首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The products of the btuCED region of the Escherichia coli chromosome participate in the transport of vitamin B12 across the cytoplasmic membrane. The nucleotide sequence of the 3,410-base-pair HindIII-HincII DNA fragment carrying a portion of the himA gene and the entire btuCED region was determined. Comparison of the location of the open reading frames with the gene boundaries defined by transposon insertions allowed the assignment of polypeptide products to gene sequences. The btuC product is a highly nonpolar integral membrane protein of molecular weight 31,683. The distribution of hydrophobic regions suggests the presence of numerous membrane-spanning domains. The btuD product is a relatively polar but membrane-associated polypeptide of Mr 27,088 and contains segments bearing extensive homology to the ATP-binding peripheral membrane constituents of periplasmic binding protein-dependent transport systems. Other regions of this protein are similar to portions of the outer membrane vitamin B12 receptor. The btuE product (Mr 20,474) appears to have a periplasmic location. It has the mean hydropathy of a soluble protein but lacks an obvious signal sequence. The cellular locations and structural and sequence homologies of the Btu polypeptides point to the similarity of these three proteins to components of binding protein-dependent transport systems. However, the dependence on a periplasmic vitamin B12-binding protein has not yet been demonstrated.  相似文献   

2.
The transport of vitamin B12 in Escherichia coli requires a specific vitamin B12 receptor protein in the outer membrane and the tonB gene product. In addition, the btuC gene, located at min 38 on the genetic map, has been found to influence vitamin B12 uptake or utilization. The btuC function is required for the growth response to vitamin B12 when the outer membrane transport process (btuB or tonB function) is defective. However, even in a wild-type strain, btuC is required for proper transport of vitamin B12. Additional mutations in the vicinity of btuC were isolated as lac fusions that produced a phenotype similar to that of a btuC mutant. The btuC region was cloned by selection for complementation of a btuC mutation. Complementation testing with plasmids carrying various deletions or transposon Tn1000 insertions demonstrated that the new mutations defined a separate, independently expressed locus, termed btuD. The coding regions for both genes were identified on a 3.4-kilobase HindIII-HincII fragment and were 800 to 1,000 base pairs in length. They were separated by a 600- to 800-base-pair region. The gene order in this portion of the chromosome map was found to be pps-zdh-3::Tn10-btuD-btuC-pheS. Expression of beta-galactosidase in the btuD-lac fusion-bearing strains, whether proficient or defective in vitamin B12 transport, was not regulated by the presence of vitamin B12 in the growth medium.  相似文献   

3.
Cells of Escherichia coli take up vitamin B(12) (cyano-cobalamin [CN-Cbl]) and iron chelates by use of sequential active transport processes. Transport of CN-Cbl across the outer membrane and its accumulation in the periplasm is mediated by the TonB-dependent transporter BtuB. Transport across the cytoplasmic membrane (CM) requires the BtuC and BtuD proteins, which are most related in sequence to the transmembrane and ATP-binding cassette proteins of periplasmic permeases for iron-siderophore transport. Unlike the genetic organization of most periplasmic permeases, a candidate gene for a periplasmic Cbl-binding protein is not linked to the btuCED operon. The open reading frame termed yadT in the E. coli genomic sequence is related in sequence to the periplasmic binding proteins for iron-siderophore complexes and was previously implicated in CN-Cbl uptake in SALMONELLA: The E. coli yadT product, renamed BtuF, is shown here to participate in CN-Cbl uptake. BtuF protein, expressed with a C-terminal His(6) tag, was shown to be translocated to the periplasm concomitant with removal of a signal sequence. CN-Cbl-binding assays using radiolabeled substrate or isothermal titration calorimetry showed that purified BtuF binds CN-Cbl with a binding constant of around 15 nM. A null mutation in btuF, but not in the flanking genes pfs and yadS, strongly decreased CN-Cbl utilization and transport into the cytoplasm. The growth response to CN-Cbl of the btuF mutant was much stronger than the slight impairment previously described for btuC, btuD, or btuF mutants. Hence, null mutations in btuC and btuD were constructed and revealed that the btuC mutant had a strong impairment similar to that of the btuF mutant, whereas the btuD defect was less pronounced. All mutants with defective transport across the CM gave rise to frequent suppressor variants which were able to respond at lower levels of CN-Cbl but were still defective in transport across the CM. These results finally establish the identity of the periplasmic binding protein for Cbl uptake, which is one of few cases where the components of a periplasmic permease are genetically separated.  相似文献   

