首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Progressive background in moths, and a quantitative measure of crypsis   总被引:1,自引:0,他引:1  
A method is presented for quantitative estimation of the degree of crypsis of species seen by visual predators against known backgrounds. It is based upon a comparison between transects taken across animal and background colour patterns. The method was applied to day-resting moths in deciduous forest in New Jersey. Each species is found for two to four weeks at characteristic dates, and there is a constant turnover of species. In both moths and backgrounds there is a regular change in the colour pattern parameters from winter through spring to early summer. Moths are on average more cryptic at their normal dates than they would be if present earlier or later in the year. Species with known resting sites are on average more cryptic on their resting sites than other background habitats. Species that rest on more than one background habitat are less cryptic on their preferred habitats than are specialists. Species that rest under leaves and are not visible from above are not very cryptic. Specific v. general resemblance, disruptive coloration, and factors affecting 'aspect diversity' are discussed. The new method of estimating crypsis is useful for studies of crypsis as well as in sexual selection. It is necessary to know much about the resting sites and behaviour of moths, as well as other functions of colour patterns, to understand colour pattern evolution.  相似文献   

2.
The hypothesis that dimorphically coloured, cryptic moths select appropriate rest sites by comparing their body scales to substrate reflectance was tested using typical and melanic morphs of the peppered moth, Biston betularia (L.). Experiments designed to block the individual's inspection of its inherited colour phenotype do not support Kettlewell's contrast/conflict (self-inspection) hypothesis. Instead, tracking of marked moths over successive days revealed individual differences in rest-site selection which were not related to treatments, experience (imprinting), nor closely to a moth's inherited colour pattern. Differences between family broods indicate that some genetic bias in background selection exists. The production of artificially selected lines with consistent but opposing preferences will allow us to investigate the co-evolution of pattern and behaviour.  相似文献   

3.
When tested in a cylindrical apparatus, males of both typical and melanic morphs of the nocturnal moth Phigalia pilosaria (Schiffermueller) prefer to rest on light backgrounds. This preference is more pronounced when the moths have a rough surface on which to rest than when it is smooth. The two morphs show a distinct tendency to adopt resting positions close to the boundary between the shades presented in the experiments; this is interpreted as being a result of walking moths stopping at or close to the boundary when approaching it from the light side. The surface texture of the background influences the resting attitude of the moths in relation to vertical.  相似文献   

4.
Abstract.  The thermoregulation behaviour of the adult codling moth, Cydia pomonella , is investigated in the laboratory using temperature gradient experiments. Unmated males and females are tested at dawn when moths typically move to resting sites. Mated females are tested during oviposition over a complete diurnal cycle. Temperature strongly affects microhabitat selection in adult moths. Unmated males and females prefer to rest at the low-temperature ends of temperature gradients between 15 and 32 °C. Relative humidity does not influence the thermal response in unmated females, whereas males show a less distinct temperature selection under high humidity. By contrast to unmated moths, ovipositing females prove to be highly thermophilous (i.e. they deposit the highest proportions of their eggs in the zones of highest temperatures of gradients between 15 and 36 °C). This striking discrepancy in thermal response of females between their premating and oviposition period is likely to reflect an adaptation to different selection pressures from the thermal environment. Unmated moths may benefit from low temperatures by a longer lifespan and crypsis within the tree canopy, whereas the choice of warmer oviposition sites by mated females will favour a faster development of eggs.  相似文献   

5.
Further background-choice experiments on cryptic Lepidoptera   总被引:1,自引:0,他引:1  
Background choice experiments were performed using polymorphic night flying moths common in Britain and emerging at different times of the year. Such species have to spend their daylight hours motionless at rest on their correct backgrounds. Significant differences were found between the site preferences of different morphs of the same species. The morphs chose backgrounds most appropriate to their colouration.  相似文献   

