首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Preincubation of platelet suspension with dbcAMP during 2 minutes inhibited the ADP-induced change in platelet shape. An increase of the cAMP content in the cell induced by papaverine inhibiting phosphodiesterase also blocked the change in the shape caused by ADP and prostaglandin E2 (PGE2). Incubation of platelets in medium with pH 9.0 or addition of PGE2 produced a stable change in the shape of the cells. The action of dbcAMP or papaverine on the changed cells accelerated the recovery of the native shape and the content of membrane-bound calcium.  相似文献   

2.
3.
The proto-oncogene cyclin D1 and the neuron-specific cyclins p35 and p39 are expressed during brain maturation. To investigate the role of these cyclins in neuronal differentiation, we used a conditionally immortalized rat hippocampal cell line, H19-7, that expresses cyclin-dependent kinases 4 and 5 (cdk4 and -5). Cyclin D1, which activates cdk4 and binds but does not activate cdk5, was increased upon differentiation of the H19-7 cells. However, microinjection of either sense or antisense cyclin D1 cDNA or anti-cyclin D1 antibodies had no effect on morphological differentiation of the cells. On the other hand, neurite outgrowth was stimulated by expression of p35 or p39, both of which activate cdk5. A dominant-negative mutant of cdk5 blocked both p35- and p39-induced neurite extension as well as basic fibroblast growth factor (bFGF)-induced neuronal differentiation. However, of these cyclins, only antisense p39 prevented bFGF-induced neurite outgrowth. These studies indicate that cyclin D1 is neither necessary nor sufficient for morphological differentiation, that p35 is sufficient but not required, and that p39 is both necessary and sufficient for neurite outgrowth in the hippocampal cells. Taken together, these results represent the first demonstration of a specific role for p39 in neuronal differentiation, implicate the cyclin-activated kinase cdk5 in this process, and indicate that p39 is able to mediate neurite outgrowth in the presence or absence of cyclin D1.  相似文献   

4.
5.
During acute experiments on rats immobilized with d-tubocurarine, the effects were compared of microiontophoretically applied dopamine and dibutyryl cAMP on background and glutamate-induced spike activity of neostriatalneurons. The algorithm of the analysis of extracellularly recorded spike activity included the plotting of a graph of mean frequency, assessing its stationarity, and producing histograms of interspike intervals and also correlation function. During these experiments it was shown that dibutyryl cAMP imitates the inhibitory but not the activating effect of dopamine on the spontaneous and glutamate-induced spike activity of neostriatal neurons.Institute of Biological Physics, Academy of Sciences of the USSR, Pushchino-on-Oka, Moscow Province. Translated from Neirofiziologiya, Vol. 17, No. 5, pp. 614–619, September–October, 1985.  相似文献   

6.
Recent studies on the mechanisms of cell regulation have demonstrated that the reactions occurring with participation of secondary messengers, i.e., cyclic adenosine-3',5'-monophosphate (cAMP), Ca2+, 2',5'-oligoadenylate (oligoA), etc., are closely interrelated and the secondary messengers involved therein can thus be regarded as components of the integral regulatory system of the cell. The interaction between these components occurs via at least two pathways. Firstly, some reactions, that are vital for the cell, are under a simultaneous control of several messengers. Secondly, any changes in the intracellular level of one of the messengers inevitably affects the concentrations of other messengers.  相似文献   

7.
The statistical characteristics of the spontaneous spike activity of rat hippocampal neurons in fields CA1?2 were compared in situ and in tissue culture. Statistical analyses have shown strong similarities in estimators of basic numerical characteristics of interspike interval (ISI) distributions. These similarities may serve as evidence of maintenance of normal functional properties and an “organotypic arrangement” of neurons in tissue culture, and they are also indicative of an intrahippocampal origin of the spontaneous impulse activity in the hippocampus. On the other hand, some differences are noted in the tests of firing patterns. Interpretation of these results leads to some assumptions about mechanisms of the phenomenon under study.  相似文献   

