首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 326 毫秒
1.
Abstract— Acid 4-methylumbelliferyl β- d -galactosidase activity from autopsied I-cell disease brain and spleen tissues was 28% and 35% respectively of normal activity. Acid β- d -gatactosidase (β- d -galactoside galactohydrolase, EC 3.2.1.23) from two I-cell disease brains demonstrated a 5-fold increase over normal for the proportion of enzyme activity which did not adsorb to Concanavalin A-Sepharose 4B, while acid β- d -galactosidase from two I-cell disease spleens demonstrated a 21–35-fold increase in the proportion of unadsorbed enzyme activity. Normal and I-cell disease acid β- d -galactosidase present in crude brain and spleen supernatant fluids and in preparations partially purified on Concanavalin A-Sepharose 4B had similar apparent K m values with respect to 4-methylumbelliferyl β- d -galactopyranoside and GM1-ganglioside. Isoelectric focusing profiles of normal and I-cell disease acid β- d -galactosidase from crude brain and spleen-supernatant fluids and partially purified preparations were similar. Neuraminidase treatment and subsequent isoelectric focusing of the partially purified normal and I-cell disease enzyme preparations from brain and spleen revealed increases in the proportion of I-cell β- d -galactosidases found at neutral pH values, suggesting that the electrophoretic variations observed for the I-cell enzymes may not be attributed solely to changes in sialic acid composition.  相似文献   

2.
Isoelectric focusing of the acid beta-D-galactosidases (beta-D-galactoside galactohydrolase, EC 3.2.1.23) in normal crude liver supernatant fluids demonstrated multiple isoelectric forms in the pH range 4.58-5.15, while corresponding I-cell disease samples showed an absence of isoelectric forms in the pH range 4.99-5.15. Concanavalin A-Sepharose 4B chromatography of the I-cell disease mutant C.A. demonstrated a 31% and 37% decrease in the binding of 4-methyl-umbelliferyl-beta-D-galactosidase and GM1 beta-D-galactosidase activities, respectively, when compared to normal samples. Isoelectric focusing profiles of the concanavalin A-Sepharose 4B alpha-methyl-D-mannoside effluents containing normal and I-cell disease acid beta-D-galactosidase were generally similar, but the unadsorbed I-cell disease enzyme from concanavalin A-Sepharose 4B demonstrated more activity in the pH range 4.21-4.49 than normals. Normal and I-cell disease acid beta-D-galactosidase "A" and "B", separated by gel column chromatography were found to have similar properties with respect to apparent molecular weights pH vs. activity profiles and apparent Km values for the 4 methylumbelliferyl-beta-D-galactopyranoside, GM1-ganglioside and asialofetuin (ASF) substrates. However, the apparent V values for the ICD samples were consistently reduced when compared to the results obtained with the corresponding normal fractions. The greatest decreases in apparent V were obtained for acid beta-D-galactosidase activities in I-cell disease crude supernatant fluids, and for the separated I-cell disease "B" enzyme. The differences in the isoelectric focusing profiles, the altered binding to concanavalin A-Sepharose 4B, and the reduced V values with natural and synthetic substrates may be related to changes in carbohydrate composition of I-cell disease acid beta-D-galactosidase.  相似文献   

3.
R Steinherz  N Makov  R Narinsky  B Meidan  G Kohn 《Enzyme》1984,32(2):126-130
I-cell fibroblasts can accumulate cystine at levels comparable to those seen in homozygous cystinotic fibroblasts. Cystine accumulation in cystinosis is accounted for cystine clearance defect in situ. To unravel the question whether the same clearance defect or two different mechanisms cause cystine accumulation in I-cell disease, we used the cystine loading technique upon exposure of skin fibroblasts to radioactive cystine dimethyl ester. Normal, cystinotic and I-cell fibroblasts were exposed to radioactive cystine dimethyl ester, and the clearance of the generated radioactive cystine was measured. Cystinotic cells showed a marked defect in cystine clearance in situ, as compared to normal fibroblasts. In I-cell fibroblasts, we observed slow hydrolysis of cystine dimethyl ester to cystine, indicating low esterase activity, but no defect in clearance of the generated cystine. Cysteine production from the exogenous cystine dimethyl ester, presumably by cytoplasmic hydrolysis of the generated cystine, is normal in I-cell fibroblasts. Thus, our results indicate that, unlike cystinosis, there is no cystine clearance defect in situ for cystine in I-cell disease, and probably unrelated mechanisms cause cystine storage in cystinosis and I-cell disease.  相似文献   