6.
Six families of the cryptic moth, Allophyes oxyucanthae , four of which contained both the typical and melanic forms of this polymorphic species, were tested for evidence of resting site selection in a large box lined with oak bark of three reflectances. Moths from different families were tested separately. Typicals from all four families tended to show a preference for the background which most closely matched their reflectance and on which they were most cryptic. Melanic moths from different families showed different resting site selection behaviour; those from two families preferring dark bark, on which melanics were most cryptic, while those from other families did not. The significance of these results in relation to previous suggestions about the control of resting site selection is discussed  相似文献   

7.
Many moths have wing patterns that resemble bark of trees on which they rest. The wing patterns help moths to become camouflaged and to avoid predation because the moths are able to assume specific body orientations that produce a very good match between the pattern on the bark and the pattern on the wings. Furthermore, after landing on a bark moths are able to perceive stimuli that correlate with their crypticity and are able to re-position their bodies to new more cryptic locations and body orientations. However, the proximate mechanisms, i.e. how a moth finds an appropriate resting position and orientation, are poorly studied. Here, we used a geometrid moth Jankowskia fuscaria to examine i) whether a choice of resting orientation by moths depends on the properties of natural background, and ii) what sensory cues moths use. We studied moths’ behavior on natural (a tree log) and artificial backgrounds, each of which was designed to mimic one of the hypothetical cues that moths may perceive on a tree trunk (visual pattern, directional furrow structure, and curvature). We found that moths mainly used structural cues from the background when choosing their resting position and orientation. Our findings highlight the possibility that moths use information from one type of sensory modality (structure of furrows is probably detected through tactile channel) to achieve crypticity in another sensory modality (visual). This study extends our knowledge of how behavior, sensory systems and morphology of animals interact to produce crypsis.  相似文献   

8.
Patterns of nucleotide variation consistent with the action of natural selection have been discovered at a number of different gene loci. Here, pheromone-binding proteins (PBPs) are examined to determine if selection has acted to fix amino acid changes in PBPs in lineages in which pheromone changes have occurred. PBPs from five different species of moths in the genus Choristoneura were sequenced, along with the PBP of Argyrotaenia velutinana, which serves as an outgroup. Three independent major pheromone changes are represented within this group of five Choristoneura species. Two different lineages show evidence for selection based on polymorphism and divergence comparisons and comparisons of rates of replacement evolution to silent and noncoding evolution. Along one of these lineages, leading to Choristoneura fumiferana, there has been a change to an aldehyde pheromone from an acetate pheromone. The second branch does not appear to be associated with a major pheromone change. Other branches in the tree show a trend toward greater replacement fixation than expected under neutrality. This trend could reflect undetected selective events within this group of PBPs. Selection appears to have acted to fix amino acid changes in the PBP of moths from the genus Choristoneura, but it is not clear that this selection is due to pheromone changes between species.  相似文献   

9.
Species-specific obligate pollination mutualism between Glochidion trees (Euphorbiaceae) and Epicephala moths (Gracillariidae) involves a large number of interacting species and resembles the classically known fig-fig wasp and yucca-yucca moth associations. To assess the extent of parallel cladogenesis in Glochidion-Epicephala association, we reconstruct phylogenetic relationships of 18 species of Glochidion using nuclear ribosomal DNA sequences (internal and external transcribed spacers) and those of the corresponding 18 Epicephala species using mitochondrial (the cytochrome oxidase subunit I gene) and nuclear DNA sequences (the arginine kinase and elongation factor-1alpha genes). Based on the obtained phylogenies, we determine whether Glochidion and Epicephala have undergone parallel diversification using several different methods for investigating the level of cospeciation between phylogenies. These tests indicate that there is generally a greater degree of correlation between Glochidion and Epicephala phylogenies than expected in a random association, but the results are sensitive to selection of different phylogenetic hypotheses and analytical methods for evaluating cospeciation. Perfect congruence between phylogenies is not found in this association, which likely resulted from host shift by the moths. The observed significant discrepancy between Glochidion and Epicephala phylogenies implies that the one-to-one specificity between the plants and moths has been maintained through a complex speciation process or that there is an underestimated diversity of association between Glochidion trees and Epicephala moths.  相似文献   

