首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apple is known to be susceptible to various virus and viroid pathogens. Symptomatic apple cultivars and rootstocks were collected and analyzed by ELISA and then through RT-PCR. The study reports the presence of Apple mosaic virus (ApMV), Apple stem grooving virus (ASGV), Apple stem pitting virus (ASPV), Apple chlorotic leaf spot virus (ACLSV), the major apple viruses and Prunus necrotic ringspot virus (PNRSV), a minor apple virus, at the molecular level in India. Apple scar skin viroid (ASSVd) infection was also confirmed at the molecular level. Sporadic incidences of Tomato ringspot virus and Arabis mosaic virus infections were also detected by ELISA in nursery plants.  相似文献   

2.
The major viruses infecting apple cultivars throughout the world including India are apple mosaic virus (ApMV), apple stem pitting virus (ASPV), apple stem grooving virus (ASGV), apple chlorotic leaf spot virus (ACLSV), and recently, a new virus, apple necrotic mosaic virus (ApNMV), was reported from mosaic-infected apple cultivars in India. The aim of this study was to detect the ApNMV virus along with the other three viruses (ApMV, ASPV and ASGV) simultaneously by multiplex RT-PCR. Four primer-pair-produced amplicons of 670, 550, 350 and 210 bp corresponding to ApNMV, ApMV, ASPV and ASGV, respectively, were found to be specific for these viruses when tested individually. The annealing temperature (55°C), primer concentration (0·8 µl) and other components of the master mix were standardized for the development of one-step m-RT-PCR assay. The m-RT-PCR protocol developed was further validated with 30 samples from seven symptomatic or asymptomatic apple cultivars, which revealed the presence of more than one virus in these cultivars. Most of the viruses were found to be present either alone or in mixed infection; however, ASPV was more common in tested cultivars. An easy, cost-effective and rapid multiplex RT-RCR protocol was developed to detect the four viruses, which infect apple plants either in individually or together in the field. This assay will help in the surveying and indexing of apple germplasm and the distribution of all four viruses in the apple growing regions of India.  相似文献   

3.
4.
This study attempted to eradicate Apple stem pitting virus (ASPV) and Apple stem grooving virus (ASGV) from virus‐infected in vitro shoots of apple rootstocks ‘M9’ and ‘M26’ using shoot tip culture and cryopreservation. In shoot tip culture, shoot tips (0.2 mm in length) containing two leaf primordia failed to show shoot regrowth. Although shoot regrowth rate was the highest in the largest shoot tips (1.0 mm in length) containing four leaf primordia, none of the regenerated shoots was virus‐free. Shoot tips (0.5 mm in length) containing two and three leaf primordia produced 100% and 10% of ASPV‐free shoots, respectively, while those (1.0 mm) containing four leaf primordia were not able to eradicate ASPV. ASGV could not be eradicated by shoot tip culture, regardless of the size of the shoot tips tested. In cryopreservation, shoot tips (0.5 mm in length) containing two leaf primordia did not resume shoot growth. Although 1.0‐mm and 1.5‐mm shoot tips gave similarly high ASPV‐free frequencies, the latter had much higher shoot regrowth rate than the former. Very similar results of shoot regrowth and virus eradication by shoot tip culture and cryopreservation were observed in both ‘M9’ and ‘M26’. Histological observations showed that only cells in upper part of apical dome and in leaf primordia 1–3 survived, while other cells were damaged or killed, in shoot tips following cryopreservation. Virus immunolocalization found ASPV was not detected in upper part of apical dome and leaf primordia 1 and 2, but was present in lower part of apical dome, and in leaf primordium 4 and more developed tissues in all samples tested. ASPV was also detected in leaf primordium 3 in about 16.7% and 13.3% samples tested in ‘M9’ and ‘M26’. ASGV was observed in apical dome and leaf primordia 1–6, leaving only a few top layers of cells in apical dome free of the virus. Different abilities of ASPV and ASGV to invade leaf petioles and shoot tips were also noted.  相似文献   