4.
Fibroblasts from I-cell disease, a genetically-determined lysosomal storage disease, are shown to contain large amounts of phase-dense lysosomes. These lysosomes accumulated acridine orange and were specifically labeled with antibodies to arylsulfatase A. In normal skin fibroblasts the number of arylsulfatase-containing lysosomes was considerably lower. By immunocytochemistry, metabolic labeling and enzyme assay, the arylsulfatase A in I-cell fibroblasts was shown to be synthesized, stored and secreted at a level that was several-fold higher than that present in heterozygous I-cell or normal fibroblasts. Arylsulfatase A in I-cell fibroblasts differed from arylsulfatase in normal fibroblasts by the absence of endoglycosidase H-sensitive phosphorylated oligosaccharides. These findings indicate that arylsulfatase A in I-cells is targeted to lysosomes by a mechanism that does not appear to involve the phosphorylated mannose marker.  相似文献   

5.
The residual beta-D-galactosidase activity (10% of normal) present in an autopsy sample of liver derived from an I-cell patient has been characterized. The pH optima for both I-cell and normal acid 4-methylumbelliferyl beta-D-galactoside activities were 4.35. The adsorption and elution profiles of the I-cell enzyme from Con A-Sepharose were similar to those of normal liver beta-D-galactosidase. Although starch gel electrophoresis revealed the presence of beta-D-galactosidase A and B in I-cell disease liver, the A band was more diffuse and migrated less anodally than the A band from normal liver. The electrophoretic mobilities of both I-cell and normal beta-D-galactosidase A appeared to decrease after treatment with neuraminidase. Kinetic studies of the I-cell and normal level beta-D-galactosidase demonstrated similar apparent Km values with respect to the 4-methylumbelliferyl beta-D-galactoside and Gm1 ganglioside, whereas the Vmax values obtained for the I-cell enzyme were 10- to 12-fold lower than those of the normal enzyme for both substrates.  相似文献   

6.
A characteristic of the human lysosomal disorder I-cell disease is an abnormal excretion of most lysosomal hydrolases, including beta-N-acetyl-D-glucosaminidase (EC 3.2.1.30; beta-hexosaminidase) by cultured skin fibroblasts. Treatment of I-cell cultures with cycloheximide or tunicamycin demonstrated that (1) I-cell fibroblasts rapidly excrete all newly synthesized beta-hexosaminidase, (2) two qualitatively distinct pools of beta-hexosaminidase isoenzymes exist inside I-cell fibroblasts, one of which is a rapid-turnover excretory pool, and (3) the induction of an abnormal glycosylation of beta-hexosaminidase by tunicamycin in normal or I-cell fibroblast cultures does not affect subsequent excretion of the enzyme.  相似文献   

7.
Sphingolipid composition in both gray and white matter of a patient with I-cell disease was normal except for the higher proportion.of GMI-ganglioside in gray and white matter. In the patient's liver and kidney there was a significant accumulation of ceramide dihexoside and ceramide trihexoside and of sulphatide in kidney. Non-lipid hexosamine and sialic acid concentration in brain was increased 1.2-1.5 times above normal. Recovery of myelin from I-cell's white matter was 80-100%, suggesting that demyelination, if present, is minimal. Myelin lipid and myelin specific glycoprotein patterns were normal. Except for β-galactosidase activity the activity of other brain lysosomal enzymes were within the normal range. This finding was similar to that of Hurler's syndrome. Only β-galactosidase activity was reduced to less than 10% of normal in the patient's brain. To examine the possible metabolic significance of β-galactosidase deficiency in I-cell disease the physical characteristics of this enzyme, isolated from tissues from I-cell, Hurler and control patients, were compared using isoelectric focusing, Con A-Sepharose and Sephadex G-150 chromatography. The isoelectric point and the binding affinity of I-cell β-galactosidase with Con A-Sepharose was comparable to normal. However, the isoenzyme patterns of brain and liver I-cell β-galactosidase with Sephadex G-150 gel filtration revealed decreased acid β-galactosidase. Effects of the addition of sodium chloride on each fraction of β-galactosidase isoenzymes isolated from I-cell tissues were markedly different from controls, whereas the pH optimum of these enzymes were similar to normal. These enzyme characteristics in I-cell tissues were different from normal and Hurler's syndrome. These findings suggest that β-galactosidase deficiency in I-cell disease is a more specific phenomenon rather than secondary inhibition as found in the mucopolysaccharidoses and thus may have an important role for the pathogenesis of brain damage and disease occurrence.  相似文献   

