首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eight healthy men exercised to exhaustion on a cycle ergometer at a work load of 176 +/- 9 (SE) W corresponding to 67% (range 63-69%) of their maximal O2 uptake (exercise I). Exercise of the same work load was repeated after 75 min of recovery (exercise II). Exercise duration (range) was 65 (50-90) and 21 (14-30) min for exercise I and II, respectively. Femoral venous blood samples were obtained before and during exercise and analyzed for NH3 and lactate. Plasma NH3 was 12 +/- 2 and 19 +/- 6 mumol/l before exercise I and II, respectively and increased during exercise to exhaustion to peak values of 195 +/- 29 (exercise I) and 250 +/- 30 (exercise II) mumol/l, respectively. Plasma NH3 increased faster during exercise II compared with exercise I and at the end of exercise II was threefold higher than the value for the corresponding time of exercise I (P less than 0.001). Blood lactate increased during exercise I and after 20 min of exercise was 3.7 +/- 0.4 mmol/l and remained unchanged until exhaustion. During exercise II blood lactate increased less than during exercise I. It is concluded that long-term exercise to exhaustion results in large increases in plasma NH3 despite relatively low levels of blood lactate. It is suggested that the faster increase in plasma NH3 during exercise II (vs. exercise I) reflects an increased formation in the working muscle that may be caused by low glycogen levels and impairment of the ATP resynthesis.  相似文献   

2.
The aim of this study was to specify the effects of caffeine on maximal anaerobic power (Wmax). A group of 14 subjects ingested caffeine (250 mg) or placebo in random double-blind order. The Wmax was determined using a force-velocity exercise test. In addition, we measured blood lactate concentration for each load at the end of pedalling and after 5 min of recovery. We observed that caffeine increased Wmax [964 (SEM 65.77) W with caffeine vs 903.7 (SEM 52.62) W with placebo; P less than 0.02] and blood lactate concentration both at the end of pedalling [8.36 (SEM 0.95) mmol.l-1 with caffeine vs 7.17 (SEM 0.53) mmol.l-1 with placebo; P less than 0.01] and after 5 min of recovery [10.23 (SEM 0.97) mmol.l-1 with caffeine vs 8.35 (SEM 0.66) mmol.l-1 with placebo; P less than 0.04]. The quotient lactate concentration/power (mmol.l-1.W-1) also increased with caffeine at the end of pedalling [7.6.10(-3) (SEM 3.82.10(-5)) vs 6.85.10(-3) (SEM 3.01.10(-5)); P less than 0.01] and after 5 min of recovery [9.82.10(-3) (SEM 4.28.10(-5)) vs 8.84.10(-3) (SEM 3.58.10(-5)); P less than 0.02]. We concluded that caffeine increased both Wmax and blood lactate concentration.  相似文献   