5.
Apple chlorotic leaf spot virus (ACLSV), Apple stem pitting virus (ASPV), Apple stem grooving virus (ASGV) and Apple mosaic virus are economically important viruses infecting fruit tree species worldwide. To evaluate the occurrence of these pome fruit viruses in Latvia, a large‐scale survey was carried out in 2007. Collected samples were tested for infection by DAS ELISA and multiplex RT‐PCR. The accuracy of the detection of the viruses in multiplex RT‐PCR was confirmed by sequencing amplified PCR fragments. The results showed a wide occurrence of viruses in apple and pear commercial orchards established from non‐tested planting material. More than 89% of the tested apple trees and more than 60% of pear trees were infected with one or more pome fruit viruses. Analyses showed that the high occurrence of viruses in several apple cultivars is due to the propagation of infected clonal rootstocks and scions from infected mother trees. Sequence analyses targeting the 3′‐terminal region of the tested viruses showed various degrees of genetic diversity within respective virus isolates. This is the first report of the occurrence of ACLSV, ASGV and ASPV in apple and pear trees in Latvia and demonstrates their genetic diversity in different host genotypes.  相似文献   

6.
A sensitive antiserum is needed for the detection of Apple stem pitting virus (ASPV), one of the most important latent viruses that infect fruit trees. We have studied many properties of coat protein, such as the antigenic index, α‐helix, β‐sheet, β‐turn, coil structure, hydrophilicity, surface probability and flexibility and analysis with several software algorithms. Based on the rules for locating the antigenic epitopes in the regions including β‐turns and coil structures with the high hydrophilicity and surface probability, the predicted epitopes were located in the region of amino acid positions 4–18, 100–114, 400–414, respectively. Two linear synthetic peptides (CRGYEEGSRPNQRVLP and CTGGKIGPKPVLSIRK) were prepared and conjugated with carrier protein. The antisera, designated 1468 and 1469, were obtained by immunizing rabbits. The antibody produced a strong immuno‐reaction with the expression product of the ASPV coat protein gene in Escherichia coli. By testing ten apple samples, ASPV could be detected by Protein A Sandwich ELISA using antiserum 1468, but only some positive samples could be detected with antiserum 1469. To our knowledge, this is the first report of the preparation of antiserum to a pome fruit virus using the antigenic epitopes method.  相似文献   

7.
A virus was transmitted from apple trees to Nicotiana glutinosa and Chenopodium spp. and back to a range of woody indicators in which it affected only Virginia Crab; symptoms were grooves in the xylem, and swelling and necrosis of the scion immediately above the union with the stock. The virus was distinct from that causing stem pitting in Virginia Crab, because although easily detectable in several apple varieties, it was not found in many trees infected with stem pitting virus. The stem grooving virus has flexous particles 600–700 m/μ long, a heat inactivation point of 67 °C, a dilution end-point of 10-3 in N. glutinosa sap and remains infective for at least 2 days at 20 °C.  相似文献   

8.
A virus with filamentous particles c. 662 nm in length, distantly serologically related to HelVS was isolated from caper (Capparis spinosa) in Southern Italy and characterized as a member of the carlavirus group. Virus particles have asedimentation coefficient of 168 S and a buoyant density in CsCl of 1.31 g × cm?3. They are constituted by a single protein species with a molecular weight of 35.700 which encapsidates a single species of single stranded RNA with the apparent size of 9100 nucleotides. This RNA was infectious constituting the whole viral genome. Virus particles either scattered or in aggregates but no specific cytopathological alterations were seen in infected cells. This carlavirus proved to infect caper symptomlessly and was often isolated in nature from plants without apparent signs of infection. For this reason, the name of caper latent virus (CapLV) is suggested for it. It is also suggested that CapLV be identical with caper vein banding virus, a tentative, member of the carlavirus group superficially described in 1970 from Southern Italy.  相似文献   

