首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The curves of UV (254 nm) induced pyrimidine dimers (endonuclease sensitive sites) vs. photoreactivating blacklight (365 nm) dose for cultured chick embryo fibroblasts reveal several new features. When the cells are incubated in the dark at 37 degrees following UV (254 nm) treatment, the efficiency of subsequent photorepair increases for the first few hours post-UV. The efficiency then remains approximately constant for several hours. Photorepair data obtained during this later period were plotted as the logarithm of dimer-enzyme complexes available for photoreactivation vs. blacklight (365 nm) dose. For a fixed damaging UV (254 nm) dose, the resulting curve has a shoulder of approximately 6-10 kJ/m2 followed by a straight line portion with a slope of magnitude about 1.5 X 10(-4) m2/J for UV doses up to 15 J/m2. For higher UV doses the shoulder remains about the same, but the slope decreases in magnitude. The shoulder is interpreted to indicate that a light-dependent step is necessary to activate the enzyme. The decrease in slope with increased UV dose together with some split photoreactivation dose experiments suggests that some site-to-site motion and multiple site function of the photorepair enzyme molecules may come into play at the higher levels of damage, but the evidence indicates that these complications are relatively unimportant at low UV doses.  相似文献   

2.
T M Koval 《Mutation research》1986,166(2):149-156
These studies demonstrate that the TN-368 lepidopteran insect cell line, which is extremely resistant to the lethal effects of ionizing radiation, is also quite resistant to 254-nm ultraviolet light. While resistance to ionizing radiation in TN-368 cells has been associated with superior DNA repair processes, previous findings have indicated no correlation between survival ability and amount of unscheduled DNA synthesis in response to ultraviolet light. The present studies were undertaken to define the TN-368 ultraviolet light survival response, the ability of the cells to repair UV-induced damage by photoreactivation, the capacity of the cells to undergo UV repair during liquid holding in the dark, and the relationship between photoreactivation and liquid-holding recovery. Survival was assayed by colony formation. 254-nm irradiations were performed using germicidal lamps and photoreactivation was accomplished using black lights. Photoreactivable sectors of UV damage at 50 and 10% survival are 0.65 and 0.68, respectively. Survival responses, both with and without photoreactivation, have a small initial shoulder followed by an exponential region, and finally the curves continue to decrease but with decreasing slope. F0, Fq, and extrapolation number for the exponential portion of the curves are 77.5 J/m2, 16.8 J/m2, and 1.7 for non-photoreactivated cells and 234 J/m2, 56.1 J/m2, and 1.7 for those exposed to photoreactivating light. In the primarily exponential survival region, the fluences required to produce equivalent levels of survival in photoreactivated cells range from approximately 10.8 to 23.3 times as great as cells receiving UV light alone. The maximum survival enhancement of cells maintained under liquid-holding conditions over cells plated immediately following 100-400 J/m2 irradiations appears to be about 2-fold and occurs at 3-6 h of holding. Photoreactivation alone has a greater enhancement of survival than when photoreactivation follows liquid holding, but when liquid holding follows photoreactivation, the enhancement surpasses that of photoreactivation alone.  相似文献   

3.
Ultraviolet (UV) radiation-induced DNA damage leading to entomopathogenic fungal inactivation is commonly measured by viability counts. Here we report the first quantification of UV-induced cyclobutane pyrimidine dimers (CPD) in DNA of the entomopathogenic fungus, Beauveria bassiana. Changes in the mobility of UV-C irradiated DNA were resolved with CPD specific bacteriophage T4 endonuclease V and alkaline agarose gel electrophoresis. The maximum number of CPD formed in B. bassiana DNA in vitro by UV-C irradiation was 28 CPD/ 10 kb after 720 J/m2 dose. The maximum number of CPDs formed in B. bassiana conidiospore DNA irradiated in vivo was 15 CPD/10 kb after 480 J/m2 dose and was quantified from conidiospores that were incubated to allow photoreactivation and nucleotide excision repair. The conidiospores incubated for photoreactivation and nucleotide excision repair showed decreased number of CPD/10 kb DNA and a higher percent survival of conidiospore populations than conidiospores not allowed to repair.  相似文献   