10.
The selection of suitable ecological indicator groups is of great importance for environmental assessments. To test and compare two such groups, we performed transect walks of butterflies and light traps of moths at eight sample localities in the Carinthian Alps. All of them were conducted with identical methods in the years 2002 and 2004 allowing the evaluation of the response on the conservation measures performed on five of the eight sites in late 2002. We recorded a total of 2346 butterflies (including Zygaenidae and Sesiidae) representing 83 species and 7025 moths of 534 species. 150 of these species were listed in the Red Data Book of Carinthia. In general, butterflies increased from 2002 to 2004 while moths declined. The highest increase rates of butterflies were obtained for the numbers of individuals of calcareous grassland specialists at the conservation sites, while their numbers were unchanged at the control sites. Similar trend differences between conservation and control sites were obtained for the Red Data Book butterfly species. On the contrary, the development of moth individuals was more positive at the control than the conservation sites for calcareous grassland specialists (only macro-moths) and species of the Red Data Book. However, change rates of species numbers were positively correlated between butterflies and moths. Principal Component Analysis revealed strong differences between the different sites, but mostly consistent results for butterflies and moths; however, stronger differences between years were only detected for some of the conservation sites for the butterfly communities. Our results show that butterflies as well as moths are suitable ecological indicator groups, but they do not yield identical results. Thus, butterflies are more suitable for the analysis of open habitats, whereas moths are suitable for open and forested habitats as well. Furthermore, butterflies might be a more sensitive indicator group than moths for the short-term detection of conservation measures, especially for the restoration of open habitat types.  相似文献   

11.
Melanic polymorphism in B. betularia has been extensively studied. Correlations between high melanic frequency and high levels of air pollution have been demonstrated. Kettlewell and others have shown that differential bird predation has an important effect on the maintenance of the polymorphism, and coefficients of visual selection have been obtained on the assumption that the moth habitually rests on tree trunks. Computer models based on these selective coefficients show that they are not sufficient accurately to explain observed melanic frequencies. Other non-visual selective factors and weak frequency-dependent selection have been invoked to improve fits. Analysis of the resting positions of moths recorded in the wild demonstrates that B. betularia does not usually rest in exposed positions on tree trunks, but rather rests on the underside of branches, on trunks in shaded positions just below major branch joints or on foliate twigs. The results of a pilot selection experiment, while agreeing qualitatively with Kettlewell's results, suggest that fitness estimates that assume trunk-resting are quantitively incorrect. The error is greatest for melanic moths in rural areas. It is suggested that visual selective coefficients based on a true assessment of the resting behaviour of the moths may considerably improve the fit between computer predictions and observed phenotype frequency distributions.  相似文献   

12.
Antipredatory displays that incorporate hidden contrasting coloration are found in a variety of different animals. These displays are seen in organisms that have drab coloration at rest, but when disturbed reveal conspicuous coloration. Examples include the bright abdomens of mountain katydids and the colorful underwings of hawk moths. Such hidden displays can function as secondary defenses, enabling evasion of a pursuant predator. To begin to understand why some species have these displays while others do not, we conducted phylogenetic comparative analyses to investigate factors associated with the evolution of hidden contrasting coloration in leaf‐footed bugs. First, we investigated whether hidden contrasting coloration was associated with body size because these displays are considered to be more effective in larger organisms. We then investigated whether hidden contrasting coloration was associated with an alternative antipredatory defense, in this case rapid autotomy. We found that leaf‐footed bugs with hidden contrasting coloration tended to autotomize more slowly, but this result was not statistically significant. We also found that the presence of a body size association was dependent upon the form of the hidden color display. Leaf‐footed bugs that reveal red/orange coloration were the same size, on average, as species without a hidden color display. However, species that reveal white patches on a black background were significantly larger than species without a hidden color display. These results highlight the diversity of forms that hidden contrasting color signal can take, upon which selection may act differently.  相似文献   

