,20beta-dihydroxy-4-pregnene-3-one (DHP). In order to test the effects of steroid hormones on migratory behaviors, silascone tube capsules containing 500 microg of T, E(2), 11-KT, DHP, or a vehicle was implanted into smolts, castrated precocious males, or immature parr, and downstream and upstream behavior were observed in artificial raceways in spring and autumn. Downstream behavior of smolts was inhibited significantly by T, E(2) and 11-KT. Upstream behavior was stimulated by T and 11-KT in castrated precocious males and stimulated by T, E(2) and 11-KT in immature parr. These results indicate that T, E(2) and 11-KT are the factors regulating downstream and upstream migratory behavior. In particular, because of its changing patterns in plasma and significant effects, T, the common precursor hormone of E(2) (female) and 11-KT (male), is considered to play central roles in both types of behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号