9.
The properties of a virus isolated from fluted pumpkin (Telfairia occidentalis) was investigated. It produced symptoms in some members of the Solanaceae and Leguminosae, and was transmitted nonpersistently by the aphid, Aphis spiraecola. On the basis of these alone, it is distinct from another previously described virus, Telfairia mosaic virus, which neither caused symptoms in members of these families nor was it transmitted by insects. Furthermore, the virus in crude sap or purified preparations reacted with antiserum to cucumber mosaic virus (CMV), but not with antisera to several common viruses in Nigeria. Electron microscopic examination revealed isometric particles of 29 × 1 nm in diameter. These properties confirmed that the virus is an isolate of CMV, and closely resembles the Y-strain in causing systemic mosaic symptoms in Vigna unguiculata. From infectivity and pathogenicity tests, it is concluded that it is the main cause of mosaic disease in fluted pumpkin.  相似文献   

10.
11.
【目的】探究不同杀虫剂对重要入侵害虫西花蓟马及其本地近缘种花蓟马的毒力及对保护酶和解毒酶活性的影响,为进一步研究2种害虫的抗性管理提供依据。【方法】采用浸渍法测定5种田间常用杀虫剂对西花蓟马和花蓟马的毒力,并测定杀虫剂亚致死浓度(LC25)下2种蓟马体内保护酶和解毒酶活性的差异。【结果】不同杀虫剂对2种蓟马的毒力依次为:乙基多杀菌素甲维盐阿维菌素吡虫啉噻虫嗪,乙基多杀菌素对西花蓟马和花蓟马的LC_(50)分别为0.28和0.03 mg·L~(-1)。不同药剂的亚致死剂量(LC_(25))对西花蓟马和花蓟马体内保护酶和解毒酶活性普遍具有诱导作用。其中,阿维菌素对西花蓟马超氧化物歧化酶(SOD)活性诱导作用最强,为326.40 U·mg~(-1),是对照的9.37倍,而乙基多杀菌素对花蓟马SOD活性诱导作用最强,为245.35 U·mg~(-1),是对照的9.32倍;吡虫啉对西花蓟马和花蓟马过氧化物酶(POD)诱导作用最强,分别为298.67和246.79 U·mg~(-1),是对照的37.10和20.57倍;阿维菌素对西花蓟马和花蓟马过氧化氢酶(CAT)和羧酸酯酶(CarE)诱导作用最强,分别为298.67、246.79 U·mg~(-1)(CAT活性)和12.53、11.99 U·mg~(-1)(CarE活性);乙基多杀菌素对西花蓟马和花蓟马谷胱甘肽转移酶(GST)和乙酰胆碱酯酶(AChE)诱导作用最强,分别为77527.59、66927.39 U·mg~(-1)(GST活性)和2.34、2.22 U·mg~(-1)(AChE活性)。【结论】5种杀虫剂中,乙基多杀菌素对2种蓟马的毒力最强;西花蓟马对杀虫剂的解毒代谢能力强于花蓟马。  相似文献   

12.
A rapid and sensitive two-step RT-PCR protocol for simultaneous detection of major apple viruses, namely Apple mosaic virus (ApMV), Apple stem pitting virus (ASPV), Apple stem grooving virus (ASGV), Apple chlorotic leaf spot virus (ACLSV) and Apple scar skin viroid (ASSVd), was developed. Five specific primer pairs were tested and confirmed for these viruses and viroid together in a single tube, giving amplicons of ~198, ~330, ~370, ~547 and ~645 bp corresponding to ASGV, ASSVd, ASPV, ApMV and ACLSV, respectively. Using a guanidinium-based extraction buffer along with a commercial kit resulted in better quality RNA as compared to kit, suited for multiplex RT-PCR. A rapid CTAB method for RNA isolation from apple tissue was developed, which produce good yield and saves time. To the best of our knowledge, this is the first report on the simultaneous detection of five pathogens (four viruses and a viroid) from apple with NADH dehydrogenase subunit 5 (nad5) as an internal control.  相似文献   