8.
The effects of brain-derived neurotrophic factor (BDNF) and cAMP on the neuronal serotoninergic phenotype were studied in primary cultures of E14 rat embryonic rostral raphe. Short treatments (for 18 h) with BDNF or dibutyryl-cAMP induced an almost two-fold increase in the number of serotoninergic neurones and a dramatic extension and ramification of their neurites. These changes were associated with marked increases in the levels of mRNAs encoding the serotonin transporter, the 5-HT1A and 5-HT1B receptors and the BDNF receptor tyrosine kinase B (TrkB). Concomitant blockade of tyrosine kinases by genistein suppressed all the up-regulating effects of BDNF and cAMP on 5-hydroxytryptamine (5-HT) neurones. These findings suggest that an auto-amplifying mechanism underlies the promoting effect of BDNF on the differentiation of serotoninergic neurones through TrkB activation, which is also triggered by cAMP.  相似文献   

9.
Gene expression profiles can be regarded as sums of simpler modes, analogous to the modes of a vibrating violin string. Decomposition of temporal gene expression profiles into modes by singular value decomposition (SVD) was reported before, but the question as to what degree the SVD modes can be interpreted in terms of biology remains open. We report and compare the results of SVD of published datasets from hippocampal development, neuronal differentiation in vitro, and a control time-series hippocampal dataset. We demonstrate that the first SVD mode reflects the magnitude of expression, interpretable on the Affymetrix platform. In the datasets from gene profiling of hippocampal development and neuronal differentiation, the second mode reflects a monotonous change in expression, either up- or down-regulation, in the time course of experiment. We demonstrate that the top two SVD modes are conserved between datasets and therefore, likely reflect properties of the underlying system (gene expression in hippocampus) rather than of a particular experiment or dataset. Our results also indicate that the magnitude of expression, and the direction of change in expression during hippocampal development, are uncorrelated, suggesting that they are regulated by largely independent mechanisms.  相似文献   

10.
Excitatory postsynaptic potentials (EPSP) were recorded from 14 neurons in guinea pig hippocampal slices (area CAl) after stimulating the stratum radiatum (Schaffer collaterals) and stratum oriens. An increase occurring in EPSP amplitude in 7 units (9 pathways) recorded 15–45 min after tetanic stimulation of Schaffer collaterals is viewed as long-term potentiation (LTP). Statistical analysis conducted according to two sets of quantal theory (histogram and variance methods) showed an increase in mean quantal content (m) during LTP. An increase in quantal size, found only when using the histogram method, did not correlate with LTP level. This increase is thought to be associated with the considerably greater sensitivity of the histogram method to noise level in comparison with the variance method, the latter being more reliable with signals of high noise level. The increase found in m using both methods matches findings previously obtained for the whole brain; it also points to presynaptic location of mechanisms responsible for raised synaptic efficacy during LTP.Institute for Brain Research, All-Union Mental Health Research Center, Academy of Medical Sciences of the USSR, Moscow. Max-Planck Institute of Biophysical Chemistry, Göttingen, West Germany. Institute of Zoology, Jagiellonian University, Cracow, Poland. Translated from Neirofiziologiya, Vol. 22, No. 4, pp. 465–472, July–August, 1990.  相似文献   

11.
The inflammatory central nervous system response that involves activated microglia and reactive astrocytes may both heal and harm neurons, as inflammatory mediators lead to neuroprotection or excitation at one dose but to injury at a different concentration. To investigate these complex cellular interactions, L-trans-pyrrolidine-2,4-dicarboxylate (PDC), a selective substrate inhibitor of glutamate transport, was infused during 14 days in the rat hippocampus at three different rates: 5, 10 and 25 nmol/h. A microglial reaction appeared at the 5 nmol/h PDC rate in absence of astroglial reaction and neuronal loss. Microgliosis and neuronal death were observed at PDC 10 nmol/h in absence of astrogliosis and calcium precipitation, whereas all four aspects were present at the highest rate. This dissociation between neuronal loss and astroglial reactivity took place in presence of a permanent microglial reaction. These data suggest a specific response of microglia to PDC whose neuronal effects may differ with the infused dose.  相似文献   

