首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PPARgamma ligands inhibit growth and induce apoptosis of various cancer cells. 4-Hydroxynonenal (HNE), a product of lipid peroxidation, inhibits proliferation and induces differentiation or apoptosis in neoplastic cells. The aim of this work was to investigate the effects of PPARgamma ligands (rosiglitazone and 15-deoxy-prostaglandin J2 (15d-PGJ2)) and HNE, alone or in association, on proliferation, apoptosis, differentiation, and growth-related and apoptosis-related gene expression in colon cancer cells (CaCo-2 cells). PPARgamma ligands inhibited cell proliferation (IC50 was 37.47+/-6.6 microM, for 15d-PGJ2, and 170.34+/-20 microM for rosiglitazone). HNE (1 microM) inhibited cell growth by 70%. Apoptosis was induced by 15d-PGJ2 and HNE and, to a minor extent, rosiglitazone. Differentiation was induced by rosiglitazone and by 15d-PGJ2, but not by HNE. PPARgamma ligands inhibited c-myc expression. HNE induced a transitory increase in c-myc expression and a subsequent down-regulation. HNE induced p21 expression, whereas PPARgamma ligands did not. Expression of the bax gene was increased by HNE and 15d-PGJ2, but not by rosiglitazone. No synergism or antagonism was found between HNE and PPARgamma ligands. Both apoptosis and differentiation induction may be responsible for the inhibition of proliferation by PPARgamma ligands; apoptosis and c-myc and p21 expression seem to be involved in the inhibition of proliferation by HNE.  相似文献   

2.
Peroxisome proliferator-activated receptor-gamma (PPARgamma) agonists such as the thiazolidinediones are insulin sensitizers used in the treatment of type 2 diabetes. These compounds induce adipogenesis in cell culture models and increase weight gain in rodents and humans. We have identified a novel PPARgamma ligand, LG100641, that does not activate PPARgamma but selectively and competitively blocks thiazolidinedione-induced PPARgamma activation and adipocyte conversion. It also antagonizes target gene activation as well as repression in agonist-treated 3T3-L1 adipocytes. This novel PPARgamma antagonist does not block adipocyte differentiation induced by a ligand for the retinoid X receptor (RXR), the heterodimeric partner for PPARgamma, or by a differentiation cocktail containing insulin, dexamethasone, and 1-methyl-3-isobutylxanthine. Surprisingly, LG100641, like the PPARgamma agonist rosiglitazone, increases glucose uptake in 3T3-L1 adipocytes. Such selective PPARgamma antagonists may help determine whether insulin sensitization by thiazolidinediones is mediated solely through PPARgamma activation, and whether there are PPARgamma-ligand-independent pathways for adipocyte differentiation. If selective PPARgamma modulators block adipogenesis in vivo, they may prevent obesity, lower insulin resistance, and delay the onset of type 2 diabetes.  相似文献   

3.
4.
Malignant astrocytomas are among the most common brain tumours and few therapeutic options exist. It has recently been recognized that the ligand-activated nuclear receptor PPARgamma can regulate cellular proliferation and induce apoptosis in different malignant cells. We report the effect of three structurally different PPARgamma agonists inducing apoptosis in human (U87MG and A172) and rat (C6) glioma cells. The PPARgamma agonists ciglitazone, LY171 833 and prostaglandin-J2, but not the PPARalpha agonist WY14643, inhibited proliferation and induced cell death. PPARgamma agonist-induced cell death was characterized by DNA fragmentation and nuclear condensation, as well as inhibited by the synthetic receptor-antagonist bisphenol A diglycidyl ether (BADGE). In contrast, primary murine astrocytes were not affected by PPARgamma agonist treatment. The apoptotic death in the glioma cell lines treated with PPARgamma agonists was correlated with the transient up-regulation of Bax and Bad protein levels. Furthermore, inhibition of Bax expression by specific antisense oligonucleotides protected glioma cells against PPARgamma-mediated apoptosis, indicating an essential role of Bax in PPARgamma-induced apoptosis. However, PPARgamma agonists not only induced apoptosis but also caused redifferentiation as indicated by outgrowth of long processes and expression of the redifferentiation marker N-cadherin in response to PPARgamma agonists. Taken together, treatment of glioma cells with PPARgamma agonists may hold therapeutic potential for the treatment of gliomas.  相似文献   