3.
Physiological responses to repeated bouts of short duration maximal-intensity exercise were evaluated. Seven male subjects performed three exercise protocols, on separate days, with either 15 (S15), 30 (S30) or 40 (S40) m sprints repeated every 30 s. Plasma hypoxanthine (HX) and uric acid (UA), and blood lactate concentrations were evaluated pre- and postexercise. Oxygen uptake was measured immediately after the last sprint in each protocol. Sprint times were recorded to analyse changes in performance over the trials. Mean plasma concentrations of HX and UA increased during S30 and S40 (P less than 0.05), HX increasing from 2.9 (SEM 1.0) and 4.1 (SEM 0.9), to 25.4 (SEM 7.8) and 42.7 (SEM 7.5) mumol.l-1, and UA from 372.8 (SEM 19) and 382.8 (SEM 26), to 458.7 (SEM 40) and 534.6 (SEM 37) mumol.l-1, respectively. Postexercise blood lactate concentrations were higher than pretest values in all three protocols (P less than 0.05), increasing to 6.8 (SEM 1.5), 13.9 (SEM 1.7) and 16.8 (SEM 1.1) mmol.l-1 in S15, S30 and S40, respectively. There was no significant difference between oxygen uptake immediately after S30 [3.2 (SEM 0.1) l.min-1] and S40 [3.3 (SEM 0.4) l.min-1], but a lower value [2.6 (SEM 0.1) l.min-1] was found after S15 (P less than 0.05). The time of the last sprint [2.63 (SEM 0.04) s] in S15 was not significantly different from that of the first [2.62 (SEM 0.02) s]. However, in S30 and S40 sprint times increased from 4.46 (SEM 0.04) and 5.61 (SEM 0.07) s (first) to 4.66 (SEM 0.05) and 6.19 (SEM 0.09) s (last), respectively (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
This study investigated 1) red blood cells (RBC) rigidity and 2) lactate influxes into RBCs in endurance-trained athletes with and without exercise-induced hypoxemia (EIH). Nine EIH and six non-EIH subjects performed a submaximal steady-state exercise on a cyclo-ergometer at 60% of maximal aerobic power for 10 min, followed by 15 min at 85% of maximal aerobic power. At rest and at the end of exercise, arterialized blood was sampled for analysis of arterialized pressure in oxygen, and venous blood was drawn for analysis of plasma lactate concentrations and hemorheological parameters. Lactate influxes into RBCs were measured at three labeled [U-14C]lactate concentrations (1.6, 8.1, and 41 mM) on venous blood sampled at rest. The EIH subjects had higher maximal oxygen uptake than non-EIH (P < 0.05). Total lactate influx was significantly higher in RBCs from EIH compared with non-EIH subjects at 8.1 mM (1,498.1 +/- 87.8 vs. 1,035.9 +/- 114.8 nmol.ml(-1).min(-1); P < 0.05) and 41 mM (2,562.0 +/- 145.0 vs. 1,618.1 +/- 149.4 nmol.ml(-1).min(-1); P < 0.01). Monocarboxylate transporter-1-mediated lactate influx was also higher in EIH at 8.1 mM (P < 0.05) and 41 mM (P < 0.01). The drop in arterial oxygen partial pressure was negatively correlated with total lactate influx measured at 8.1 mM (r = -0.82, P < 0.05) and 41 mM (r = -0.84, P < 0.05) in the two groups together. Plasma lactate concentrations and hemorheological data were similar in the two groups at rest and at the end of exercise. The results showed higher monocarboxylate transporter-1-mediated lactate influx in the EIH subjects and suggested that EIH could modify lactate influx into erythrocyte. However, higher lactate influx in EIH subjects was not accompanied by an increase in RBC rigidity.  相似文献   

5.
Seven trained male cyclists (VO2max = 4.42 +/- 0.23 l.min-1; weight 71.7 +/- 2.7 kg, mean +/- SE) completed two incremental cycling tests on the cycle ergometer for the estimation of the "individual anaerobic threshold" (IAT). The cyclists completed three more exercises in which the work rate incremented by the same protocol, but upon reaching selected work rates of approximately 40, 60 and 80% VO2max, the subjects cycled for 60 min or until exhaustion. In these constant load studies, blood lactate concentration was determined on arterialized venous ([La-]av) and deep venous blood ([La-]v) of the resting forearm. The av-v lactate gradient across the inactive forearm muscle was -0.08 mmol.l-1 at rest. After 3 min at each of the constant load work rates, the gradients were +0.05, +0.65* and +1.60* mmol.l-1 (*P less than 0.05). The gradients after 10 min at these same work rates were -0.09, +0.24 and +1.03* mmol.l-1. For the two highest work rates taken together, the lactate gradient was less at 10 min than 3 min constant load exercise (P less than 0.05). The [La-]av was consistently higher during prolonged exercise at both 60 and 80% VO2max than that observed at the same work rate during progressive exercise. At the highest work rate (at or above the IAT), time to exhaustion ranged from 3 to 36 min in the different subjects. These data showed that [La-] uptake across resting muscle continued to increase to work rates above the IAT. Further, the greater av-v lactate gradient at 3 min than 10 min constant load exercise supports the concept that inactive muscle might act as a passive sink for lactate in addition to a metabolic site.  相似文献   