12.
Laminin is a potent stimulator ofneurite outgrowth. We have examined the signal transduction events involved in the neuronal cell response to laminin. Cyclic nucleotides, calcium, and sodium-proton exchange do not appear to be required for the transduction of the laminin signal during neurite outgrowth. Direct measurement of cAMP and cGMP levels shows no changes in NG108-15 cells when cultured on laminin. Exogenous cAMP alone had no effect on either the rate of process formation or process length, but did alter the morphology of laminin-induced neurites. A four-fold increase in the number of branches per neurite and a two-to-three-fold increase in the number of neurites per cell were observed in both NG108-15 and PC12 cells cultured on laminin when either 8-BrcAMP or forskolin was added. The cAMP-induced branching was also observed when PC12 cells were cultured on a laminin-derived synthetic peptide (PA22-2), which contains the neurite-promoting amino acid sequence IKVAV. By immunofluorescence analysis with axonal or dendritic markers, the PC12 processes on laminin and PA22-2 were axonal, not dendritic, and the cAMP-induced morphological changes were due to axonal branching. These data demonstrate that changes in cAMP are not involved in laminin-mediated neurite outgrowth, but cAMP can modulate the effects of laminin.  相似文献   

13.
This experiment attempted to determine the effect of cAMP on maturation of bovine oocytes in chemically-defined, serum-free medium. Cumulus-oocyte complexes were incubated in modified DME/Ham F-12 medium containing dbcAMP at 0 (control), 10(-6), 10(-4) and 10(-2) M. After 18 and 24 hours of culture, the percentage of oocyte maturation between 0 (control) and 10(-2) M dbcAMP-treated groups were significant. Some oocytes were cultured with dbcAMP (10(-2) M) for 6, 12 and 24 hours followed by incubation in control medium to test the reversibility of inhibition or of any harmful effect of dbcAMP. The inhibitory effect of 10(-2) M dbcAMP on bovine oocyte maturation was reversed by transferring cumulus-oocyte complexes to the control medium. In addition, forskolin (0.12 and 0.24 mM) was effective (P < 0.01) in preventing the resumption of meiosis. The cAMP content of oocytes cultured with forskolin was not increased, although cumulus cells responded to forskolin with an increase in cAMP content. These results indicate that elevated levels of cAMP in the culture medium are important in regulating resumption of meiosis of bovine oocytes in vitro.  相似文献   

14.
Lithium has been demonstrated to increase neurogenesis in the dentate gyrus of rodent hippocampus. The present study was undertaken to investigate the effects of lithium on the proliferation and differentiation of rat neural progenitor cells in hippocampus both in vitro and in vivo. Lithium chloride (1-3 mM) produced a significant increase in the number of bromodeoxyuridine (BrdU)-positive cells in high-density cultures, but did not increase clonal size in low-density cultures. Lithium chloride at 1 mM (within the therapeutic range) also increased the number of cells double-labeled with BrdU antibody and TuJ1 (a class III beta-tubulin antibody) in high-density cultures and the number of TuJ1-positive cells in a clone of low-density cultures, whereas it decreased the number of glial fibrillary acidic protein-positive cells in both cultures. These results suggest that lithium selectively increased differentiation of neuronal progenitors. These actions of lithium appeared to enhance a neuronal subtype, calbindin(D28k)-positive cells, and involved a phosphorylated extracellular signal-regulated kinase and phosphorylated cyclic AMP response element-binding protein-dependent pathway both in vitro and in vivo. These findings suggest that lithium in therapeutic amounts may elicit its beneficial effects via facilitation of neural progenitor differentiation toward a calbindin(D28k)-positive neuronal cell type.  相似文献   