13.
It has been demonstrated that inhaled fine (d < 2.5 μm) and ultrafine (d < 100 nm) particles produce more severe toxicity than coarse particles. Some recent data support the concept that the central nervous system (CNS) may be a target for the inhaled fine particulates. This work describes initial observation of the transport of intranasally instilled fine ferric oxide (Fe2O3) particles in animal brain. The iron micro-distribution and chemical state in the mice olfactory bulb and brain stem on day 14 after intranasal instillation of fine Fe2O3 particle (280 ± 80 nm) suspension at a single dose of 40 mg/kg body weight were analyzed by synchrotron radiation x-ray fluorescence and x-ray absorption near-edge structure (XANES). The micro-distribution map of iron in the olfactory bulb and brain stem shows an obvious increase of Fe contents in the olfactory nerve and the trigeminus of brain stem, suggesting that Fe2O3 particles were possibly transported via uptake by sensory nerve endings of the olfactory nerve and trigeminus. The XANES results indicate that the ratios of Fe (III)/Fe (II) were increased in the olfactory bulb and brain stem. The further histopathological observation showed that the neuron fatty degeneration occurred in the CA3 area of hippocampus. Such results imply an adverse impact of inhalation of fine Fe2O3 particles on CNS.  相似文献   

14.
We have studied the effect of different types of virus infections on the content in chlorophylls, carotenoids and free polyamines in shoots of vine cv. Albariño cultured in vitro. The ratio of chlorophyll a/c hlorophyll b was maintained practically constant in the different cases studied. A significant increase was observed in the polyamines, especially putrescine, in shoots infected with the different types of virus, mainly in the cases of grapevine fleck disease+grapevine leafroll disease type I and grapevine stem pitting.  相似文献   

15.
Virus infection is common in pear (Pyrus spp.) trees commercially cultivated in China. In this study, the growth speed, root development and phytohormone levels of virus-free and virus-infected pear cultures were comparatively investigated. Results showed that the co-infection of Apple stem grooving virus (ASGV) and Apple stem pitting virus (ASPV) significantly decreased the growth and proliferation of in vitro plants of P. communis cv. ‘Confenence’, but showed relatively less effect for P. pyrifolia cv. ‘Jinshui no. 2’, P. communis cv. ‘Red Clapp Favonite’ and P. sinkiangensis cv. Korla’. Strong inhibition of ASGV infection to root development was observed for in vitro plants of ‘Jinshui no. 2’, but not for ‘Confenence’. Furthermore, during root induction, ASGV infection significantly increased CTKs/IAA ratio and decreased IAA/ABA ratio in the rooting region of in vitro plants of ‘Jinshui no. 2’. Nevertheless, for in vitro plants of ‘Confenence’, these values were rarely influenced by ASGV and ASPV infection. The result indicated that the changes of CTKs/IAA and IAA/ABA ratios might be responsible for rooting inhibition of in vitro plants of ‘Jinshui no. 2’.  相似文献   

16.
A virus (isolate SYM) obtained from spinach plants in England with a severe yellow mottle disease induced symptoms resembling those of tobacco rattle virus (TRV) in several indicator species but caused systemic necrosis in Chenopodium amaranticolor and C. quinoa. It was transmitted to bait plants grown in soil containing the nematode Trichodorus primitivus. Purified virus preparations contained rod-shaped particles that were predominantly of four modal lengths: 188 nm (L particles), 101 nm (S particles), 57 nm and 48 nm (together called VS particles), containing RNA with mol. wts of 2.4, 1.5, 0.7 and 0.6 million, respectively. L particles (s°20= 300 S) and S particles (230 S) greatly outnumbered VS particles (c. 150 S). All particles contained a single polypeptide species with estimated mol wt of 24 700, slightly larger than those previously reported for tobraviruses. Purified L particles were infective but both L and S particles were needed to induce the production of virus nucleoprotein particles. VS particles were not infective and apparently had no qualitative or quantitative effect on infection by L or by L plus S particles. S particles carried determinants for serological specificity and ability to invade C. amaranticolor systemically. Isolate SYM produced pseudo-recombinants with isolate PRN of TRV. Also, isolates CAM, OR and PRN of TRV, and isolate SYM, were found to be distantly related by three kinds of serological test. No relationship was detected between these isolates and pea early-browning virus in gel-diffusion precipitin tests or electron microscope serological tests, but a distant relationship between isolate SYM and pea early-browning virus was found by micro-precipitin tests. Isolate SYM therefore has closer affinities with TRV than with pea early-browning virus and is considered to be a distinctive strain of TRV.  相似文献   