6.
Eight healthy men cycled at a work load corresponding to approximately 70% of maximal O2 uptake (VO2max) to fatigue (exercise I). Exercise to fatigue at the same work load was repeated after 75 min of rest (exercise II). Exercise duration averaged 65 and 21 min for exercise I and II, respectively. Muscle (quadriceps femoris) content of glycogen decreased from 492 +/- 27 to 92 +/- 20 (SE) mmol/kg dry wt and from 148 +/- 17 to 56 +/- 17 (SE) mmol/kg dry wt during exercise I and II, respectively. Muscle and blood lactate were only moderately increased during exercise. The total adenine nucleotide pool (TAN = ATP + ADP + AMP) decreased and inosine 5'-monophosphate (IMP) increased in the working muscle during both exercise I (P less than 0.001) and II (P less than 0.01). Muscle content of ammonia (NH3) increased four- and eight-fold during exercise I and II, respectively. The working legs released NH3, and plasma NH3 increased progressively during exercise. The release of NH3 at the end of exercise II was fivefold higher than that at the same time point in exercise I (P less than 0.001, exercise I vs. II). It is concluded that submaximal exercise to fatigue results in a breakdown of the TAN in the working muscle through deamination of AMP to IMP and NH3. The relatively low lactate levels demonstrate that acidosis is not a necessary prerequisite for activation of AMP deaminase. It is suggested that the higher average rate of AMP deamination during exercise II vs. exercise I is due to a relative impairment of ATP resynthesis caused by the low muscle glycogen level.  相似文献   

7.
Epinephrine increases glycogenolysis in resting skeletal muscle, but less is known about the effects of epinephrine on exercising muscle. To study this, epinephrine was given intraarterially to one leg during two-legged cycle exercise in nine healthy males. The epinephrine-stimulated (EPI) and non-stimulated (C) legs were compared with regard to glycogen, glucose, glucose 6-phosphate (G6P), alpha-glycerophosphate (alpha-GP), and lactate contents in muscle biopsies taken before and after the 45-min submaximal exercise, as well as brachial arterial-femoral venous (a-fv) differences for epinephrine, norepinephrine, lactate, glucose, and O2 during exercise. During exercise the arterial plasma epinephrine concentration was 4.8 +/- 0.8 nmol/l and the femoral venous epinephrine concentrations were 10.3 +/- 2.1 and 3.9 +/- 0.6 nmol/l, respectively, in the EPI and C leg. During exercise the a-fv difference for lactate was greater (-0.41 +/- 0.14 vs. -0.21 +/- 0.14 mmol/l; P less than 0.001), and the a-fv difference for glucose was smaller (0.07 +/- 0.12 vs. 0.24 +/- 0.12 mmol/l; P less than 0.01) in the EPI than in the C leg, but the a-fv differences for O2 were similar. Muscle glycogen depletion (137 +/- 63 vs. 99 +/- 43 mmol/kg dry muscle; P less than 0.1) and the muscle concentrations of glucose (P less than 0.05), alpha-GP (P less than 0.1), G6P (P greater than 0.1), and lactate (P greater than 0.1) tended to be higher in the EPI than the C leg after exercise. These findings suggest that physiological concentrations of epinephrine may enhance muscle glycogenolysis during submaximal exercise in male subjects.  相似文献   

8.
To determine whether the reduced blood lactate concentrations [La] during submaximal exercise in humans after endurance training result from a decreased rate of lactate appearance (Ra) or an increased rate of lactate metabolic clearance (MCR), interrelationships among blood [La], lactate Ra, and lactate MCR were investigated in eight untrained men during progressive exercise before and after a 9-wk endurance training program. Radioisotope dilution measurements of L-[U-14C]lactate revealed that the slower rise in blood [La] with increasing O2 uptake (VO2) after training was due to a reduced lactate Ra at the lower work rates [VO2 less than 2.27 l/min, less than 60% maximum VO2 (VO2max); P less than 0.01]. At power outputs closer to maximum, peak lactate Ra values before (215 +/- 28 mumol.min-1.kg-1) and after training (244 +/- 12 mumol.min-1.kg-1) became similar. In contrast, submaximal (less than 75% VO2max) and peak lactate MCR values were higher after than before training (40 +/- 3 vs. 31 +/- 4 ml.min-1.kg-1, P less than 0.05). Thus the lower blood [La] values during exercise after training in this study were caused by a diminished lactate Ra at low absolute and relative work rates and an elevated MCR at higher absolute and all relative work rates during exercise.  相似文献   