13.
Sperm are among the most variable cells in nature. Some of this variation results from nonadaptive errors in spermatogenesis, but many species consistently produce multiple sperm morphs, the adaptive significance of which remains unknown. Here, we investigate the evolution of dimorphic sperm in Lepidoptera, the butterflies and moths. Males of this order produce both fertilizing sperm and a secondary, nonfertilizing type that lacks DNA. Previous organismal studies suggested a role for nonfertilizing sperm in sperm competition, but this hypothesis has never been evaluated from a molecular framework. We combined published data sets with new sequencing in two species, the monandrous Carolina sphinx moth and the highly polyandrous monarch butterfly. Based on population genetic analyses, we see evidence for increased adaptive evolution in fertilizing sperm, but only in the polyandrous species. This signal comes primarily from a decrease in nonsynonymous polymorphism in sperm proteins compared to the rest of the genome, suggesting stronger purifying selection, consistent with selection via sperm competition. Nonfertilizing sperm proteins, in contrast, do not show an effect of mating system and do not appear to evolve differently from the background genome in either species, arguing against the involvement of nonfertilizing sperm in direct sperm competition. Based on our results and previous work, we suggest that nonfertilizing sperm may be used to delay female remating in these insects and decrease the risk of sperm competition rather than directly affect its outcome.  相似文献   

14.
Nocturnal flight exposes insects to selection pressures thatinclude reduced light and the hunting behavior of insectivorousbats. Using a phylogenetically based selection of wild mothscollected from a Nearctic site, we report that earless speciesfly less throughout the night than eared species. This supportsthe hypothesis that this behavior has evolved as a passive defenseagainst the transient attacks of aerially foraging bats in insectsthat do not possess long-range auditory detection abilities.We measured the eyesize of a selection of moths whose 24-h flightactivities are known and confirm that nocturnal lifestyle resultsin larger eyes. With the exception of hawkmoths, there is noeyesize difference between eared and earless moths, suggestingthat earless moths do not preferentially use vision to detectthe approach of bats.  相似文献   

15.
We investigated the relationship between predator detection threshold and antipredator behaviour in noctuoid moths. Moths with ears sensitive to the echolocation calls of insectivorous bats use avoidance manoeuvres in flight to evade these predators. Earless moths generally fly less than eared species as a primary defence against predation by bats. For eared moths, however, there is interspecific variation in auditory sensitivity. At the species level, and when controlling for shared evolutionary history, nocturnal flight time and auditory sensitivity were positively correlated in moths, a relationship that most likely reflects selection pressure from aerial-hawking bats. We suggest that species-specific differences in the detection of predator cues are important but often overlooked factors in the evolution and maintenance of antipredator behaviour.  相似文献   

16.
The natural resting orientations of several species of nocturnal moth on tree trunks were recorded over a three-month period in eastern Ontario, Canada. Moths from certain genera exhibited resting orientation distributions that differed significantly from random, whereas others did not. In particular, Catocala spp. collectively tended to orient vertically, whereas subfamily Larentiinae representatives showed a variety of orientations that did not differ significantly from random. To understand why different moth species adopted different orientations, we presented human subjects with a computer-based detection task of finding and ‘attacking’ Catocala cerogama and Euphyia intermediata target images at different orientations when superimposed on images of sugar maple (Acer saccharum) trees. For both C. cerogama and E. intermediata, orientation had a significant effect on survivorship, although the effect was more pronounced in C. cerogama. When the tree background images were flipped horizontally the optimal orientation changed accordingly, indicating that the detection rates were dependent on the interaction between certain directional appearance features of the moth and its background. Collectively, our results suggest that the contrasting wing patterns of the moths are involved in background matching, and that the moths are able to improve their crypsis through appropriate behavioural orientation.  相似文献   

