首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alphaviruses are mosquito-transmitted RNA viruses that cause important diseases in both humans and livestock. Sindbis virus (SIN), the type species of the alphavirus genus, carries a 11.7-kb positive-sense RNA genome which is capped at its 5′ end and polyadenylated at its 3′ end. The 3′ nontranslated region (3′NTR) of the SIN genome carries many AU-rich motifs, including a 19-nucleotide (nt) conserved element (3′CSE) and a poly(A) tail. This 3′CSE and the adjoining poly(A) tail are believed to regulate the synthesis of negative-sense RNA and genome replication in vivo. We have recently demonstrated that the SIN genome lacking the poly(A) tail was infectious and that de novo polyadenylation could occur in vivo (K. R. Hill, M. Hajjou, J. Hu, and R. Raju, J. Virol. 71:2693–2704, 1997). Here, we demonstrate that the 3′-terminal 29-nt region of the SIN genome carries a signal for possible cytoplasmic polyadenylation. To further investigate the polyadenylation signals within the 3′NTR, we generated a battery of mutant genomes with mutations in the 3′NTR and tested their ability to generate infectious virus and undergo 3′ polyadenylation in vivo. Engineered SIN genomes with terminal deletions within the 19-nt 3′CSE were infectious and regained their poly(A) tail. Also, a SIN genome carrying the poly(A) tail but lacking a part or the entire 19-nt 3′CSE was also infectious. Sequence analysis of viruses generated from these engineered SIN genomes demonstrated the addition of a variety of AU-rich sequence motifs just adjacent to the poly(A) tail. The addition of AU-rich motifs to the mutant SIN genomes appears to require the presence of a significant portion of the 3′NTR. These results indicate the ability of alphavirus RNAs to undergo 3′ repair and the existence of a pathway for the addition of AU-rich sequences and a poly(A) tail to their 3′ end in the infected host cell. Most importantly, these results indicate the ability of alphavirus replication machinery to use a multitude of AU-rich RNA sequences abutted by a poly(A) motif as promoters for negative-sense RNA synthesis and genome replication in vivo. The possible roles of cytoplasmic polyadenylation machinery, terminal transferase-like enzymes, and the viral polymerase in the terminal repair processes are discussed.  相似文献   

2.
The 5' portion of the Sindbis virus (SIN) genome RNA is multifunctional. Besides initiating translation of the nonstructural polyprotein, RNA elements in the 5' 200 bases of the SIN genome RNA, or its complement at the 3' end of the negative-strand intermediate, play key roles in the synthesis of both negative- and positive-strand RNAs. We used here a combination of genetic and biochemical approaches to further dissect the functions of this sequence. Replacement of the SIN 5' end in defective-interfering (DI) and genome RNAs with sequences from a distantly related alphavirus, Semliki Forest virus (SFV), resulted in nonviable chimeras. The addition of five nucleotides from the 5' terminus of SIN restored negative-strand RNA synthesis in DI genomes but not their replication in vivo. Pseudorevertants of various SFV-SIN chimeras were isolated, and suppressor mutations were mapped to AU-rich sequences added to the 5' end of the original SFV 5' sequence or its "deleted" versions. Early pseudorevertants had heterogeneous 5' termini that were inefficient for replication relative to the parental SIN 5' sequence. In contrast, passaging of these pseudorevertant viral populations in BHK cells under competitive conditions yielded evolved, more homogeneous 5'-terminal sequences that were highly efficient for negative-strand synthesis and replication. These 5'-terminal sequences always began with 5'-AU, followed by one or more AU repeats or short stretches of oligo(A). Further analysis demonstrated a positive correlation between the number of repeat units and replication efficiency. Interestingly, some 5' modifications restored high-level viral replication in BHK-21 cells, but these viruses were impaired for replication in the cells of mosquito origin. These studies provide new information on sequence determinants required for SIN RNA replication and suggest new strategies for restricting cell tropism and optimizing the packaging of alphavirus vectors.  相似文献   