9.
The present study was undertaken to examine the effect of carbohydrate ingestion on plasma and muscle ammonia (NH(3) denotes ammonia and ammonium) accumulation during prolonged exercise. Eleven trained men exercised for 2 h at 65% peak pulmonary oxygen consumption while ingesting either 250 ml of an 8% carbohydrate-electrolyte solution every 15 min (CHO) or an equal volume of a sweet placebo. Blood glucose and plasma insulin levels during exercise were higher in CHO, but plasma hypoxanthine was lower after 120 min (1.7 +/- 0.3 vs. 2.6 +/- 0.1 micromol/l; P < 0. 05). Plasma NH(3) levels were similar at rest and after 30 min of exercise in both trials but were lower after 60, 90, and 120 min of exercise in CHO (62 +/- 9 vs. 76 +/- 9 micromol/l; P < 0.05). Muscle NH(3) levels were similar at rest and after 30 min of exercise but were lower after 120 min of exercise in CHO (1.51 +/- 0.21 vs. 2.07 +/- 0.23 mmol/kg dry muscle; P < 0.05; n = 5). These data are best explained by carbohydrate ingestion reducing muscle NH(3) production from amino acid degradation, although a small reduction in net AMP catabolism within the contracting muscle may also make a minor contribution to the lower tissue NH(3) levels.  相似文献   

10.
Substrate utilization in leg muscle of men after heat acclimation   总被引:1,自引:0,他引:1  
Eight men were heat acclimated (39.6 degrees C and 29.2% rh) for 8 days to examine changes in substrate utilization. A heat exercise test (HET), (cycling for 60 min; 50% maximal O2 consumption) was performed before (UN-HET) and after (ACC-HET) the acclimation period. Muscle glycogen utilization (67.0 vs. 37.6 mmol/kg wet wt), respiratory exchange ratio (0.85 +/- 0.002 vs. 0.83 +/- 0.001), and calculated rate of carbohydrate oxidation (75.15 +/- 1.38 vs. 64.80 +/- 1.52 g/h) were significantly reduced (P less than 0.05) during the ACC-HET. Significantly lower (P less than 0.05) femoral venous glucose (15, 30, and 45 min) and lactate (15 min) levels were observed during the ACC-HET. No differences were observed in plasma free fatty acid (FFA) and glycerol concentrations or glucose, lactate and glycerol arteriovenous uptake/release between tests. A small but significant increase (P less than 0.05) above resting levels in FFA uptake was observed during the ACC-HET. Leg blood flow was slightly greater (P greater than 0.05) during the ACC-HET (4.64 +/- 0.13 vs. 4.80 +/- 0.13 l/min). These findings indicate a reduced use of muscle glycogen following heat acclimation. However, the decrease is not completely explained by a shift toward greater lipid oxidation or increased blood flow.  相似文献   

