首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
杨淼  王海涛  薛松 《微生物学通报》2018,45(5):996-1006
【背景】三角褐指藻作为生物燃料潜在的生产者,在胁迫条件下能通过改变其甘油酯组成来适应外部环境的变化,同时伴随着生物燃料原料甘油三酯(TAG)的积累,研究三角褐指藻甘油酯对氮胁迫的响应机制有利于深入认识TAG的积累过程。【目的】通过分析三角褐指藻在正常和氮胁迫条件下各类脂质含量及其脂肪酸成分的变化,揭示氮胁迫诱导积累的TAG酰基主要来源,以及在胁迫前生成的各极性甘油酯脂肪酸的去向,从而为进一步认识三角褐指藻对氮胁迫的响应机制提供新信息。【方法】利用高效薄层色谱结合气相色谱法分析三角褐指藻在正常和氮胁迫条件下的脂肪酸及甘油酯组分的变化。【结果】三角褐指藻在氮胁迫条件下TAG含量增加至57.8 mg/g时,总甘油酯含量几乎不变,但各甘油酯含量变化差异很大,表现为各极性脂含量显著降低。在此期间,各类甘油酯脂肪酸组成含量的变化表明,三角褐指藻TAG主要积累饱和及单不饱和脂肪酸,即16:0和16:1n7,分别以从头合成及原有极性脂转化为主,极性脂的部分二十碳五烯酸(EPA)作为酰基供体也向TAG发生了转化;此外组成极性脂的多不饱和脂肪酸16:2n4、16:3n4及EPA分解导致其含量显著下降。【结论】当氮胁迫诱导的三角褐指藻TAG含量为57.8 mg/g时,积累的TAG酰基中有48%来自从头合成,52%来自极性脂转化;而氮胁迫诱导所减少的极性脂酰基中有54%转化成TAG,46%发生了分解。  相似文献   

2.
When cultivated under stress conditions, many plants and algae accumulate oil. The unicellular green microalga Chlamydomonas reinhardtii accumulates neutral lipids (triacylglycerols; TAGs) during nutrient stress conditions. Temporal changes in TAG levels in nitrogen (N)‐ and phosphorus (P)‐starved cells were examined to compare the effects of nutrient depletion on TAG accumulation in C. reinhardtii. TAG accumulation and fatty acid composition were substantially changed depending on the cultivation stage before nutrient starvation. Profiles of TAG accumulation also differed between N and P starvation. Logarithmic‐growth‐phase cells diluted into fresh medium showed substantial TAG accumulation with both N and P deprivation. N deprivation induced formation of oil droplets concomitant with the breakdown of thylakoid membranes. In contrast, P deprivation substantially induced accumulation of oil droplets in the cytosol and maintaining thylakoid membranes. As a consequence, P limitation accumulated more TAG both per cell and per culture medium under these conditions. To enhance oil accumulation under P deprivation, we constructed a P deprivation‐dependent overexpressor of a Chlamydomonas type‐2 diacylglycerol acyl‐CoA acyltransferase (DGTT4) using a sulphoquinovosyldiacylglycerol 2 (SQD2) promoter, which was up‐regulated during P starvation. The transformant strongly enhanced TAG accumulation with a slight increase in 18 : 1 content, which is a preferred substrate of DGTT4. These results demonstrated enhanced TAG accumulation using a P starvation–inducible promoter.  相似文献   

3.
Chlamydomonas reinhardtii is a model alga for studying triacylglycerol (TAG) accumulation in the photosynthetic production of biofuel. Previous studies were conducted under photoheterotrophic growth conditions in medium supplemented with acetate and/or ammonium. We wanted to demonstrate TAG accumulation under truly photoautotrophic conditions without reduced elements. We first reidentified all lipid components and fatty acids by mass spectrometry, because the currently used identification knowledge relies on data obtained in the 1980s. Accordingly, various isomers of fatty acids, which are potentially useful in tracing the flow of fatty acids leading to the accumulation of TAG, were detected. In strain CC1010 grown under photoautotrophic conditions, TAG accumulated to about 57.5 mol% of total lipids on a mole fatty acid basis after the transfer to nitrogen-deficient conditions. The content of monogalactosyl diacylglycerol, sulfoquinovosyl diacylglycerol, and phosphatidylglycerol decreased drastically. The accumulated TAG contained 16:0 as the major acid and 16:4(4,7,10,13), 18:2(9,12), and 18:3(9,12,15), which are typically found in chloroplast lipids. Additionally, 18:1(11) and 18:3(5,9,12), which are specific to extrachloroplast lipids, were also abundant in the accumulated TAG. Photosynthesis and respiration slowed markedly after the shift to nitrogen-deficient conditions. These results suggest that fatty acids for the production of TAG were supplied not only from chloroplast lipids but also from other membranes within the cells, although the possibility of de novo synthesis cannot be excluded. Under nitrogen-replete conditions, supplementation with a high concentration of CO2 promoted TAG production in the cells grown photoautotrophically, opening up the possibility to the continuous production of TAG using CO2 produced by industry.  相似文献   