3.
K R Hill  M Hajjou  J Y Hu    R Raju 《Journal of virology》1997,71(4):2693-2704
Sindbis virus (SIN), a mosquito-transmitted animal RNA virus, carries a 11.7-kb positive-sense RNA genome which is capped and polyadenylated. We recently reported that the SIN RNA-dependent RNA polymerase (RdRp) could initiate negative-strand RNA synthesis from a 0.3-kb 3'-coterminal SIN RNA fragment and undergo template switching in vivo (M. Hajjou, K. R. Hill, S. V. Subramaniam, J. Y. Hu, and R. Raju, J. Virol. 70:5153-5164, 1996). To identify and characterize the viral and nonviral sequences which regulate SIN RNA synthesis and recombination, a series of SIN RNAs carrying altered 3' ends were tested for the ability to produce infectious virus or to support recombination in BHK cells. The major findings of this report are as follows: (i) the 3'-terminal 20-nucleotides (nt) sequence along with the abutting poly(A) tail of the SIN genome fully supports negative-strand synthesis, genome replication, and template switching; (ii) a full-length SIN RNA carrying the 3'-terminal 24 nt but lacking the poly(A) tail is noninfectious; (iii) SIN RNAs which carry 3' 64 nt or more without the poly(A) tail are infectious and regain their poly(A) tail in vivo; (iv) donor templates lacking the poly(A) tail do not support template switching; (v) full-length SIN RNAs lacking the poly(A) tail but carrying 3' nonviral extensions, although debilitated to begin with, evolve into rapidly growing poly(A)-carrying mutants; (vi) poly(A) or poly(U) motifs positioned internally within the acceptor templates, in the absence of other promoter elements within the vicinity, do not induce the jumping polymerase to reinitiate at these sites; and (vii) the junction site selection on donor templates occurs independently of the sequences around the acceptor sites. In addition to furthering our understanding of RNA recombination, these studies give interesting clues as to how the alphavirus polymerase interacts with its 3' promoter elements of genomic RNA and nonreplicative RNAs. This is the first report that an in vitro-synthesized alphavirus RNA lacking a poly(A) tail can initiate infection and produce 3' polyadenylated viral genome in vivo.  相似文献   

4.
The NS5B protein of the classical swine fever virus (CSFV) is the RNA-dependent RNA polymerase of the virus and is able to catalyze the viral genome replication. The 3' untranslated region is most likely involved in regulation of the Pestivirus genome replication. However, little is known about the interaction between the CSFV NS5B protein and the viral genome. We used different RNA templates derived from the plus-strand viral genome, or the minus-strand viral genome and the CSFV NS5B protein obtained from the Escherichia coli expression system to address this problem. We first showed that the viral NS5B protein formed a complex with the plus-strand genome through the genomic 3' UTR and that the NS5B protein was also able to bind the minus-strand 3' UTR. Moreover, it was found that viral NS5B protein bound the minus-strand 3' UTR more efficiently than the plus-strand 3' UTR. Further, we observed that the plus-strand 3' UTR with deletion of CCCGG or 21 continuous nucleotides at its 3' terminal had no binding activity and also lost the activity for initiation of minus-strand RNA synthesis, which similarly occurred in the minus-strand 3' UTR with CATATGCTC or the 21 nucleotide fragment deleted from the 3' terminal. Therefore, it is indicated that the 3' CCCGG sequence of the plus-strand 3' UTR, and the 3' CATATGCTC fragment of the minus-strand are essential to in vitro synthesis of the minus-strand RNA and the plus-strand RNA, respectively. The same conclusion is also appropriate for the 3' 21 nucleotide terminal site of both the 3' UTRs.  相似文献   

5.
The 3' nontranslated region (NTR) of the hepatitis C virus (HCV) genome is highly conserved and contains specific cis-acting RNA motifs that are essential in directing the viral replication machinery to initiate at the correct 3' end of the viral genome. Since the ends of viral genomes may be damaged by cellular RNases, preventing the initiation of viral RNA replication, stable RNA hairpin structures in the 3' NTR may also be essential in host defense against exoribonucleases. During 3'-terminal sequence analysis of serum samples of a patient with chronic hepatitis related to an HCV1b infection, a number of clones were obtained that were several nucleotides shorter at the extreme 3' end of the genome. These shorter 3' ends were engineered in selectable HCV replicons in order to enable the study of RNA replication in cell culture. When in vitro-transcribed subgenomic RNAs, containing shorter 3' ends, were introduced into Huh-7 cells, a few selectable colonies were obtained, and the 3' terminus of these subgenomic RNAs was sequenced. Interestingly, most genomes recovered from these colonies had regained the wild-type 3' ends, showing that HCV, like several other positive-stranded RNA viruses, has developed a strategy to repair deleted 3' end nucleotides. Furthermore, we found several genomes in these replicon colonies that contained a poly(A) tail and a short linker sequence preceding the poly(A) tail. After recloning and subsequent passage in Huh-7 cells, these poly(A) tails persisted and varied in length. In addition, the connecting linker became highly diverse in sequence and length, suggesting that these tails are actively replicated. The possible terminal repair mechanisms, including roles for the poly(A) tail addition, are discussed.  相似文献   