4.
Complementation of insertion mutants showed that the polypeptides FatD, FatC, FatB, and FatA are essential for the iron-transport process encoded by pJM1. Sequence analysis followed by homology studies indicated that transport of ferric anguibactin into Vibrio anguillarum 775 follows the same mechanism as reported for transport of Fe(3+)-hydroxamates, Fe(3+)-catecholates, ferric dicitrate, and vitamin B12 into Escherichia coli. Homology of FatA, part of the receptor complex, to seven E. coli receptor proteins involved in uptake of siderophores and vitamin B12 supports the idea of a common ancestral gene. A "TonB-Box" was found in FatA suggesting the existence of a TonB-like protein function in V. anguillarum. A high homology in the primary structure of FatB to FhuD, FecB, FepB, and BtuE suggests that FatB is the anguibactin-binding protein located in the periplasmic space. FatD and FatC are polytopic integral membrane proteins. According to their homologies to other proteins from other transport systems, they may be involved in the translocation of ferric anguibactin across the cytoplasmic membrane.  相似文献   

5.
The involvement of an outer membrane transport component for vitamin B12 uptake in Salmonella typhimurium, analogous to the btuB product in Escherichia coli, was investigated. Mutants of S. typhimurium selected for resistance to bacteriophage BF23 carried mutations at the btuB locus (butBS) (formerly called bfe, at the analogous map position as the E. coli homolog) and were defective in high-affinity vitamin B12 uptake. The cloned E. coli btuB gene (btuBE) hybridized to S. typhimurium genomic DNA and restored vitamin B12 transport activity to S. typhimurium btuBS mutants. An Mr-60,000 protein in the S. typhimurium outer membrane was repressed by growth with vitamin B12 and was eliminated in a btuBS mutant. The btuBS product thus appears to play the same role in vitamin B12 transport by S. typhimurium as does the E. coli btuBE product. A second vitamin B12 transport system that is not present in E. coli was found by cloning a fragment of S. typhimurium DNA that complemented btuB mutants for vitamin B12 utilization. In addition to this plasmid with a 6-kilobase insert of S. typhimurium DNA, vitamin B12 utilization by E. coli btuB strains required the btuC and btuD products, necessary for transport across the cytoplasmic membrane, but not the btuE or tonB product. The plasmid conferred low levels of vitamin B12-binding and energy-dependent transport activity but not susceptibility to phage BF23 or utilization of dicyanocobinamide. The cloned S. typhimurium DNA encoding this new transport system did not hybridize to the btuBE gene or to E. coli chromosomal DNA and therefore does not carry the S. typhimurium btuBS locus. Increased production of an Mr -84,000 polypeptide associated with the outer membrane was seen. The new locus appears to be carried on the large plasmid in most S. typhimurium strains. Thus S. typhimurium possesses both high- and low-affinity systems for uptake of cobalamins across the outer membrane.  相似文献   

6.
Membrane-associated gene products of shock-sensitive bacterial transport operons are often difficult to detect. A 4.5-kilobase DNA fragment, known to completely encode the Salmonella typhimurium tctI operon, was cloned in both orientations behind the T7 phage promoter phi 10 and expressed by using the T7 polymerase-promoter system of Tabor and Richardson (S. Tabor and C. C. Richardson, Proc. Natl. Acad. Sci. USA 82:1074-1078, 1985). Under these conditions, five proteins were clearly demonstrated. One DNA strand was shown to encode the periplasmic (29,000-Mr) C protein (as a 31,000-Mr precursor), a 19,000-Mr protein, and a 40,000- to 45,000-Mr protein which ran as a diffuse band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The opposite strand carried the information for two additional proteins of 29,000 and 14,000 Mr. By Tn5 mutagenesis, subcloning of Tn5 insertions, and subcloning of various deletion mutants it was shown that the tctI system is divergently transcribed. The periplasmic binding protein (C protein) is the first product of one operon, followed by the 19,000-Mr and 45,000-Mr integral inner membrane proteins. On the opposite strand only the 29,000-Mr protein was essential for tctI function, and it was found to be weakly attached to the inner membrane. Thus tctI encodes four proteins, one periplasmic, two integral, and one peripheral to the cytoplasmic membrane, with the genes arranged as tctA tctB tctC tctD.  相似文献   