11.
Eight healthy men cycled to exhaustion [4.1 +/- 0.3 (SE) min] during beta-adrenoceptor blockade (beta B) with propranolol. The exercise was repeated on another day with the same power output and duration but without propranolol (control). The total adenine nucleotide (TAN) content in muscle (quadriceps femoris) decreased during exercise, and the decrease was more pronounced during beta B (delta TAN = 4.8 +/- 1.0 mmol/kg dry wt) than during control (delta TAN = 2.8 +/- 0.9; P less than 0.01, beta B vs. control). The decrease in TAN corresponded with a similar increase in inosine 5'-monophosphate (IMP). The increase in IMP was more pronounced during beta B (delta IMP = 5.1 +/- 1.2 mmol/kg dry wt) than during control (delta IMP = 2.8 +/- 0.7; P less than 0.05, beta B vs. control). Similarly, the increase in the content of NH3 in muscle was twice as high during beta B vs. control (P less than 0.01). The increase in muscle lactate and the decrease in phosphocreatine during exercise were similar between treatments, but postexercise hexose phosphates were approximately twofold higher (P less than 0.05) during control than during beta B. It is concluded that beta B enhances the degradation of TAN and the production of NH3 and IMP in muscle during intense exercise. This indicates that the imbalance between the rates of utilization and resynthesis of ATP is more pronounced during beta B possibly because of a decreased O2 transport to the contracting muscle and a diminished activation of glycolysis by the hexose phosphates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
During heavy-intensity exercise, the mechanisms responsible for the continued slow decline in phosphocreatine concentration ([PCr]) (PCr slow component) have not been established. In this study, we tested the hypothesis that a reduced intracellular acidosis would result in a greater oxidative flux and, consequently, a reduced magnitude of the PCr slow component. Subjects (n = 10) performed isotonic wrist flexion in a control trial and in an induced alkalosis (Alk) trial (0.3g/kg oral dose of NaHCO3, 90 min before testing). Wrist flexion, at a contraction rate of 0.5 Hz, was performed for 9 min at moderate- (75% of onset of acidosis; intracellular pH threshold) and heavy-intensity (125% intracellular pH threshold) exercise. 31P-magnetic resonance spectroscopy was used to measure intracellular [H+], [PCr], [Pi], and [ATP]. The initial recovery data were used to estimate the rate of ATP synthesis and oxidative flux at the end of heavy-intensity exercise. In repeated trials, venous blood sampling was used to measure plasma [H+], [HCO3-], and [Lac-]. Throughout rest and exercise, plasma [H+] was lower (P < 0.05) and [HCO3-] was elevated (P < 0.05) in Alk compared with control. During the final 3 min of heavy-intensity exercise, Alk caused a lower (P < 0.05) intracellular [H+] [246 (SD 117) vs. 291 nmol/l (SD 129)], a greater (P < 0.05) [PCr] [12.7 (SD 7.0) vs. 9.9 mmol/l (SD 6.0)], and a reduced accumulation of [ADP] [0.065 (SD 0.031) vs. 0.098 mmol/l (SD 0.059)]. Oxidative flux was similar (P > 0.05) in the conditions at the end of heavy-intensity exercise. In conclusion, our results are consistent with a reduced intracellular acidosis, causing a decrease in the magnitude of the PCr slow component. The decreased PCr slow component in Alk did not appear to be due to an elevated oxidative flux.  相似文献   

13.
In this study we examined the time course of changes in the plasma concentration of oxypurines [hypoxanthine (Hx), xanthine and urate] during prolonged cycling to fatigue. Ten subjects with an estimated maximum oxygen uptake (VO2(max)) of 54 (range 47-67) ml x kg(-1) x min(-1) cycled at [mean (SEM)] 74 (2)% of VO2(max) until fatigue [79 (8) min]. Plasma levels of oxypurines increased during exercise, but the magnitude and the time course varied considerably between subjects. The plasma concentration of Hx ([Hx]) was 1.3 (0.3) micromol/l at rest and increased eight fold at fatigue. After 60 min of exercise plasma [Hx] was >10 micromol/l in four subjects, whereas in the remaining five subjects it was <5 micromol/l. The muscle contents of total adenine nucleotides (TAN = ATP+ADP+AMP) and inosine monophosphate (IMP) were measured before and after exercise in five subjects. Subjects with a high plasma [Hx] at fatigue also demonstrated a pronounced decrease in muscle TAN and increase in IMP. Plasma [Hx] after 60 min of exercise correlated significantly with plasma concentration of ammonia ([NH(3)], r = 0.90) and blood lactate (r = 0.66). Endurance, measured as time to fatigue, was inversely correlated to plasma [Hx] at 60 min (r = -0.68, P < 0.05) but not to either plasma [NH(3)] or blood lactate. It is concluded that during moderate-intensity exercise, plasma [Hx] increases, but to a variable extent between subjects. The present data suggest that plasma [Hx] is a marker of adenine nucleotide degradation and energetic stress during exercise. The potential use of plasma [Hx] to assess training status and to identify overtraining deserves further attention.  相似文献   