4.
DNA repair systems in the phototrophic bacterium Rhodobacter capsulatus   总被引:2,自引:0,他引:2  
UV irradiation and mitomycin C exposure trigger a protease-activity-dependent inhibition of cell division in Rhodobacter capsulatus, which begins about 2 h after the treatment is applied. UV irradiation also induces a dose-dependent mutagenesis with a maximal rate between 5 and 10 J m-2, with increased synthesis of a protein of Mr approximately 30,000 between 2 and 3 h after UV irradiation. In addition, R. capsulatus has an efficient photoreactivation system that reverses the lethal effects of UV irradiation in the presence of intense visible light.  相似文献   

5.
The kinetics of photoreversal of UV-induced dimers in the DNA of early passage chick embryo fibroblasts was studied by monitoring disappearance of UV-endonuleae-sensitive sites. Photorepair was found to increase in efficiency when cells were incubated in the dark for several hours at 37°C following the dimer-inducing short-wavelength (254 nm) UV treatment, but prior to the photoreactivating black light (365 nm). Folllowing a UV dose of 10 J/m2 it took at least 4 h in the dark to saturate this effect. This UV dose inserts roughly 2.4 dimer/107 daltons of DNA. Dark repair removes about 0.08 dimers /h/107 daltons. After 6 h in the dark, exposure to black light removes an additional 1.4 dimers /107 daltons leaving about 0.5 dimers unaffected by this treatment. After saturation of the dark effect, the amount of photoreactivation depends only on total black light fluence and not on fluence rate for the range of rates studied. This indicates that during 30 min, the maximum time of black light exposure, no appreciable reattachment of the photorepair molecule to additional unrepaired dimer sites occurs. We estimate that the number of effective photorepair molecules per chick chick cell is at least of the order of 2 × 105.  相似文献   

6.
Host-cell reactivation (HCR) of UV-irradiated herpes simplex virus type 2 (HSV-2), capacity of UV-irradiated cells to support HSV-2 plaque formation and UV-enhanced reactivation (UVER) of UV-irradiated HSV-2 were examined in fibroblasts from 4 patients with Cockayne syndrome (CS), 5 with xeroderma pigmentosum and 5 normals. All UV-survival curves for HSV-2 plaque formation showed 2 components. HCR was similar to normal for the XP variant strain and the 2 CS strains tested, but substantially reduced in the 4 excision-deficient XP strains. The capacity of UV-irradiated fibroblasts to support HSV-2 plaque formation was determined by UV-irradiating fibroblast monolayers with various doses of UV and 48 h later, infecting the monolayers with unirradiated HSV-2. The D37 values for the delayed-capacity curves so obtained were in the range 8.6-12.4 J/m2 for the normal strains, 2.8-3.2 J/m2 for the CS strains, 6.7 J/m2 for an XP variant strain and between 0.3 and 1.5 for the XP excision-deficient strains tested. These results indicate that delayed capacity for HSV-2 plaque formation is a more sensitive assay than HCR in the detection of cellular DNA-repair deficiency for XP and CS. For the examination of UVER, fibroblasts were irradiated with various UV doses and subsequently infected with either unirradiated or UV-irradiated HSV and scored for plaque formation 2 days later. UVER expression was maximum when the delay between UV-irradiation of the cells and HSV infection was 48 h. The magnitude of UVER expression was also found to be dependent on the UV dose to the cells and increased with increasing UV dose to the virus. Using a UV dose to the virus resulting in a plaque survival of about 10(-2) on unirradiated cells, the the maximum UVER factor had a mean value of 1.3 for the normal strains following a dose of 15 J/m2 to the cells. Somewhat higher UVER values were found for all the patient strains tested and resulted from lower UV doses to the cells than for normal strains. Maximum UVER factors for the CS strains ranged from 2.2 to 3.3 at a dose of 5 J/m2 to the cells, for the XP excision-deficient strains; 2.1 to 2.6 at doses of 0.5 to 2.5 J/m2 to the cells and for the XP variant strain tested; 2.5 at UV dose of 10 J/m2 to the cells.  相似文献   