5.
The PTEN tumor suppressor gene modulates several cellular functions, including cell migration, survival, and proliferation [1] by antagonizing phosphatidylinositol 3-kinase (PI 3-kinase)-mediated signaling cascades. Mechanisms by which the expression of PTEN is regulated are, however, unclear. The ligand-activated nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma) [2] has been shown to regulate differentiation and/or cell growth in a number of cell types [3, 4, 5], which has led to the suggestion that PPARgamma, like PTEN [1, 6], could act as a tumor suppressor. PPARgamma has also been implicated in anti-inflammatory responses [7, 8], although downstream mediators of these effects are not well defined. Here, we show that the activation of PPARgamma by its selective ligand, rosiglitazone, upregulates PTEN expression in human macrophages, Caco2 colorectal cancer cells, and MCF7 breast cancer cells. This upregulation correlated with decreased PI 3-kinase activity as measured by reduced phosphorylation of protein kinase B. One consequence of this was that rosiglitazone treatment reduced the proliferation rate of Caco2 and MCF7 cells. Antisense-mediated disruption of PPARgamma expression prevented the upregulation of PTEN that normally accompanies monocyte differentiation and reduced the proportion of macrophages undergoing apoptosis, while electrophoretic mobility shift assays showed that PPARgamma is able to bind two response elements in the genomic sequence upstream of PTEN. Our results demonstrate a role for PPARgamma in regulating PI 3-kinase signaling by modulating PTEN expression in inflammatory and tumor-derived cells.  相似文献   

6.
7.
8.
The nuclear oncoprotein Myc is a pivotal regulator of several important biological processes, including cellular proliferation, differentiation, and apoptosis. Deregulated Myc expression is incompatible with terminal differentiation in a variety of cell types, including adipocytes. To understand how Myc inhibits adipogenesis, we analyzed the effect of Myc on the expression of genes characteristic of distinct phases of the hormonally induced adipogenic differentiation program in 3T3-L1 preadipocytes. We show that the early regulators, C/EBPbeta and C/EBPdelta, are induced normally in response to hormone in 3T3-L1 preadipocytes constitutively expressing Myc, but that expression of the downstream regulators, C/EBPalpha and PPARgamma2, and later markers of differentiation is suppressed. These data demonstrate that Myc specifically inhibits the terminal stages of the adipogenic program and suggest that Myc may act by blocking C/EBPbeta- and C/EBPdelta-directed activation of C/EBPalpha and PPARgamma2 expression, although the precise molecular mechanism is not understood. Surprisingly, a serum component(s) could override the Myc-induced differentiation block, suggesting that the ability of a cell to undergo terminal differentiation is governed by the action of both positive and negative factors. Since differentiation and proliferation are mutually exclusive events, this has important implications since it may be possible to force malignant cells along a differentiation pathway, thereby curbing their proliferative potential.  相似文献   

9.
The widespread occurrence of malignant tumors motivates great attention to finding and investigating effective new antitumor preparations. Such preparations include compounds of the vitamin E family. Among them, α-tocopheryl succinate (vitamin E succinate (VES)) has the most pronounced antitumor properties. In this review, various targets and mechanisms of the antitumor effect of vitamin E succinate are characterized. It has been shown that VES has multiple intracellular targets and effects, and as a result VES is able to induce apoptosis in tumor cells, inhibit their proliferation, induce differentiation, prevent metastasizing, and inhibit angiogenesis. However, VES has minimal effects on normal cells and tissues. Due to the variety of targets and selectivity of action, VES is a promising agent against malignant neoplasms. More detailed studies in this area can contribute to development of effective and safe chemotherapeutic preparations.  相似文献   