14.
Adenine nucleotide (AN) degradation has been shown to occur during intense exercise in the horse and in man, at or close to the point of fatigue. The aim of the study was to compare the concentrations of muscle inosine 5'-monophosphate (IMP) and plasma ammonia (NH3) during intense exercise with the concentrations of muscle and blood lactate. Seven trained thoroughbred horses were used in the study. Each exercised on a treadmill for periods of between 30 s and 150 s, at 11 and/or 12 m.s-1. Blood and muscle samples were taken and analysed for lactate and NH3 and adenosine 5'-triphosphate (ATP), phosphorylcreatine (PCr), IMP, creatine, lactate and glycerol-3-phosphate respectively. Horses showed varying degrees of AN degradation as indicated by plasma [NH3] and muscle [ATP] and [IMP]. Comparisons of [IMP] with muscle [lactate], and plasma [NH3] with that of blood [lactate] indicated a threshold to the start of AN degradation. This threshold corresponded to a lactate content of around 80 mmol.kg-1 dry muscle and 15 mmol.l-1 in blood. We discuss the mechanisms which have been proposed to account for AN degradation and suggest that IMP formation occurs as a result of a sudden rise in the concentration of adenosine 5'-diphosphate (ADP) and consequently the concentration of adenosine 5'-monophosphate. The data suggest a critical pH below which there may be a substantial reduction in the kinetics of ADP rephosphorylation provided by PCr resulting in an increase in [ADP], which is the stimulus to AN degradation during intense exercise.  相似文献   

15.
For many years, it was believed that ventilation does not limit performance in healthy humans. Recently, however, it has been shown that inspiratory muscles can become fatigued during intense endurance exercise and decrease their exercise performance. Therefore, it is not surprising that respiratory endurance training can prolong intense constant-intensity cycling exercise. To investigate the effects of respiratory endurance training on blood lactate concentration and oxygen consumption (VO2) during exercise and their relationship to performance, 20 healthy, active subjects underwent 30 min of voluntary, isocapnic hyperpnoea 5 days a week, for 4 weeks. Respiratory endurance tests, as well as incremental and constant-intensity exercise tests on a cycle ergometer, were performed before and after the 4-week period. Respiratory endurance increased from 4.6 (SD 2.5) to 29.1 (SD 4.0) min (P < 0.001) and cycling endurance time was prolonged from 20.9 (SD 5.5) to 26.6 (SD 11.8) min (P < 0.01) after respiratory training. The VO2 did not change at any exercise intensity whereas blood lactate concentration was lower at the end of the incremental [10.4 (SD 2.1) vs 8.8 (SD 1.9) mmol x l(-1), P < 0.001] as well as at the end of the endurance exercise [10.4 (SD 3.6) vs 9.6 (SD 2.7) mmol x l(-1), P < 0.01] test after respiratory training. We speculate that the reduction in blood lactate concentration was most likely caused by an improved lactate uptake by the trained respiratory muscles. However, reduced exercise blood lactate concentrations per se are unlikely to explain the improved cycling performance after respiratory endurance training.  相似文献   

16.
The purpose of this study was to examine whether the ventilatory threshold (Thv) would give the maximal lactate steady state ([la]ss, max), which was defined as the highest work rate (W) attained by a subject without a progressive increase in blood lactate concentration [la]b at constant intensity exercise. Firstly, 8 healthy men repeated ramp-work tests (20 W.min-1) on an electrically braked cycle ergometer on different days. During the tests, alveolar gas exchange was measured breath-by-breath, and the W at Thv (WThv) was determined. The results of two-way ANOVA showed that the coefficient of variation of a single WThv determination was 2.6%. Secondly, 13 men performed 30-min exercise at WThv (Thv trial) and at 4.9% above WThv (Thv + trial), which corresponded to the 95% confidence interval of the single determination. The [la]b was measured at 15 and 30 min from the onset of exercise. The [la]b at 15 min (3.15 mmol.l-1, SEM 0.14) and at 30 min (2.95 mmol.l-1, SEM 0.18) were not significantly different in Thv trial. However, the [la]b of Thv + trial significantly increased (P less than 0.05) from 15 min (3.62 mmol.l-1, SEM 0.36) to 30 min (3.91 mmol.l-1, SEM 0.40). These results indicate that Thv gives the [la]ss, max, at which one can perform sustained exercise without continuous [la]b accumulation.  相似文献   