7.
Cells of Escherichia coli pump cobalamin (vitamin B12) across their outer membranes into the periplasmic space, and it was concluded previously that this process is potentiated by the proton motive force of the inner membrane. The novelty of such an energy coupling mechanism and its relevance to other outer membrane transport processes have required confirmation of this conclusion by studies with cells in which cobalamin transport is limited to the outer membrane. Accordingly, I have examined the effects of cyanide and of 2,4-dinitrophenol on cobalamin uptake in btuC and atp mutants, which lack inner membrane cobalamin transport and the membrane-bound ATP synthase, respectively. Dinitrophenol eliminated cobalamin transport in all strains, but cyanide inhibited this process only in atp and btuC atp mutant cells, providing conclusive evidence that cobalamin transport across the outer membrane requires specifically the proton motive force of the inner membrane. The coupling of metabolic energy to outer membrane cobalamin transport requires the TonB protein and is stimulated by the ExbB protein. I show here that the tolQ gene product can partly replace the function of the ExbB protein. Cells with mutations in both exbB and tolQ had no measurable cobalamin transport and thus had a phenotype that was essentially the same as TonB-. I conclude that the ExbB protein is a normal component of the energy coupling system for the transport of cobalamin across the outer membrane.  相似文献   

8.
9.
10.
11.
12.
The occ and noc regions of octopine and nopaline Ti plasmids in Agrobacterium tumefaciens are responsible for the catabolic utilization of octopine and nopaline, respectively. Opine-inducible promoters, genes for regulatory proteins and for catabolic enzymes, had been identified in previous work. However, both regions contained additional DNA stretches which were under the control of opine-inducible promoters, but the functions were unknown. We investigated these stretches by DNA sequence and functional analyses. The sequences showed that both of the catabolic regions contain a set of four genes which are transcribed in the same direction. The occ and noc region genes are related, but the arrangement of the genes is different. The deduced polypeptides are related to those of binding protein-dependent transport systems of basic amino acids in other bacteria. The comparison suggested that three of the polypeptides are located in the membrane and that one is a periplasmic protein. We constructed cassettes which contained either the putative transport genes only or the complete occ or noc region; all constructs, however, included the elements necessary for opine-induced expression of the genes (the regulatory gene and the inducible promoters). Uptake studies with 3H-labelled octopine showed that the putative transport genes in the occ region code for octopine uptake proteins. The corresponding studies with 3H-labelled nopaline and the noc region cassettes indicated that the uptake of nopaline requires the putative transport genes and additional functions from the left part of the noc region.  相似文献   

13.
The transport of cyanocobalamin (vitamin B12) in cells of Escherichia coli is dependent on a receptor protein (BtuB protein) located in the outer membrane. A 9.1-kilobase pair BamHI fragment carrying the btuB gene was cloned from a specialized transducing phage into multicopy plasmids. Insertions of transposon Tn1000 which prevented production of the receptor localized btuB to a 2-kilobase pair region. Further subcloning allowed isolation of this region as a 2.3-kilobase pair Sau3A fragment. The BtuB+ plasmids were shown by maxicell analysis to encode a polypeptide with a molecular weight of 66,000 in the outer membrane. This polypeptide was missing in cells with Tn1000 insertions in btuB and was reduced in amount upon growth of plasmid-bearing cells in repressing concentrations of vitamin B12. Several Tn1000 insertions outside the 5' end of the coding region exhibited reduced production of receptor. A deletion at the 3' end of btuB resulted in formation of an altered receptor. Amplified production of this polypeptide was associated with increased levels of binding of the receptor's ligands (vitamin B12 and phage BF23), increased rates of vitamin B12 uptake, and altered susceptibility to the group E colicins. Deficiency in various major outer membrane proteins did not affect production of the btuB product, and the amplified levels of this protein partially reversed the tolerance to E colicins seen in these mutants.  相似文献   