4.
Microalgae are capable of accumulating high levels of lipids and starch as carbon storage compounds. Investigation into the metabolic activities involved in the synthesis of these compounds has escalated since these compounds can be used as precursors for food and fuel. Here, we detail the results of a comprehensive analysis of Chlamydomonas reinhardtii using high or low inorganic carbon concentrations and speciation between carbon dioxide and bicarbonate, and the effects these have on inducing lipid and starch accumulation during nitrogen depletion. High concentrations of CO2 (5%; v/v) produced the highest amount of biofuel precursors, transesterified to fatty acid methyl esters, but exhibited rapid accumulation and degradation characteristics. Low CO2 (0.04%; v/v) caused carbon limitation and minimized triacylglycerol (TAG) and starch accumulation. High bicarbonate caused a cessation of cell cycling and accumulation of both TAG and starch that was more stable than the other experimental conditions. Starch accumulated prior to TAG and then degraded as maximum TAG was reached. This suggests carbon reallocation from starch‐based to TAG‐based carbon storage. Biotechnol. Bioeng. 2013; 110: 87–96. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Algal biodiesel has been a subject of growing importance in the realm of renewable energy due to carbon capture properties and its potential for photosynthetic efficiency with high lipid output. This study identified five isolates of freshwater green algae, belonging to the Chlorellaceae, and measured the lipid classes and fatty acid profiles of these species to determine suitability for biodiesel production. To induce the greater accumulation of lipids, especially in the form of triacylglycerols (TAGs) desired for biodiesel, we examined the lipid accumulation in cells stressed by nitrogen limitation, sulfur deficiency, or pH stress. Increases in biomass were monitored in order to determine if adjusting pH incrementally over the course of the experiment had any effect on growth and lipid accumulation of several isolates. TAG accumulation was visually screened by Nile Red fluorescence and further assessed by gas chromatography. Lipid amounts were comparably equal or better for pH stress treatments than for standard nutrient-deprivation treatments. Incrementally adjusted pH over the course of growth triggered lipid accumulation comparable to constant pH stress treatments, yet biomass accumulation was equivalent to unstressed growth. One isolate obtained from the Athabasca oil-sands region of Alberta, OS4-2, is a good candidate for biodiesel production, having accumulated over 45 % of its dry weight as lipid, with over 80 % of the lipid as triacylglycerols, and contains an abundance of 18:1 fatty acids. This class of fatty acids improves the cold flow and oxidative stability of biodiesel and is ideal for biofuel used in a Canadian climate.  相似文献   

6.
7.
8.
Marine hydrocarbonoclastic bacteria, like Alcanivorax borkumensis, play a globally important role in bioremediation of petroleum oil contamination in marine ecosystems. Accumulation of storage lipids, serving as endogenous carbon and energy sources during starvation periods, might be a potential adaptation mechanism for coping with nutrient limitation, which is a frequent stress factor challenging those bacteria in their natural marine habitats. Here we report on the analysis of storage lipid biosynthesis in A. borkumensis strain SK2. Triacylglycerols (TAGs) and wax esters (WEs), but not poly(hydroxyalkanoic acids), are the principal storage lipids present in this and other hydrocarbonoclastic bacterial species. Although so far assumed to be a characteristic restricted to gram-positive actinomycetes, substantial accumulation of TAGs corresponding to a fatty acid content of more than 23% of the cellular dry weight is the first characteristic of large-scale de novo TAG biosynthesis in a gram-negative bacterium. The acyltransferase AtfA1 (ABO_2742) exhibiting wax ester synthase/acyl-coenzyme A:diacylglycerol acyltransferase (WS/DGAT) activity plays a key role in both TAG and WE biosynthesis, whereas AtfA2 (ABO_1804) was dispensable for storage lipid formation. However, reduced but still substantial residual TAG levels in atfA1 and atfA2 knockout mutants compellingly indicate the existence of a yet unknown WS/DGAT-independent alternative TAG biosynthesis route. Storage lipids of A. borkumensis were enriched in saturated fatty acids and accumulated as insoluble intracytoplasmic inclusions exhibiting great structural variety. Storage lipid accumulation provided only a slight growth advantage during short-term starvation periods but was not required for maintaining viability and long-term persistence during extended starvation phases.  相似文献   