8.
Cultured fibroblasts from a 46,XY male with an atypical form of mucolipidosis II (I-cell disease) had two distinct phenotypes. One population of these fibroblasts had the morphological and biochemical features characteristic of I-cell disease, while the remaining cells were indistinguishable from normal fibroblasts. Direct evidence that the patient was a mosaic, having two cell populations, was provided by the establishment of pure, stable clones of both wild type and I-cell fibroblasts from each of two biopsies obtained several months apart. Additionally, it was shown that the I-cell fibroblasts lacked UDP-N-acetylglucosamine:lysosomal enzyme N-acetylglucosaminylphosphotransferase while the morphologically normal cells contained levels of this enzyme just below or at the lower end of the normal range.  相似文献   

9.
(+)--Cyanidanol, a water-soluble flavonoid, when added to cultured skin fibroblasts of a patient with I-cell disease raised the intracellular concentration of beta-galactosidase but did not affect the distribution of arylsulfatase. A, alpha-mannosidase or beta-glucuronidase. The elevated accumulation of 35SO4 by I-cell, Hunter and Maroteaux-Lamy fibroblasts was decreased by the addition of (+)--cyanidanol to the culture medium, but the degradation of previously labeled, intracellular glycosaminoglycans was not. It is concluded that (+)--cyanidanol does not produce a biochemical correction of the enzymic abnormalities existing in I-cell fibroblasts.  相似文献   

10.
We previously reported that I-cell disease lymphoblasts maintainnormal or near-normal intracellular levels of lysosomal enzymes,even though N-acetylglucosamine-1-phosphotransferase activityis severely depressed or absent (Little et al., Biochem. J.,248, 151–159, 1987). The present study, employing subcellularfractionation on colloidal silica gradients, indicates thatboth light and heavy lysosomes isolated from I-cell diseaseand pseudo-Hurler polydystrophy lymphoblasts possess normalspecific activity levels of N-acetyl-ß-D-hexosaminidase,-D-mannosidase and ß-D-glucuronidase. These currentfindings are in contrast to those of cultured fibroblasts fromthe same patients, where decreased intralysosomal enzyme activitiesare found. Column chromatography on Ricinus communis revealedthat N-acetyl-ß-D-hexosaminidase in both heavy andlight I-cell disease lysosomal fractions from lymphoblasts possessesan increased number of accessible galactose residues (30–50%)as compared to the enzyme from the corresponding normal controls.Endo-ß-N-acetylglucos-aminidase H treatment of N-acetyl-ß-D-hexosaminidasefrom the I-cell lysosomal fractions suggests that the majorityof newly synthesized high-mannose-type oligosaccharide chainsare modified to complex-type carbohydrates prior to being transportedto lysosomes. This result from lymphoblasts differs from previousfindings with fibroblasts, where N-acetyl-ß-D-hexosaminidasefrom I-cell disease and pseudo-Hurler polydystrophy lysosomesexhibited properties associated with predominantly high-mannose-typeoligosaccharide chains. The current results imply that differentcell types may modify the carbohydrate side chains of lysosomalenzymes in a differential manner, and that selected cell typesmay also employ mechanisms other than the mannose-6-phosphatepathway for targeting lysosomal enzymes to lysosomes. I-cell disease lymphoblasts lysosomes mannose-6-phosphate oligosaccharide chains pseudo-Hurler polydystrophy  相似文献   

11.
A pregnancy from a family in risk of I-cell disease was monitored. The fetus was diagnosed as having I-cell disease based on the findings that (1) lysosomal enzyme activities except for acid phosphatase and alpha glucosidase were clearly elevated in amniotic fluid and were reduced in cultivated amniotic fluid cells, and (2) cytoplasmic inclusions were seen in cultivated amniotic cells by phase contrast microscopy. The accuracy of prediction was confirmed by cultured skin fibroblast of the aborted fetus.  相似文献   

12.
Skin fibroblast cultures from patients with I-cell disease (mucolipidosis II) are characterized by multiple lysosomal enzyme deficiencies The present studies deal with the consequences of these deficiencies with respect to the metabolism of plasma low-density lipoproteins. Degradation of the protein moiety was defective in I-cells compared with control cells, but the binding and internalization of low density lipoprotein were much less affected. Measurements of low-density lipoprotein degradation in homogenates demonstrated directly for the first time a deficiency of acid proteinase activity in I-cell fibroblasts. Comparison of results in 6-h incubations with those in 24-h incubations showed accumulation of intracellular low-density lipoprotein in I-cell fibroblasts and an accelerating rate of degradation, possibly attributable to intracellular accumulation of low-density lipoprotein substrate. The significance of these findings with respect to low-density lipoprotein metabolism in vivo is discussed.  相似文献   