7.
Ultraviolet light-induced inhibition of small nuclear RNA synthesis   总被引:1,自引:0,他引:1  
Two apparently distinct types of inhibition of the synthesis of U1, U2, U3, U4, and U5 small nuclear RNA, induced by ultraviolet (UV) radiation, have been described before: immediate and delayed. Our present observation can be summarized as follows: a) neither the immediate nor the delayed inhibition appear to be mediated by the formation of cyclobutane pyrimidine dimers, since they were not prevented by photoreactivating light, in ICR 2A frog cells; b) the inhibition of U1 RNA synthesis, monitored in HeLA cells within the first few minutes after irradiation, extrapolated to a substantial suppression at time zero of postirradiation cell incubation, providing further support for the proposal that the immediate inhibition is a reaction separate from the delayed UV light-induced inhibition of U1 RNA synthesis; c) the transition from the pattern of the immediate inhibition to that of the delayed inhibition (disappearance of the UV-resistant fraction of U1 RNA synthesis and increased rate of inhibition) occurred gradually, without an apparent threshold, within the first 2 hr of incubation after irradiation; and d) the incident UV dose that resulted in a 37% level of residual U1 RNA synthesis (D37) during the delayed inhibition was about 7 J/m2, with an apparent UV dose threshold, and was about 60 J/m2 for the immediate inhibition.  相似文献   

8.
Summary The survival of UV-irradiated cholera phage e5 was found to increase when the host cells, Vibrio cholerae MAK757, were exposed to a low dose of UV irradiation before phage infection (Weigle reactivation), indicating the existence of a UV-inducible DNA repair pathway (SOS repair) in V. cholerae MAK757. The induction signal generated by UV irradiation was transient in nature and lasted about 20–30 min at 37°C. Maximal weigle reactivation of the phage was obtained when the host cells were irradiated with a UV dose of 16 J/m2. V. cholerae MAK757 was also found to possess efficient photoreactivation and host cell reactivation of UV-damaged DNA in phage e5.  相似文献   

9.
10.
光复活对紫外线照射大肠杆菌后突变率的影响   总被引:1,自引:1,他引:0  
通过改变UV照射时间、照射后的操作速度、光复活时的温度、时间和光强度,以光复活和暗处理后细胞存活数的比值为依据,研究了不同条件下E.coli受UV照射后的光复活效应。并以E.coli对5μg/ml链霉素抗性突变率为指标,比较了不同剂量UV照射后光复活和暗处理对E.coli突变率的影响。结果表明:光复活效应在温度10℃时最明显,且与照射时间、照射后的操作速度、光复活时间和光强度成正相关;在中、低剂量UV照射后,暗处理较光复活后E.coli对链霉素抗性突变率明显高,而在高剂量下,光复活则显著高于暗处理后的突变率。  相似文献   

11.
DNA-protein crosslinks (DPC) were measured following exposure to the solar UV wavelengths produced by a fluorescent sunlamp in ICR 2A frog cells and two solar UV-sensitive mutants derived from this cell line. Approx. 5-7 DPC per 10(10) dalton were induced in these cells by either 150 kJ/m2 of sunlamp UV greater than 315 nm plus photoreactivating light (PRL) or 10 kJ/m2 of sunlamp UV greater than 295 nm. The irradiated cells were then incubated for 0-24 h and the level of DPC measured using alkaline elution. It was found for the ICR 2A cells exposed to sunlamp UV greater than 315 nm that the level of DPC increased about 3-fold during a 2-h postirradiation incubation and then decreased. The mutant cell lines also showed an enhancement in the level of DPC following irradiation, although it was much less pronounced and the levels decreased much more rapidly. In a similar fashion, the level of DPC increased in ICR 2A cells exposed to sunlamp UV greater than 295 nm with more than a 5-fold enhancement after a 4-h incubation. Once again, the mutant cell lines showed an increase in the level of DPC that was smaller and more transient than the effect in the ICR 2A cells. These results suggests that this enhancement in DPC may be indicative of a process that plays a role in cellular survival following solar UV-irradiation.  相似文献   

12.
The kinetic and dose dependencies of the SOS-induction in E. coli (uvrA) cells exposed to UV light were investigated. Below 2 J/m2 the rate of the SOS-induction increased with dose. The maximal level of the SOS-response was proportional to the UV dose. Pyrimidine dimers were necessary for the induction. In the dose range 2-10 J/m2 the rate of the SOS-induction decreased with dose. The dose-response curve was non-linear. Pyrimidine dimers were not required for the induction. The nature of the molecular events leading to the SOS-induction at low and high doses was discussed.  相似文献   