9.
10.
This study investigated the changes in lipid and starch contents, lipid fraction, and lipid profile in the nitrogen-starved Scenedesmus obtusus XJ-15 at different temperatures (17, 25, and 33 °C). The optimal temperature for both growth and lipid accumulation under nitrogen-sufficient condition was found to be 25 °C. However, under nitrogen deprivation, the total and neutral lipids increased with increasing temperature, and achieved the highest lipid content of 47.60 % of dry cell weight and the highest TAG content of 79.66 % of total lipid at 33 °C. In the meantime, the stored cellular starch content decreased with the increasing temperature. Thus, high temperature induced carbon flux from starch toward TAG accumulation in microalgae during nitrogen starvation. In addition, the decreased polar lipids may also serve for TAG synthesis under high temperature, and high temperature further reduced the degree of the fatty acid unsaturation and favored a better biodiesel production. These results suggested that high-temperature stress can be a good strategy for enhancing biofuel production in oleaginous microalgae during nitrogen deficiency.  相似文献   

11.
With the depletion of global petroleum and its increasing price, biodiesel has been becoming one of the most promising biofuels for global fuels market. Researchers exploit oleaginous microorganisms for biodiesel production due to their short life cycle, less labor required, less affection by venue, and easier to scale up. Many oleaginous microorganisms can accumulate lipids, especially triacylglycerols (TAGs), which are the main materials for biodiesel production. This review is covering the related researches on different oleaginous microorganisms, such as yeast, mold, bacteria and microalgae, which might become the potential oil feedstocks for biodiesel production in the future, showing that biodiesel from oleaginous microorganisms has a great prospect in the development of biomass energy. Microbial oils biosynthesis process includes fatty acid synthesis approach and TAG synthesis approach. In addition, the strategies to increase lipids accumulation via metabolic engineering technology, involving the enhancement of fatty acid synthesis approach, the enhancement of TAG synthesis approach, the regulation of related TAG biosynthesis bypass approaches, the blocking of competing pathways and the multi-gene approach, are discussed in detail. It is suggested that DGAT and ME are the most promising targets for gene transformation, and reducing PEPC activity is observed to be beneficial for lipid production.  相似文献   

12.
三酰甘油(triacylglycerols,TAGs)是动物、植物、微生物和微藻细胞主要的储藏性脂类,它可应用于食品、轻工业和生物燃料等方面,是一种新型可再生能源——生物柴油生产的重要原料。与高等油料作物相比,微藻具有光合作用效率高、生长速度快、油脂产量高、不占用农业耕地和适应多种生长环境等优势,是一种潜在的新型生物柴油生产原料。然而,目前人们对有机体,尤其是微藻细胞内TAG合成与积累的分子机制及细胞的代谢调控机制还知之甚少。对TAG合成的一系列重要过程,包括脂肪酸的合成,TAG生物合成的主要途径和旁路途径,以及与TAG合成相关的关键酶和重要基因等进行了综述,特别对微藻细胞中与TAG合成相关的关键基因的最新研究进展进行了总结,旨在更好地了解油脂代谢的调控途径,为最大限度地供应生物柴油的生产原料提供理论基础。  相似文献   

13.
Microalgae accumulate triacylglycerol (TAG) during nutrient deprivation and break it down after nutrient resupply, and these processes involve dramatic shifts in cellular carbon allocation. Due to the importance of algae in the global carbon cycle, and the potential of algal lipids as feedstock for chemical and fuel production, these processes are of both ecophysiological and biotechnological importance. However, the metabolism of TAG is not well understood, particularly the contributions of fatty acids (FAs) from different membrane lipids to TAG accumulation and the fate of TAG FAs during degradation. Here, we used isotopic labeling time course experiments on Chlamydomonas reinhardtii to track FA synthesis and transfer between lipid pools during nitrogen (N)-deprivation and resupply. When cells were labeled before N-deprivation, total levels of label in cellular FAs were unchanged during subsequent N-deprivation and later resupply, despite large fluxes into and out of TAG and membrane lipid pools. Detailed analyses of FA levels and labeling revealed that about one-third of acyl chains accumulating in TAG during N-deprivation derive from preexisting membrane lipids, and in total, at least 45% of TAG FAs passed through membrane lipids at one point. Notably, most acyl chains in membrane lipids during recovery after N-resupply come from TAG. Fluxes of polyunsaturated FAs from plastidic membranes into TAG during N-deprivation were particularly noteworthy. These findings demonstrate a high degree of integration of TAG and membrane lipid metabolism and highlight a role for TAG in storage and supply of membrane lipid components.