15.
We performed mRNA expression profiling of mouse primary hippocampal neurones undergoing differentiation in vitro. We show that 2314 genes significantly changed expression during neuronal differentiation. The temporal resolution of our experiment (six time points) permits us to distinguish between gene expression patterns characteristic for the axonal and for the dendritic stages of neurite outgrowth. Cluster analysis reveals that, in the process of in vitro neuronal differentiation, a high level of expression of genes involved in the synthesis of DNA and proteins precedes the up regulation of genes involved in protein transport, energy generation and synaptic functions. We report in detail changes in gene expression for genes involved in the synaptic vesicle cycle. Data for other genes can be accessed at our website. We directly compare expression of 475 genes in the differentiating neurones and the developing mouse hippocampus. We demonstrate that the program of gene expression is accelerated in vitro as compared to the situation in vivo. When this factor is accounted for, the gene expression profiles in vitro and in vivo become very similar (median gene-wise correlation 0.787). Apparently once the cells have taken a neuronal fate, the further program of gene expression is largely independent of histological or anatomical context. Our results also demonstrate that a comparison across the two experimental platforms (cDNA microarrays and oligonucleotide chips) and across different biological paradigms is feasible.  相似文献   

16.
17.
Differentiation-coupled induction of resistance of Leishmania parasites to macrophage oxidative damage was shown to be associated with an increased cAMP response. This study explores the significance of the cAMP response in the parasite by identifying a differentially expressed cAMP phosphodiesterase (LdPDEA) and deciphering its role in regulating antioxidant machineries in the parasite. LdPDEA, a high KM class I cytosolic cAMP phosphodiesterase, was expressed maximally in log-phase promastigotes, but was significantly reduced in stationary-phase promastigotes and amastigotes. Chemical inhibition or silencing of PDEA conferred enhanced resistance to pro-oxidants in these cells and this led to studies on trypanothione biosynthesis and utilization, as trypanothione is one of the major modulators of antioxidant defense in kinetoplastidae. Despite enhanced arginase and ornithine decarboxylase activity, trypanothione biosynthesis seemed to be unaffected by PDEA blockage, whereas significant elevations in the expression of tryparedoxin peroxidase, ascorbate peroxidase, and tryparedoxin were detected, suggesting a definite shift of trypanothione-pool utilization bias toward antioxidant defense. Moreover, parasites that overexpressed PDEA showed reduced resistance to oxidative damage and reduced infectivity toward activated macrophages. This study reveals the significance of a cAMP phosphodiesterase in the infectivity of Leishmania parasites.  相似文献   

18.
Liu B  Qu MJ  Qin KR  Li H  Li ZK  Shen BR  Jiang ZL 《Biophysical journal》2008,94(4):1497-1507
The arterial system is subjected to cyclic strain because of periodic alterations in blood pressure, but the effects of frequency of cyclic strain on arterial smooth muscle cells (SMCs) remain unclear. Here, we investigated the potential role of the cyclic strain frequency in regulating SMC alignment using an in vitro model. Aortic SMCs were subject to cyclic strain at one elongation but at various frequencies using a Flexercell Tension Plus system. It was found that the angle information entropy, the activation of integrin-β1, p38 MAPK, and F/G actin ratio of filaments were all changed in a frequency-dependent manner, which was consistent with SMC alignment under cyclic strain with various frequencies. A treatment with anti-integrin-β1 antibody, SB202190, or cytochalasin D inhibited the cyclic strain frequency-dependent SMC alignment. These observations suggested that the frequency of cyclic strain plays a role in regulating the alignment of vascular SMCs in an intact actin filament-dependent manner, and cyclic strain at 1.25 Hz was the most effective frequency influencing SMC alignment. Furthermore, integrin-β1 and p38 MAPK possibly mediated cyclic strain frequency-dependent SMC alignment.  相似文献   

19.
Dictyostelium discoideum development is regulated through receptor/G protein signal transduction using cAMP as a primary extracellular signal. Signaling pathways will be discussed as well as the regulation and function of individual cAMP receptors and G alpha subunits. Finally potential downstream targets including protein kinases and nuclear events will be explored.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号