13.
Human lymphoblast and fibroblast cell lines from a patient with I-cell disease and normal individuals were characterized with respect to certain properties of UDP-N-acetylglucosamine:lysosomal enzyme precursor N-acetylglucosamine phosphotransferase. The enzyme isolated from normal lymphoblast and fibroblast cell lines expressed similar kinetic properties, substrate specificities and subcellular localizations. Coincident with the severe reduction of N-acetylglucosamine phosphotransferase activity in both I-cell fibroblast and lymphoblast cell lines, there was an increased secretion of several lysosomal enzymes compared to normal controls. Subsequent examination of N-acetyl-beta-D-hexosaminidase secreted by the I-cell lymphoblasts demonstrated a significant increase in adsorption of the I-cell enzyme to Ricinus communis agglutinin, a galactose-specific lectin. However, the I-cell lymphoblasts did not exhibit the significant decrease in intracellular lysosomal activities seen in I-cell fibroblasts. Our results suggest that lymphoblasts not only represent an excellent source for the purification of N-acetylglucosamine phosphotransferase, but in addition, represent a unique system for studying alternate mechanisms involved in the targeting of lysosomal enzymes.  相似文献   

14.
Mucolipidosis II (ML II), also called I-cell disease, is a unique lysosomal storage disease caused by deficient activity of the enzyme N-acetylglucosamine-1-phosphotransferase, which leads to a failure to internalize enzymes into lysosomes. We report on a colony of domestic shorthair cats with ML II that was established from a half-sibling male of an affected cat. Ten male and 9 female kittens out of 89 kittens in 26 litters born to clinically normal parents were affected; this is consistent with an autosomal recessive mode of inheritance. The activities of three lysosomal enzymes from affected kittens, compared to normal adult control cats, were high in serum (11-73 times normal) but low in cultured fibroblasts (9-56% of normal range) that contained inclusion bodies (I-cells), reflecting the unique enzyme defect in ML II. Serum lysosomal enzyme activities of adult obligate carriers were intermediate between normal and affected values. Clinical features in affected kittens were observed from birth and included failure to thrive, behavioral dullness, facial dysmorphia, and ataxia. Radiographic lesions included metaphyseal flaring, radial bowing, joint laxity, and vertebral fusion. In contrast to human ML II, diffuse retinal degeneration leading to blindness by 4 months of age was seen in affected kittens. All clinical signs were progressive and euthanasia or death invariably occurred within the first few days to 7 months of life, often due to upper respiratory disease or cardiac failure. The clinical and radiographic features, lysosomal enzyme activities, and mode of inheritance are homologous with ML II in humans. Feline ML II is currently the only animal model in which to study the pathogenesis of and therapeutic interventions for this unique storage disease.  相似文献   

15.
Summary Fibroblasts derived from patients with I-cell disease have been shown to accumulate many natural substrates including a three to fourfold increase in sialic acid content compared to that found in normal fibroblasts. This diverse accumulation of storage material is due to a massive deficiency of multiple lysosomal hydrolases as they are preferentially excreted into the culture fluid. There is evidence that the I-cell plasma membrane itself is abnormal with respect to certain transferase activities and in its sensitivity to freezing and Triton X-100. In this study, we have shown that a neuraminidase-sensitive substrate, and perhaps others in I-cell fibroblasts, contribute to an increased electronegativity of the I-cell fibroblast surface and to the cells' sensitivity to freezing. We also found that neuraminidase treatment of I-cell fibroblasts before preservative freezing in liquid nitrogen enables the cells to adapt more easily to subculture upon thawing. This project was supported in part by National Institutes of Health (NIH) BRSG Grant RR-05493, NIH Grant 1-R01-HD-11453-01-A1, National Science Foundation Grant PCM 77-05733, and Maternal and Child Health Service Project 417. Georgirene D. Vladutiu is the recipient of Research Career Development Award 1K04 HD 00312-01A1 from the National Institutes of Health.  相似文献   