10.
11.
12.
Troglitazone and related compounds: therapeutic potential beyond diabetes   总被引:8,自引:0,他引:8  
Fujiwara T  Horikoshi H 《Life sciences》2000,67(20):2405-2416
Troglitazone and structurally related compounds (pioglitazone, rosiglitazone etc.) containing thiazolidinediones (TZD) are a novel class of antidiabetic agents which decrease blood glucose in diabetic animal models and in patients with Non-Insulin-Dependent Diabetes Mellitus (NIDDM) through alleviating insulin resistance. A large body of evidence is now accumulating indicating that insulin resistance and/or resulting hyperinsulinemia underlie the pathogenesis of not only diabetes but also of the clustering syndrome called "syndrome X" or "insulin resistance syndrome" which includes hypertension, dislipidemia and hypercoagulation. Therefore, TZD class of insulin sensitizers seem to have therapeutic potential to improve this clustering syndrome in addition to diabetes. Moreover, it was demonstrated that the TZD class of insulin sensitizers including troglitazone bind and activate the peroxisome proliferator-activated receptor gamma (PPARgamma), a nuclear hormone receptor. Although PPARgamma is predominantly expressed in adipose tissue, one of the target tissues for insulin, it have been subsequently found to be expressed in macrophages, vascular smooth muscle cells (VSMC), endothelial cells and several cancer cell lines. PPARgamma activation by PPARgamma agonists such as TZD class of insulin sensitizers in these cells modulates these cell functions such as the production of inflammatory cytokine by macrophages, proliferation and migration of VSMC, and growth or differentiation in cancer cells. In addition, troglitazone has potent antioxidant effect, and suppresses both L-type and receptor operated Ca2+ channel and protein kinase C. Thus since TZD class of insulin sensitizers has many kind of therapeutic effect in addition to lowering blood glucose, these agents expect to have therapeutic potential beyond diabetes.  相似文献   

13.
Wang ZX  Jiang CS  Liu L  Wang XH  Jin HJ  Wu Q  Chen Q 《Cell research》2005,15(5):379-386
The present study investigates the molecular details of how arsenic trioxide inhibits preadipocyte differentiation and examines the role of Akt/PKB in regulation of differentiation and apoptosis. Continual exposure of arsenic trioxide, at the clinic achievable dosage that does not induce apoptosis, suppressed 3T3-L1 cell differentiation into fat cells by inhibiting the expression of PPARy and C/EBPα and disrupting the interaction between PPARγ and RXRα, which determines the programming of the adipogenic genes. Interestingly, if we treated the cells for 12 or 24 h and then withdrew arsenic trioxide, the cells were able to differentiate to the comparable levels of untreated cells as assayed by the activity of GAPDH, the biochemical marker of preadipocyte differentiation. Long term treatment blocked the differentiation and the activity of GAPDH could not recover to the comparable levels of untreated cells. Continual exposure of arsenic trioxide caused accumulation in G2/M phase and the accumulation of p21. We found that arsenic trioxide induced the expression and the phosphorylation of Akt/PKB and it inhibited the interaction between Akt/PKB and PPARγ. Akt/PKB inhibitor appears to block the arsenic trioxide suppression of differentiation. Our results suggested that Akt/PKB may play a role in suppression of apoptosis and negatively regulate preadipocyte differentiation.  相似文献   

14.
Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptor superfamily. PPAR-alpha is involved in wound healing, stimulation of lipid and folic acid catabolism, inflammation control, inhibition of ureagenesis and peroxisome proliferation. The PPARgamma/delta is involved wound healing, cell proliferation, embryo implantation, adipocyte differentiation, myelination alteration and apoptosis. The PPARgamma is involved in fat, lipid and calorie utilization, sugar control, inflammation control and macrophage (MQ) matutation. Homocysteine (Hcy) binds to nuclear peroxisome proliferator activated receptor. Increase in PPAR expression decreases the level of nitrotyrosine and increases endothelial nitric oxide concentration, decreases metalloproteinase activity and expression as well as elastinolysis and reverses Hcy-mediated vascular dysfunction. The PPARgamma initially recognized as a regulator of adipocyte development has become a potential therapeutic target for the treatment of diverse disorders. In addition, the activation of PPARgamma receptor ameliorates neurodegenerative disease. This review focuses on the recent knowledge of PPARgamma in neuroprotection and deals with the mechanism of neuroprotection of central nervous system disorder by PPARgamma.  相似文献   

15.
Oxidative stress as a mechanism of teratogenesis   总被引:1,自引:0,他引:1  
Emerging evidence shows that redox-sensitive signal transduction pathways are critical for developmental processes, including proliferation, differentiation, and apoptosis. As a consequence, teratogens that induce oxidative stress (OS) may induce teratogenesis via the misregulation of these same pathways. Many of these pathways are regulated by cellular thiol redox couples, namely glutathione/glutathione disulfide, thioredoxinred/thioredoinox, and cysteine/cystine. This review outlines oxidative stress as a mechanism of teratogenesis through the disruption of thiol-mediated redox signaling. Due to the ability of many known and suspected teratogens to induce oxidative stress and the many signaling pathways that have redox-sensitive components, further research is warranted to fully understand these mechanisms.  相似文献   