17.
To determine whether increases in muscle mitochondrial capacity are necessary for the characteristic lower exercise glycogen loss and lactate concentration observed during exercise in the trained state, we have employed a short-term training model involving 2 h of cycling per day at 67% maximal O2 uptake (VO2max) for 5-7 consecutive days. Before and after training, biopsies were extracted from the vastus lateralis of nine male subjects during a continuous exercise challenge consisting of 30 min of work at 67% VO2max followed by 30 min at 76% VO2max. Analysis of samples at 0, 15, 20, and 60 min indicated a pronounced reduction (P less than 0.05) in glycogen utilization after training. Reductions in glycogen utilization were accompanied by reductions (P less than 0.05) in muscle lactate concentration (mmol/kg dry wt) at 15 min [37.4 +/- 9.3 (SE) vs. 20.2 +/- 5.3], 30 min (30.5 +/- 6.9 vs. 17.6 +/- 3.8), and 60 min (26.5 +/- 5.8 vs. 17.8 +/- 3.5) of exercise. Maximal aerobic power, VO2max (l/min) was unaffected by the training (3.99 +/- 0.21 vs. 4.05 +/- 0.26). Measurements of maximal activities of enzymes representative of the citric acid cycle (succinic dehydrogenase and citrate synthase) were similar before and after the training. It is concluded that, in the voluntary exercising human, altered metabolic events are an early adaptive response to training and need not be accompanied by changes in muscle mitochondrial capacity.  相似文献   

18.
The purpose of this investigation was to determine whether plasma glucose kinetics and substrate oxidation during exercise are dependent on the phase of the menstrual cycle. Once during the follicular (F) and luteal (L) phases, moderately trained subjects [peak O(2) uptake (V(O(2))) = 48.2 +/- 1.1 ml. min(-1). kg(-1); n = 6] cycled for 25 min at approximately 70% of the V(O(2)) at their respective lactate threshold (70%LT), followed immediately by 25 min at 90%LT. Rates of plasma glucose appearance (R(a)) and disappearance (R(d)) were determined with a primed constant infusion of [6,6-(2)H]glucose, and total carbohydrate (CHO) and fat oxidation were determined with indirect calorimetry. At rest and during exercise at 70%LT, there were no differences in glucose R(a) or R(d) between phases. CHO and fat oxidation were not different between phases at 70%LT. At 90%LT, glucose R(a) (28.8 +/- 4.8 vs. 33.7 +/- 4.5 micromol. min(-1). kg(-1); P < 0.05) and R(d) (28.4 +/- 4.8 vs. 34.0 +/- 4.1 micromol. min(-1). kg(-1); P < 0.05) were lower during the L phase. In addition, at 90%LT, CHO oxidation was lower during the L compared with the F phase (82.0 +/- 12.3 vs. 93.8 +/- 9.7 micromol. min(-1) .kg(-1); P < 0.05). Conversely, total fat oxidation was greater during the L phase at 90%LT (7.46 +/- 1.01 vs. 6.05 +/- 0.89 micromol. min(-1). kg(-1); P < 0.05). Plasma lactate concentration was also lower during the L phase at 90%LT concentrations (2.48 +/- 0.41 vs. 3.08 +/- 0.39 mmol/l; P < 0.05). The lower CHO utilization during the L phase was associated with an elevated resting estradiol (P < 0.05). These results indicate that plasma glucose kinetics and CHO oxidation during moderate-intensity exercise are lower during the L compared with the F phase in women. These differences may have been due to differences in circulating estradiol.  相似文献   

19.
20.
The purpose of this investigation was to determine whether sweat lactate secretion during exercise [approximately 70% maximum O2 consumption (VO2max), 60 min] differed in active vs. sedentary female subjects. Sweat rate, total sweat lactate secretion, and sweat lactate concentration were monitored in a group of sedentary (VO2max = 41.0 +/- 1.62 ml X kg-1 X min-1) and active (VO2max = 51.2 +/- 3.20 ml X kg-1 X min-1) women. Sweat rate was significantly (P less than 0.05) greater in the active subjects. There was a significant difference between groups in total amount of sweat lactate secreted (P less than 0.05), with the active group secreting less lactate (29.8 +/- 5.03 mmol, mean +/- SE) than the sedentary group (50.2 +/- 6.61 mmol). Concomitant with the lower total sweat lactate secretion in the active subjects was a significantly (P less than 0.05) more dilute sweat lactate concentration (42.6 +/- 14.08 vs. 100.4 +/- 32.37 mM). In these female subjects, sweat lactate concentration was inversely correlated (r = -0.79, P less than 0.01, n = 10) to sweat rate. It is concluded that total sweat lactate loss is significantly less in active than in sedentary women and that the active subjects secrete a greater quantity of lactate dilute sweat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号