17.
The majority of studies demonstrating local adaptation of insect herbivores involve sessile species, particularly those with a parthenogentic phase to their life history or endophagous "parasites" of plants. Current arguments suggest the strength of selection determines whether local adaptation can or cannot take place. Therefore local adaptation should not be limited to species with such traits. We studied the ability of three polyphagous geometrid moths with flightless adult females ( Erannis defoliaria , Operophtera brumata and O. fagata ) to synchronise their egg hatching with the budburst of a local host species in north east Scotland. A strong selection for hatching time is expected among generalist moths given the large variation in budburst phenology and an inability to hatch in synchrony with budburst decreases moth fitness substantially. In two successive seasons, we trapped emerging females from patches of five host species and recorded the temperature sum needed for 50% egg hatch of each brood laid by the trapped females. The hatching times of broods were compared against the average budburst time of the maternal host species in the study area. In addition, the trapping dates of each female were recorded. Only O. brumata showed synchrony with egg hatch and budburst which suggests local phenological adaptation to different host species . This could be maintained by selection and partial reproductive isolation between populations dwelling on different host species. No phenological adaptation was found in the other common geometrids of the study area.  相似文献   

18.
Prey can use various camouflage types as defense against predators. One of the most common and important types is background matching, which occurs if an animal matches the background in color, brightness, and pattern. Although background matching has been studied intensively, the effects of the resting orientation of prey on the effectiveness of camouflage through background matching are not well known in natural conditions. Several past experimental studies have been conducted on resting orientation in the lab often using the visual system of humans. Their results revealed that the detection rates of predators hinge on the combination of the resting orientation of artificial moths and their background. Here, we studied whether survival rates of artificial moth-like models depend on their resting orientation in the wild where the visual conditions and detection distances vary. We used a 2 × 2 design of two resting positions of a horizontally and a vertically striped morph on tree bark. Our results show that the survival probability of moths depended mainly on the orientation of stripes relative to the vertical structure of tree bark. Thus, resting orientation relative to background affected survival. After reanalyzing Endler’s (Biol J Linn Soc 22:187–231, 1984) data on resting habitats of 317 species of North American moths, we found that horizontally striped moths occurred frequently on small herbs and tree bark. We suggest that it would be beneficial for striped moths to orient non-randomly on strongly structured background, like furrows of tree bark. We further suggest that background matching was more important than coincident disruptive coloration in determining the survival rates of our artificial moths.  相似文献   

19.
If the ears of moths exist primarily to detect the echolocation calls of hunting bats, endemic moths in bat-free areas (i.e., species that have evolved in the absence of the selection pressure maintaining ears) should exhibit signs of deafness. Noctuid moths from the Pacific islands of French Polynesia, a site that has never possessed bats, were sampled and electrophysiologically analysed to test this hypothesis. The auditory sensitivities of seven endemic and twelve immigrant species, captured from the islands of Tahiti, Moorea, and Hiva Oa, were compared. Both classes possess neurally responsive ears, but endemics are significantly deafer than immigrants at frequencies above 35 kHz. This form of deafness is similar to other moths presumably released from the selection pressure of bat predation. I conclude that endemic moths at this site exhibit preliminary stages of deafness and that, considering their small cellular investment, ears in moths will be lost at a slower rate than more complex sensory organs.  相似文献   

20.
Cryptic colour patterns in prey are classical examples of adaptations to avoid predation, but we still know little about behaviours that reinforce the match between animal body and the background. For example, moths avoid predators by matching their colour patterns with the background. Active choice of a species‐specific body orientation has been suggested as an important function of body positioning behaviour performed by moths after landing on the bark. However, the contribution of this behaviour to moths’ crypticity has not been directly measured. From observations of geometrid moths, Hypomecis roboraria and Jankowskia fuscaria, we determined that the positioning behaviour, which consists of walking and turning the body while repeatedly lifting and lowering the wings, resulted in new resting spots and body orientations in J. fuscaria and in new resting spots in H. roboraria. The body positioning behaviour of the two species significantly decreased the probability of visual detection by humans, who viewed photographs of the moths taken before and after the positioning behaviour. This implies that body positioning significantly increases the camouflage effect provided by moth’s cryptic colour pattern regardless of whether the behaviour involves a new body orientation or not. Our study demonstrates that the evolution of morphological adaptations, such as colour pattern of moths, cannot be fully understood without taking into account a behavioural phenotype that coevolved with the morphology for increasing the adaptive value of the morphological trait.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号