14.
Transport of iron(III) hydroxamates across the inner membrane ofEscherichia coli depends on a binding protein-dependent transport system composed of the FhuB,C and D proteins. The FhuD protein, which is synthesized as a precursor and exported through the cytoplasmic membrane, represents the periplasmic binding protein of the system, accepting as substrates a number of hydroxamate siderophores and the antibiotic albomycin. A FhuD derivative, carrying an N-terminal His-tag sequence instead of its signal sequence and therefore not exported through the inner membrane, was purified from the cytoplasm. Functional activity, comparable to that of wild-type FhuD, was demonstrated for this His-tag-FhuD in vitro by protease protection experiments in the presence of different substrates, and in vivo by reconstitution of iron transport in afhuD mutant strain. The experimental data demonstrate that the primary sequence of the portion corresponding to the mature FhuD contains all the information required for proper folding of the polypeptide chain into a functional solute-binding protein. Moreover, purification of modified periplasmic proteins from the cytosol may be a useful approach for recovery of many polypeptides which are normally exported across the inner membrane and can cause toxicity problems when overproduced.  相似文献   

15.
The fec region of the Escherichia coli chromosome determines a citrate-dependent iron(III) transport system. The nucleotide sequence of fec revealed five genes, fecABCDE, which are transcribed from fecA to fecE. The fecA gene encodes a previously described outer membrane receptor protein. The fecB gene product is formed as a precursor protein with a signal peptide of 21 amino acids; the mature form, with a molecular weight of 30,815, was previously found in the periplasm. The fecB genes of E. coli B and E. coli K-12 differed in 3 nucleotides, of which 2 gave rise to conservative amino acid exchanges. The fecC and fecD genes were found to encode very hydrophobic polypeptides with molecular weights of 35,367 and 34,148, respectively, both of which are localized in the cytoplasmic membrane. The fecE product was a rather hydrophilic but cytoplasmic membrane-bound protein of Mr 28,189 and contained regions of extensive homology to ATP-binding proteins. The number, structural characteristics, and locations of the FecBCDE proteins were typical for a periplasmic-binding-protein-dependent transport system. It is proposed that after FecA- and TonB-dependent transport of iron(III) dicitrate across the outer membrane, uptake through the cytoplasmic membrane follows the binding-protein-dependent transport mechanism. FecC and FecD exhibited homologies to each other, to the N- and C-terminal halves of FhuB of the iron(III) hydroxamate transport system, and to BtuC of the vitamin B12 transport system. FecB showed some homology to FhuD, suggesting that the latter may function in the same manner as a binding protein in iron(III) hydroxamate transport. The close homology between the proteins of the two iron transport systems and of the vitamin B12 transport system indicates a common evolution for all three systems.  相似文献   

16.
Summary Transport of iron(III) hydroxamates across the inner membrane into the cytoplasm of Escherichia coli cells is mediated by the FhuC, FhuD and FhuB proteins. We studied the extremely hydrophobic FhuB protein (70 kDa) which is located in the cytoplasmic membrane. The N- and C-terminal halves of the protein [FhuB(N) and FhuB(C)] show homology to each other and to the equivalent polypeptides involved in uptake of ferric dicitrate and of vitamin B2. Various plasmids carrying only one-half of the fhuB gene were expressed in fhuB mutants. Only combinations of FhuB(N) and FhuB(C) polypeptides restored sensitivity to albomycin and growth on iron hydroxamates as sole iron source; no activity was obtained with either half of FhuB alone. These results indicate that both halves of FhuB are essential for substrate translocation and that they combine to form an active permease when expressed separately. In addition, a FhuB derivative with a large internal duplication of 271 amino acids was found to be partially active in transport, indicating that the extra portion did not perurb proper insertion of the active FhuB segments into the cytoplasmic membrane.  相似文献   