13.
The mutabilities of normal and xeroderma pigmentosum variant (XP4BE) human fibroblasts by ultraviolet light (UV) were compared under conditions of maximum expression of the 6-thioguanine resistance (TGr) phenotype. Selection was with 20 micrograms TG/ml on populations reseeded at various times after irradiation. Approx. 6--12 days (4--8 population doublings), depending on the UV dose, were necessary for complete expression. The induced mutation frequencies were linear functions of the UV dose but the slope of the line for normal cells extrapolated to zero induced mutants at 3 J/m2. The postreplication repair-defective XP4BE cells showed a higher frequency of TGr colonies than normal fibroblasts when compared at equal UV doses or at equitoxic treatments. The induced frequency of TGr colonies was not a linear function of the logarithm of survival for either cell type. Instead, the initial slope decreased to a constant slope for survivals less than about 50%. The UV doses and induced mutation frequencies corresponding to 37% survival of cloning abilities were 6.7 J/m2 and 6.2 X 10(-5), respectively, for normal cells and 3.75 J/m2 and 17.3 X 10(-5) for the XP4BE cells. The lack of an observable increase in the mutant frequency for normal fibroblasts exposed to slightly lethal UV doses suggests that normal postreplication repair of UV-induced lesions is error-free (or nearly so) until a threshold dose is exceeded.  相似文献   

14.
Syrian hamster fetal fibroblasts (HFC) were examined for photolyase-induced break-sensitive sites after ultraviolet light (UV) exposure and growth. These sites, observed in excision-defective human xeroderma pigmentosum (XP) cells, are due to cleavage of the internal phosphodiester bond of UV-induced pyrimidine dimers. Excision-inefficient HFC acquired photolyase-induced break-sensitive sites during incubation after UV (10 J/m2). However, these were observed transiently, with a maximum of 5% of the pyrimidine dimers at 9 h post UV; by 18 h they were undetectable. Caffeine (1 mM) delayed the peak of photolyase-induced break-sensitive sites by 2 h. In human XP cells photolyase-induced break-sensitive sites accumulate to a plateau level of about 20% of the pyrimidine dimers. The present results extend to rodent cells the observation that cleavage of the internal phosphodiester bond of pyrimidine dimers may be an early step in their excision repair. Furthermore, the data suggest that photolyase-induced break-sensitive sites might be necessary for replication bypass at pyrimidine dimers.  相似文献   

15.
The influence of dimer removal through excision or photoreactivation on the kinetics of DNA synthesis, sedimentation profiles of DNA molecules and survival of cells was investigated in excision-deficient and excision-proficientEscherichia coli K-12 after a flux of 20 J m−2. In excision-deficient cells photoreactivation did not influence the kinetics of DNA synthesis for a long period and the sedimentation properties of DNA synthesized immediately after photoreactivation were influenced only slightly. However, survival was increased remarkably. In excision-proficient cells where dimers were removed through excision, the kinetics of DNA synthesis increased rapidly, normal-sized DNA molecules were synthesized 60 min after irradiation and survival was substantially higher than in the above-mentioned case. This can hardly be interpreted as a more complete repair of dimers by excision because the persistence of dimers in these cells did not significantly influence either the kinetics of DNA synthesis or normalization of DNA molecules and/or survival of cells. It is concluded that persisting dimers play an important role in excision-deficient but not in excision-proficient cells, that a non-dimer damage to DNA causes inhibition of DNA synthesis after UV and that this damage ia of primary importance for excision-proficient cells which can easily cope with persisting dimers.  相似文献   

16.
The respiratory adaptation (i.e., essentially mitochondrial biogenesis) in the excision repair-defective rad3-type mutants of Saccharomyces cerevisiae undergoing transition from the anaerobic to the aerobic state is found to be far more sensitive to 254-nm ultraviolet radiation (UV) than that of the RAD wild-type strain. We confirm that mitochondria of aerobic cells of a RAD strain lack the excision repair capacity of UV-induced pyrimidine dimers at all doses tested (1-15 J/m2). In contrast, in promitochondria of anaerobic cells of the wild-type strain excision repair appears to take place. This process is very efficient at low doses (at 0.5-5 J/m2 100% of the UV endonuclease-sensitive sites disappear), whereas at high doses its efficiency is reduced by about 50%. The promitochondrial excision repair of pyrimidine dimers appears to be under nuclear control since it is blocked in the rad2 mutant. Finally photoreactivation is found to be operating in nuclei, mitochondria and promitochondria.  相似文献   