6.
7.
Long-range RNA-RNA interactions circularize the dengue virus genome   总被引:6,自引:0,他引:6       下载免费PDF全文
Secondary and tertiary RNA structures present in viral RNA genomes play essential regulatory roles during translation, RNA replication, and assembly of new viral particles. In the case of flaviviruses, RNA-RNA interactions between the 5' and 3' ends of the genome have been proposed to be required for RNA replication. We found that two RNA elements present at the ends of the dengue virus genome interact in vitro with high affinity. Visualization of individual molecules by atomic force microscopy revealed that physical interaction between these RNA elements results in cyclization of the viral RNA. Using RNA binding assays, we found that the putative cyclization sequences, known as 5' and 3' CS, present in all mosquito-borne flaviviruses, were necessary but not sufficient for RNA-RNA interaction. Additional sequences present at the 5' and 3' untranslated regions of the viral RNA were also required for RNA-RNA complex formation. We named these sequences 5' and 3' UAR (upstream AUG region). In order to investigate the functional role of 5'-3' UAR complementarity, these sequences were mutated either separately, to destroy base pairing, or simultaneously, to restore complementarity in the context of full-length dengue virus RNA. Nonviable viruses were recovered after transfection of dengue virus RNA carrying mutations either at the 5' or 3' UAR, while the RNA containing the compensatory mutations was able to replicate. Since sequence complementarity between the ends of the genome is required for dengue virus viability, we propose that cyclization of the RNA is a required conformation for viral replication.  相似文献   

8.
R Levis  B G Weiss  M Tsiang  H Huang  S Schlesinger 《Cell》1986,44(1):137-145
Defective-interfering (DI) genomes of a virus contain sequence information essential for their replication and packaging. They need not contain any coding information and therefore are a valuable tool for identifying cis-acting, regulatory sequences in a viral genome. To identify these sequences in a DI genome of Sindbis virus, we cloned a cDNA copy of a complete DI genome directly downstream of the promoter for the SP6 bacteriophage DNA dependent RNA polymerase. The cDNA was transcribed into RNA, which was transfected into chicken embryo fibroblasts in the presence of helper Sindbis virus. After one to two passages the DI RNA became the major viral RNA species in infected cells. Data from a series of deletions covering the entire DI genome show that only sequences in the 162 nucleotide region at the 5' terminus and in the 19 nucleotide region at the 3' terminus are specifically required for replication and packaging of these genomes.  相似文献   

9.
10.
Tilgner M  Shi PY 《Journal of virology》2004,78(15):8159-8171
Using a self-replicating reporting replicon of West Nile (WN) virus, we performed a mutagenesis analysis to define the structure and function of the 3'-terminal 6 nucleotides (nt) (5'-GGAUCU(OH)-3') of the WN virus genome in viral replication. We show that mutations of nucleotide sequence or base pair structure of any of the 3'-terminal 6 nt do not significantly affect viral translation, but exert discrete effects on RNA replication. (i). The flavivirus-conserved terminal 3' U is optimal for WN virus replication. Replacement of the wild-type 3' U with a purine A or G resulted in a substantial reduction in RNA replication, with a complete reversion to the wild-type sequence. In contrast, replacement with a pyrimidine C resulted in a replication level similar to that of the 3' A or G mutants, with only partial reversion. (ii). The flavivirus-conserved 3' penultimate C and two upstream nucleotides (positions 78 and 79), which potentially base pair with the 3'-terminal CU(OH), are absolutely essential for viral replication. (iii). The base pair structures, but not the nucleotide sequences at the 3rd (U) and the 4th (A) positions, are critical for RNA replication. (iv). The nucleotide sequences of the 5th (G) position and its base pair nucleotide (C) are essential for viral replication. (v). Neither the sequence nor the base pair structure of the 6th nucleotide (G) is critical for WN virus replication. These results provide strong functional evidence for the existence of the 3' flavivirus-conserved RNA structure, which may function as contact sites for specific assembly of the replication complex or for efficient initiation of minus-sense RNA synthesis.  相似文献   