16.
The carboxylic ionophore, monensin, blocks the migration of glycoprotein-containing vesicles from the Golgi region to the plasma membrane in fibroblasts resulting in an accumulation of secretory products in the Golgi cisternae. Treatment of cultured I-cell fibroblasts with monensin (0.5 muM) decreased the abnormal excretion of beta-hexosaminidase to 40% of untreated cultures within 15 min. A corresponding intracellular accumulation of the enzyme to greater than 200% of untreated cultured by 24 h was also observed. A small intracellular accumulation and slightly enhanced excretion of beta-hexosaminidase occurred in treated normal fibroblasts cultures. The intra- and extra-cellular distribution of newly synthesized beta-hexosaminidase in both monensin-treated normal and I-cell fibroblasts were electrophoretically indistinguishable from the four bands characteristic of I-cell intracellular beta-hexosaminidase. The excreted enzyme from both cultures was found to be a low- or no-uptake form. This form of beta-hexosaminidase may have been excreted from a secondary route preceding the site of the monensin effect. The similar findings in monensin-treated normal and I-cell cultures suggest that the subcellular site of the biochemical defect in I-cell disease is at a location after the site of the monensin effect i.e. late in the Golgi region or at a post-Golgi-region location.  相似文献   

17.
G D Vladutiu 《Life sciences》1979,24(25):2369-2376
The activities of most lysosomal enzymes are elevated in the culture fluid of skin fibroblasts derived from patients with I-cell disease with a corresponding reduction in the intracellular activities when the cells are cultured at 37°C. When I-cell fibroblast cultures are incubated at 27°C for 8–24 hr, the β-D-N-acetylglucosaminidase (EC 3.2.1.30) activity accumulated in the culture fluid is reduced to approximately 25% of the activity in 37°C control cultures without a corresponding change in intracellular activity. No significant effect of temperature is observed on the intra- and extracellular distribution of β-D-N-acetylglucosaminidase in non-I-cell fibroblast cultures. These findings suggest the existence of two lysosomal enzyme pools in I-cell fibroblasts, one of which is temperature-dependent and destined for excretion while the other remains intracellular and appears to be unaffected by temperature.  相似文献   

18.
I-cell disease (mucolipidosis II) is presented as a model for endo- and exo-cytosis phenomena in man. A hypothesis is presented for the structure of the carbohydrate recognition site on fibroblast-derived beta-D-N-acetylhexosaminidase that may extend to the other affected hydrolases and that is responsible for specific uptake of the enzyme by fibroblasts. The proposed neuraminidase deficiency in I-cell disease is discussed in the light of its significance in influencing the final sugar sequence in the carbohydrate structure of the recognition site.  相似文献   

19.
The uptake and degradation of GM1 ganglioside (GM1) and asialoGM1 ganglioside (GA1) were studied in cultured fibroblasts from normal individuals and patients with beta-galactosidase deficiency, using the lipid-loading test. The glycolipids were incorporated from the media into the fibroblasts and the terminal galactose was hydrolyzed in normal cells. The hydrolysis rates of GA1 were 80-86% of normal on the 3rd day after loading, while GM1 was hydrolyzed slowly; 35-54% on the 14th day. In infantile GM1 gangliosidosis and I-cell disease, little GM1 and GA1 was hydrolyzed on any day of culture, while fibroblasts from patients with adult GM1 gangliosidosis, Morquio disease type B and galactosialidosis hydrolyzed the lipids at nearly normal rates. The intracellular accumulation of the glycolipids, on the basis of protein content, was abnormally high in the case of infantile GM1 gangliosidosis and I-cell disease, but normal in the other disorders examined. These observations indicate that the in situ metabolism of GM1 and GA1 is probably normal in fibroblasts from patients with adult GM1 gangliosidosis, Morquio disease type B and galactosialidosis, although in vitro beta-galactosidase activities in these disorders are very low. The results are compatible with findings that GM1 and GA1 do not accumulate in the somatic organs of patients with adult GM1 gangliosidosis and galactosialidosis. In I-cell disease, however, the results of the loading test did not agree with the finding that there is little accumulation of glycolipids in postmortem tissues.  相似文献   

20.
Cultured fibroblasts from three unrelated patients with I-cell disease (mucolipidosis II) have a 3 to 4 fold increase in total sialic acid when compared to control fibroblasts. Sialic acid levels in a number of other lysosomal disorders, i.e., mucopolysaccharidosis I, II, III, VI, metachromatic leukodystrophy, GM1 gangliosidosis, mannosidosis, Gaucher's and Sandhoff's disease are within the normal range suggesting that this is a finding specific for I-cells. Additionally, sonicates of cultured fibroblasts from controls were shown to have an acid sialidase capable of removing sialic acid from added fetuin at pH 4.2 in 0.05M acetate buffer. In contrast, I-cell fibroblasts, within the limits of the assay, lack this enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号