17.
Van Baalen C 《Plant physiology》1968,43(10):1689-1695
The effects of UV irradiation (254 mμ) on a coccoid blue-green alga Agmenellum quadruplicatum, Strain PR-6, have been examined in terms of the survival curve and measurement of short time photosynthetic rates. From study of survival evidence has been found for a strong photoreactivation centered near 430 mμ. Measurements of photosynthetic rate suggest that there is a correlation between decay of photosynthesis and survival after UV exposure. The UV induced decay in photosynthetic activity is reversed by the identical photoreactivation conditions that increase the survival level. The photosynthetic data are interpreted as demonstrating a photoreactivation of photosynthesis in blue-green algae.  相似文献   

18.
A V Rekurbatski? 《Genetika》1989,25(11):2033-2038
In connection with the development of UV-induced mutagenesis in carp, the effects of UV-irradiation of sperms have been studied in the range of doses 0.3-40 J/m2. The irradiation did not cause reduced fertilization ability and cleavage delay. Small doses of irradiation (0.6 J/m2) produced stimulating effect on embryo survival, the larvae yield decreasing and the amount of aberrant anaphases increasing, as the doses are increased. LD50 is 6.0 J/m2 for embryonal period of carp development, photoreactivation increases it up to 23.5 J/m2. Correlation between embryo viability and their resistance to UV has been found (r = +0.68 +/- 0.20). Modification of the effect of sperms irradiation with caffeine has been also studied. Strengthening of lethal and cytogenetic effects was only observed in case when embryos were placed in the caffeine solution, prior to onset of the first DNA replication in the male pronucleus. This may indicate the existence of caffeine-dependent prereplicative repair in carp embryos.  相似文献   

19.
We compared dimer excision in viable and nonviable cells fractions separated from Escherichia coli B/r cultures exposed to ultraviolet (UV) irradiation. For cells grown on minimal medium with glycerol as a carbon source, both fractions from the irradiated (20 J/m2, 5% survival) culture excised 60 to 70% of the thymine dimers from prelabeled DNA within 120 min. This percentage was, within experimental error, the same as that obtained from unseparated cultures. When isolated viable and nonviable populations were given a second UV exposure (20 J/m2) both types of cells were again able to excise dimers. The UV survival curve for the isolated viable population indicates that these cells are no more sensitive to radiation than exponentially growing cells not previously exposed to UV. The extent of dimer excision after UV irradiation was also the same in viable and nonviable cells separated from cultures grown on a glucose minimal medium in which both populations excised about 85% of the dimers within 120 min. These results show that the extent of removal of pyrimidine dimer from deoxyribonucleic acid is not precisely correlated with survival of repair-competent bacterial cells after exposure to UV light.  相似文献   

20.
Various techniques of DNA immobilization onto nitrocellulose and nylon microporous membranes have been compared. Despite a strong primary adsorption of DNA onto these membranes during blotting procedures, poor retention of the target DNA and low hybridization signals are obtained after hybridization and washings. Covalent cross-linking of DNA upon UV irradiation leads to a quantitative immobilization of target DNA. Quantum yield of DNA photoimmobilization estimated for a single base in DNA is about 10(-4). UV irradiation dose sufficient for immobilization of DNA fragment of a known length can be calculated by the formula Ilc = (22.3 +/- 4.8) c/l, where l is the DNA fragment length (in base pairs), c is the DNA part (%) to be immobilized. The UV irradiation dose about 0.6-0.8 kJ/m2 is optimal for most hybridization experiments. Doses higher than 0.8-1 kJ/m2 may cause a loss in the hybridization efficiency. Under optimal immobilization conditions, hybridization signals increasing five-fold for nitrocellulose membranes and fifty-fold for uncharged nylon membranes as compared with baking these membranes in vacuum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号