11.
12.
The Colorado tick fever virus (CTFV) is the type species of genus Coltivirus, family Reoviridae. Its genome consisting of 12 segments of dsRNA was completely sequenced. It was found to be 29,174 nucleotides long (the longest of all Reoviridae genomes characterized to date). Conserved sequences at the 5' end (SACUUUUGY) and at the 3' end (WUGCAGUS) of the 12 segments were identified. The analysis of the putative proteins deduced from the nucleotide sequences permitted to identify functional motifs. In particular, the VP1 was identified unambiguously as the viral RNA dependent RNA pylmerase (RDRP) (VP1pol), with a GDD located at a similar position to Reoviridae RDRPs. In other genes, RGD cell-binding, NTPAse, single strand binding protein and kinase motifs were identified. Comparison with Reoviridae proteins showed significant similarities to RDRPs (CTFV-VP1) and sigma C protein of orthoreovirus (CTFV-VP6). Similarities to nonviral enzymatic proteins, such as methyltransferases, NTPAses, RNA replication factors, were also identified.  相似文献   

13.
Bovine viral diarrhea virus (BVDV), a Pestivirus member of the Flaviviridae family, has a positive-stranded RNA genome which consists of a single open reading frame (ORF) and untranslated regions (UTRs) at the 5' and 3' ends. The 5' UTR harbors extensive RNA structure motifs; most of them were shown to contribute to an internal ribosomal entry site (IRES), which mediates cap-independent translation of the ORF. The extreme 5'-terminal region of the BVDV genome had so far been believed not to be required for IRES function. By structure probing techniques, we initially verified the existence of a computer-predicted stem-loop motif at the 5' end of the viral genome (hairpin Ia) as well as at the 3' end of the complementary negative-strand replication intermediate [termed hairpin Ia (-)]. While the stem of this structure is mainly constituted of nucleotides that are conserved among pestiviruses, the loop region is predominantly composed of variable residues. Taking a reverse genetics approach to a subgenomic BVDV replicon RNA (DI9c) which could be equally employed in a translation as well as replication assay system based on BHK-21 cells, we obtained the following results. (i) Proper folding of the Ia stem was found to be crucial for efficient translation. Thus, in the context of an authentic replication-competent viral RNA, the 5'-terminal motif operates apparently as an integral functional part of the ribosome entry. (ii) An intact loop structure and a stretch of nucleotide residues that constitute a portion of the stem of the Ia or the Ia (-) motif, respectively, were defined to represent important determinants of the RNA replication pathway. (iii) Formation of the stem structure of the Ia (-) motif was determined to be not critical for RNA replication. In summary, our findings affirmed that the 5'-terminal region of the BVDV genome encodes a bifunctional secondary structure motif which may enable the viral RNA to switch from the translation to the replicative cycle and vice versa.  相似文献   

14.
Viruses of the order Mononegavirales encompass life-threatening pathogens with single-stranded segmented or nonsegmented negative-strand RNA genomes. The RNA genomes are characterized by highly conserved sequences at the extreme untranslated 3' and 5' termini that are most important for virus infection and viral RNA synthetic processes. The 3' terminal genome regions of negative-strand viruses such as vesicular stomatitis virus, Sendai virus, or influenza virus contain a high number of conserved U and G nucleotides, and synthetic oligoribonucleotides encoding such sequences stimulate sequence-dependent cytokine responses via TLR7 and TLR8. Immune cells responding to such sequences include NK cells, NK/T cells, plasmacytoid, and myeloid dendritic cells, as well as monocytes and B cells. Strong Th1 and pro-inflammatory cytokine responses are also induced upon in vivo application of oligoribonucleotides. It appears possible that the presence of highly conserved untranslated terminal regions in the viral genome fulfilling fundamental functions for the viral replication may enable the host to induce directed innate immune defense mechanisms, by allowing pathogen detection through essential RNA regions that the virus cannot readily mutate.  相似文献   

15.
The plasticity of viral plus strand RNA genomes is fundamental for the multiple functions of these molecules. Local and long-range RNA-RNA interactions provide the scaffold for interacting proteins of the translation, replication, and encapsidation machinery. Using dengue virus as a model, we investigated the relevance of the interplay between two alternative conformations of the viral genome during replication. Flaviviruses require long-range RNA-RNA interactions and genome cyclization for RNA synthesis. Here, we define a sequence present in the viral 3'UTR that overlaps two mutually exclusive structures. This sequence can form an extended duplex by long-range 5'-3' interactions in the circular conformation of the RNA or fold locally into a small hairpin (sHP) in the linear form of the genome. A mutational analysis of the sHP structure revealed an absolute requirement of this element for viral viability, suggesting the need of a linear conformation of the genome. Viral RNA replication showed high vulnerability to changes that alter the balance between circular and linear forms of the RNA. Mutations that shift the equilibrium toward the circular or the linear conformation of the genome spontaneously revert to sequences with different mutations that tend to restore the relative stability of the two competing structures. We propose a model in which the viral genome exists in at least two alternative conformations and the balance between these two states is critical for infectivity.  相似文献   