16.
17.
Pancreatic stellate cells (PSCs) play a key role in the development of pancreatic fibrosis, a constant feature of chronic pancreatitis and pancreatic cancer. In response to pro-fibrogenic mediators, PSCs undergo an activation process that involves proliferation, enhanced production of extracellular matrix proteins and a phenotypic transition towards myofibroblasts. Ligands of the peroxisome proliferator-activated receptor gamma (PPARgamma), such as thiazolidinediones, are potent inhibitors of stellate cell activation and fibrogenesis in pancreas and liver. The effects of PPARgamma ligands, however, are at least in part mediated through PPARgamma-independent pathways. Here, we have chosen a different approach to study regulatory functions of PPARgamma in PSCs. Using immortalised rat PSCs, we have established a model of tetracycline (tet)-regulated PPARgamma overexpression. Induction of PPARgamma expression strongly inhibited proliferation and enhanced the rate of apoptotic cell death. Furthermore, PPARgamma-overexpressing cells synthesised less collagen than controls. To monitor effects of PPARgamma on PSC gene expression, we employed Affymetrix microarray technology. Using stringent selection criteria, we identified 21 up- and 19 down-regulated genes in PPARgamma-overexpressing cells. Most of the corresponding gene products are either involved in lipid metabolism, play a role in signal transduction, or are secreted molecules that regulate cell growth and differentiation. In conclusion, our data suggest an active role of PPARgamma in the induction of a quiescent PSC phenotype. PPARgamma-regulated genes in PSCs may serve as novel targets for the development of antifibrotic therapies.  相似文献   

18.
Peroxisome proliferator-activated receptor gamma (PPARgamma) ligands seem to induce anticancer effects on prostate cancer cells, but the mechanism is not clear. The effect of PPARgamma ligands omega-6 fatty acids and ciglitazone (2-15 microM)--on proliferation, and apoptosis of LNCaP, PC-3, DU145, CA-K and BPH-K cells was studied. PPARgamma ligands led to: (1) reduction of proliferation (20-50%) of all the studied cell lines, (2) stimulation of differentiation of prostate cancer cells through an increased expression (1.5-3-fold: LNCaP, DU145, BPH-K) or reexpression (PC-3, CA-K) of E-cadherin with parallel inhibition of N-cadherin expression (PC-3, CA-K) and (3) down-regulation (1-2-fold) of beta-catenin and c-myc expression. The selective PPARgamma antagonist GW9662 abolished the effect of those ligands on prostate cancer cells. These results suggest that inhibition of beta-catenin and in effect c-myc expression through activation of PPARgamma may help prostate cancer cells to restore several characteristics of normal prostate cells phenotype.  相似文献   

19.
20.
Dietary long chain fatty acids and thiazolidinediones act as potent activators of adipogenesis in established preadipose cell lines. High concentrations of thiazolidinediones have also been shown to induce terminal differentiation of non-preadipose cells, such as fibroblasts and myoblasts, into adipose-like cells. This transdifferentiation was observed in both rodent and human myoblasts. In this report, we show that PPARdelta mediates some of the effects exerted by long chain fatty acids on myogenesis and adipogenesis. Activation of PPARdelta by long chain fatty acids impairs the expression of the determination factor MyoD1 and alpha-actin, abolishes the development of multinucleated myotubes, and in parallel induces the expression of PPARgamma gene, a master regulator of adipogenesis. Ectopic expression of PPARdelta in C2C12 myoblasts potentiated the fatty acid-induced expression of adipogenic markers, while expression of a dominant negative PPARdelta mutant exerted opposite effects. Furthermore, a sequential activation of first PPARdelta with long chain fatty acids and then PPARgamma with thiazolidinediones is required for adipogenesis in C2C12 myoblasts. This study demonstrates that PPARdelta, at least in part, is responsible for the dual effects of long chain fatty acids as inhibitors of myogenesis and inducers of transdifferentiation into preadipose-like cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号