17.
Summary Transport of iron(III) hydroxamates across the inner membrane into the cytoplasm ofEscherichia coli is mediated by the FhuC, FhuD and FhuB proteins and displays characteristics typical of a periplasmic-binding-protein-dependent transport mechanism. In contrast to the highly specific receptor proteins in the outer membrane, at least six different siderophores of the hydroxamate type and the antibiotic albomycin are accepted as substrates. AfhuB mutant (deficient in transport of substrates across the inner membrane) which overproduced the periplasmic FhuD 30-kDa protein, bound [55Fe] iron(III) ferrichrome. Resistance of FhuD to proteinase K in the presence of ferrichrome, aerobactin, and coprogen indicated binding of these substrates to FhuD. FhuD displays significant similarity to the periplasmic FecB, FepB, and BtuE proteins. The extremely hydrophobic FhuB 70-kDa protein is located in the cytoplasmic membrane and consists of two apparently duplicated halves. The N-and C-terminal halves [FhuB(N) and FhuB(C)] were expressed separately infhuB mutants. Only combinations of FhuB(N) and FhuB(C) polypeptides restored sensitivity to albomycin and growth on iron hydroxamate as a sole iron source, indicating that both halves of FhuB were essential for substrate translocation and that they combined to form an active permease. In addition, a FhuB derivative with a large internal duplication of 271 amino acids was found to be transport-active, indicating that the extra portion did not disturb proper insertion of the active FhuB segments into the cytoplasmic membrane. A region of considerable similarity, present twice in FhuB, was identified near the C-terminus of 20 analyzed hydrophobic proteins of periplasmic-binding-protein-dependent systems. The FhuC 30 kDa protein, most likely involved in ATP binding, contains two domains representing consensus sequences among all peripheral cytoplasmic membrane proteins of these systems. Amino acid replacements in domain I (LysGlu and Gln) and domain II (AspAsn and Glu) resulted in a transport-deficient phenotype.  相似文献   

18.
Hybrid plasmids carrying trg, the genetic locus in closest proximity to terC, coded for several polypeptides in addition to the Trg protein. Polypeptides of 59,000 and 61,000 apparent molecular weight were the most prominent products synthesized in minicells containing the hybrid plasmids. Analysis of the effects of deletions generated by a restriction endonuclease identified a region of DNA immediately adjacent to trg as the putative gene coding for the two polypeptides. Studies with whole cells and minicells showed that the 59,000-dalton polypeptide is a periplasmic protein. Analysis by limited proteolysis indicated that the two polypeptides are related, and a number of observations support the notion that the 61,000-dalton protein is a precursor form of the 59,000-dalton mature exported protein. The identification and characterization of a protein, in addition to Trg, which is produced by a gene in close proximity to terC emphasizes the fact that the region does contain intact and active genes.  相似文献   

19.
Deletions in the tet genes derived from Tn10 were formed from different tet::Tn5 insertion mutations by removing DNA sequences located between a HindIII site in Tn5 and a HindIII site adjacent to the tet genes. Tetracycline-sensitive point mutations were mapped in recombination tests with the deletions and were thus aligned with the genetic and physical map of the tet region. Plasmids carrying point mutations were tested for complementation with derivatives of pDU938, a plasmid carrying cloned tet genes derived from Tn10 which had been inactivated by Tn5 insertions. Complementation occurred between promoter-proximal tet point mutations and distal tet::Tn5 insertions, suggesting the existence of two structural genes, tetA and tetB. These results, together with the analysis of polypeptides in minicells harboring pDU938tet::Tn5 mutants, suggested that tetA and tetB are expressed coordinately in an operon. The tetB gene encodes the previously characterized 36,000-dalton cytoplasmic membrane TET protein, but the product of tetA was not identified. Point mutations in either tetA or tetB led to the defective expression of the resistance mechanism involving tetracycline efflux. It is suggested that the tetA and tetB products interact cooperatively in the membrane to express resistance.  相似文献   

20.
The histidine utilization (hut) genes from Klebsiella aerogenes were cloned in both orientations into the HindIII site of plasmid pBR325, and the two resulting plasmids, pCB120 and pCB121, were subjected to mutagenesis with Tn1000. The insertion sites of Tn1000 into pCB121 were evenly distributed throughout the plasmid, but the insertion sites into pCB120 were not. There was a large excess of Tn1000 insertions in the "plus" or gamma delta orientation in a small, ca. 3.5-kilobase region of the plasmid. Genetic analysis of the Tn1000 insertions in pCB120 and pCB121 showed that the hutUH genes form an operon transcribed from hutU and that the hutC gene (encoding the hut-specific repressor) is independently transcribed from its own promoter. The hutIG cluster appears not to form an operon. Curiously, insertions in hutI gave two different phenotypes in complementation tests against hutG504, suggesting either that hutI contains two functionally distinct domains or that there may be another undefined locus within the hut cluster. The set of Tn1000 insertions allowed an assignment of the gene boundaries within the hut cluster, and minicell analysis of the polypeptides expressed from plasmids carrying insertions in the hut genes showed that the hutI, hutG, hutU, and hutH genes encode polypeptides of 43, 33, 57, and 54 kilodaltons, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号