17.
African oil palm ringspot virus (AOPRV) had been previously described as a fovea‐like virus associated with a lethal disease of African oil palm (Elaeis guineensis) in South America. The original report was based on partial sequence and a distant relationship between AOPRV and Apple stem pitting virus, Apricot latent virus and Grapevine rupestris stem pitting‐associated virus, definitive species of the genus Foveavirus, family Flexiviridae. We report the full sequence of the RNA genome of AOPRV, and demonstrate that this virus is more closely related to two unassigned virus species of the family Flexiviridae (Cherry green ring mottle virus and Cherry necrotic rusty mottle virus) than to any definitive species of the genus Foveavirus. Thus, AOPRV should be considered as a new species of the Flexiviridae until the International Committee on Taxonomy of Viruses (ICTV) resolves the taxonomic status of the increasing number of unassigned species in this family. The molecular characterization of AOPRV has provided a highly sensitive and reliable RT‐PCR assay for the early detection of AOPRV in different genotypes of African, American (E. oleifera) and hybrid oil palms.  相似文献   

18.
A destructive streak disease of tomato (Lycopersicon esculentum) was observed on the University of Ife farm. The disease killed many plants and greatly diminished the quantity and quality of fruit produced by the other plants. A virus that is readily transmitted by mechanical inoculation, by the green peach aphid (Myzus persicae) and by grafting was isolated consistently from diseased plants. The virus was propagated in Nicotiana occidentalis and assayed in Physalis angulata. It was infective after dilution to io-3 but not io-4; after iomin at 55 but not 60oC; or after 5 days but not 7 days at 20–26oC. Electron microscope examination of sap from infected N. occidentalis leaves revealed flexuous rods with a modal length of about 780 nm. Based on the host range and symptomatology, particle morphology and size, properties in vitro and serology, the virus is shown to be related to, and possibly indistinguishable from, pepper veinal mottle virus.  相似文献   

19.
20.
Host range, purification and properties of potato virus T   总被引:2,自引:0,他引:2  
Potato virus T (PVT) infected nine species of tuber-bearing Solanum, most of them symptomlessly, and as a rule was transmitted through the tubers to progeny plants: two genotypes of S. tuberosum ssp. andigena were not infected. The virus was also transmitted by inoculation with sap to 37 other species in eight plant families. Chenopodium amaranticolor is useful as an indicator host, C quinoa as a source of virus for purification, and Phaseolus vulgaris as a local-lesion assay host; the systemic symptoms in Datura stramonium, Nicotiana debneyi and in these three species are useful for diagnosis. Attempts to transmit PVT by aphids failed, but the virus was transmitted through seed to progeny seedlings of four solanaceous species, and from pollen to seed of S. demissum. PVT was purified by clarifying sap with n-butanol or bentonite, followed by precipitation with polyethylene glycol, differential centrifugation and sedimentation in a sucrose density gradient. Purified preparations had an E260/E280 ratio of 1.18 and contained a single infective component with a sedimentation coefficient of 99 S. This component consisted of flexuous filamentous particles of about 640 times 12 nm that showed a characteristic substructure when stained with uranyl acetate. The virus particles contained a single species of infective single-stranded RNA, of molecular weight 2–2 times 106 daltons, and a single species of polypeptide of molecular weight about 27 000 daltons. PVT is serologically related to apple stem grooving virus but not to four other common potato viruses with flexuous filamentous particles. Apple stem grooving virus and PVT cause similar symptoms in several hosts, but also differ somewhat in host range and symptomatology. Apple stem grooving virus did not infect potato, caused additional symptoms in C. quinoa also infected with PVT, and its particles did not show the structural features specific to PVT. The two viruses are considered to be distinct. The cryptogram of PVT is R/1:2–2/(5): E/E: S/C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号