16.
We established a system for propagation of Sindbis virus (SIN)-based replicons in tissue culture in the form of a tricomponent genome virus. Three RNA fragments containing complementing genetic information required for virus replication are packaged into separate viral particles, and each cell produces at least 1,000 packaged replicons and the number of packaged helpers sufficient to perform the next passage. This system can be used to generate large stocks of packaged replicons. The formation of infectious recombinant SIN virus was not detected in any experiments. These features make multicomponent genome SIN an attractive system for a variety of research and biotechnology applications.  相似文献   

17.
The zinc finger antiviral protein (ZAP) is a recently isolated host antiviral factor. It specifically inhibits the replication of Moloney murine leukemia virus (MLV) and Sindbis virus (SIN) by preventing the accumulation of viral RNA in the cytoplasm. For this report, we mapped the viral sequences that are sensitive to ZAP inhibition. The viral sequences were cloned into a luciferase reporter and analyzed for the ability to mediate ZAP-dependent destabilization of the reporter. The sensitive sequence in MLV was mapped to the 3' long terminal repeat; the sensitive sequences in SIN were mapped to multiple fragments. The fragment of SIN that displayed the highest destabilizing activity was further analyzed by deletion mutagenesis for the minimal sequence that retained the activity. This led to the identification of a fragment of 653 nucleotides. Any further deletion of this fragment resulted in significantly lower activity. We provide evidence that ZAP directly binds to the active but not the inactive fragments. The CCCH zinc finger motifs of ZAP play important roles in RNA binding and antiviral activity. Disruption of the second and fourth zinc fingers abolished ZAP's activity, whereas disruption of the first and third fingers just slightly lowered its activity.  相似文献   

18.
Both the 5' end of the Sindbis virus (SIN) genome and its complement in the 3' end of the minus-strand RNA synthesized during virus replication serve as parts of the promoters recognized by the enzymes that comprise the replication complex (RdRp). In addition to the 5' untranslated region (UTR), which was shown to be critical for the initiation of replication, another 5' sequence element, the 51-nucleotide (nt) conserved sequence element (CSE), was postulated to be important for virus replication. It is located in the nsP1-encoding sequence and is highly conserved among all members of the Alphavirus genus. Studies with viruses containing clustered mutations in this sequence demonstrated that this RNA element is dispensable for SIN replication in cells of vertebrate origin, but its integrity can enhance the replication of SIN-specific RNAs. However, we showed that the same mutations had a deleterious effect on virus replication in mosquito cells. SIN with a mutated 51-nt CSE rapidly accumulated adaptive mutations in the nonstructural proteins nsP2 and nsP3 and the 5' UTR. These mutations functioned synergistically in a cell-specific manner and had a stimulatory effect only on the replication of viruses with a mutated 51-nt CSE. Taken together, the results suggest the complex nature of interactions between nsP2, nsP3, the 5' UTR, and host-specific protein factors binding to the 51-nt CSE and involved in RdRp formation. The data also demonstrate an outstanding potential of alphaviruses for adaptation. Within one passage, SIN can adapt to replication in cells of a vertebrate or invertebrate origin.  相似文献   

19.
The genomes of numerous avian retroviruses contain at their 3' termini a conserved domain denoted "c". The precise boundaries and function of "c" have been enigmas. In an effort to resolve these issues, we determined the sequence of over 900 nucleotides at the 3' end of the genome of the Schmidt-Ruppin subgroup A strain of avian sarcoma virus (ASV). We obtained the sequence from a suitable fragment of ASV DNA that had cloned into the single-stranded DNA phage M13mp2. Computer-assisted analysis of the sequence revealed the following structural features: i) the length of "c" - 473 nucleotides; ii) the 3' terminal domain of src, ending in an amber codon at the 5'boundary of "c"; iii) terminator codons that preclude continuous translation from "c"; iv) suitably located sequences that may serve as signals for the initiation of viral RNA synthesis and for the processing and/or polyadenylation of viral mRNA; v) a repeated sequence that flanks src and that could facilitate deletion of this gene; vi) repeated sequences within "c"; and vii) unexplained homologies between sequences in "c" and sequences in several other nucleic acids, including the 5' terminal domain of the ASV genome, tRNATrp and its inversion, the complement of tRNATrp and its inversion, and the 18S RNA of eukaryotic ribosomes. We conclude that "c" probably does not encode a protein, but its sequence may nevertheless serve several essential functions in viral replication.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号