In Chlamydomonas, about a third of triacylglycerol (TAG) made during nitrogen deprivation is derived from preexisting membranes, and most membranes made after resupply are derived from TAG.  相似文献   

14.
Many species of microalgae produce greatly enhanced amounts of triacylglycerides (TAGs), the key product for biodiesel production, in response to specific environmental stresses. Improvement of TAG production by microalgae through optimization of growth regimes is of great interest. This relies on understanding microalgal lipid metabolism in relation to stress response in particular the deprivation of nutrients that can induce enhanced TAG synthesis. In this study, a detailed investigation of changes in lipid composition in Chlorella sp. and Nannochloropsis sp. in response to nitrogen deprivation (N-deprivation) was performed to provide novel mechanistic insights into the lipidome during stress. As expected, an increase in TAGs and an overall decrease in polar lipids were observed. However, while most membrane lipid classes (phosphoglycerolipids and glycolipids) were found to decrease, the non-nitrogen containing phosphatidylglycerol levels increased considerably in both algae from initially low levels. Of particular significance, it was observed that the acyl composition of TAGs in Nannochloropsis sp. remain relatively constant, whereas Chlorella sp. showed greater variability following N-deprivation. In both algae the overall fatty acid profiles of the polar lipid classes were largely unaffected by N-deprivation, suggesting a specific FA profile for each compartment is maintained to enable continued function despite considerable reductions in the amount of these lipids. The changes observed in the overall fatty acid profile were due primarily to the decrease in proportion of polar lipids to TAGs. This study provides the most detailed lipidomic information on two different microalgae with utility in biodiesel production and nutraceutical industries and proposes the mechanisms for this rearrangement. This research also highlights the usefulness of the latest MS-based approaches for microalgae lipid research.  相似文献   

15.
16.
Microalgae can accumulate a large fraction of reduced carbon as lipids under NaCl stress. This study investigated the mechanism of carbon allocation and reduction and triacylglycerol (TAG) accumulation in microalgae under NaCl-induced stress. Micractinium sp. XJ-2 was exposed to NaCl stress and cells were subjected to physiological, biochemical, and metabolic analyses to elucidate the stress-responsive mechanism. Lipid increased with NaCl concentration after 0-12 hr, then stabilized after 12–48 hr, and finally decreased after 48–72 hr, whereas TAG increased (0–48 hr) and then decreased (48–72 hr). Under NaCl-induced stress at lower concentrations, TAG accumulation, at first, mainly shown to rely on the carbon fixation through photosynthetic fixation, carbohydrate degradation, and membrane lipids remodeling. Moreover, carbon compounds generated by the degradation of some amino acids were reallocated and enhanced fatty acid synthesis. The remodeling of the membrane lipids of NaCl-induced microalgae relied on the following processes: (a) Increase in the amount of phospholipids and reduction in the amount of glycolipids and (b) extension of long-chain fatty acids. This study enhances our understanding of TAG production under NaCl stress and thus will provide a theoretical basis for the industrial application of NaCl-induced in the microalgal biodiesel industry.  相似文献   

17.
Algal lipids are the focus of intensive research because they are potential sources of biodiesel. However, most algae produce neutral lipids only under stress conditions. Here, we report that treatment with Brefeldin A (BFA), a chemical inducer of ER stress, rapidly triggers lipid droplet (LD) formation in two different microalgal species, Chlamydomonas reinhardtii and Chlorella vulgaris. LD staining using Nile red revealed that BFA-treated algal cells exhibited many more fluorescent bodies than control cells. Lipid analyses based on thin layer chromatography and gas chromatography revealed that the additional lipids formed upon BFA treatment were mainly triacylglycerols (TAGs). The increase in TAG accumulation was accompanied by a decrease in the betaine lipid diacylglyceryl N,N,N-trimethylhomoserine (DGTS), a major component of the extraplastidic membrane lipids in Chlamydomonas, suggesting that at least some of the TAGs were assembled from the degradation products of membrane lipids. Interestingly, BFA induced TAG accumulation in the Chlamydomonas cells regardless of the presence or absence of an acetate or nitrogen source in the medium. This effect of BFA in Chlamydomonas cells seems to be due to BFA-induced ER stress, as supported by the induction of three homologs of ER stress marker genes by the drug. Together, these results suggest that ER stress rapidly triggers TAG accumulation in two green microalgae, C. reinhardtii and C. vulgaris. A further investigation of the link between ER stress and TAG synthesis may yield an efficient means of producing biofuel from algae.  相似文献   

18.
The time course of the accumulation of triacylglycerols (TAGs) in Rhodococcus opacus PD630 or of TAGs plus polyhydroxyalkanoates (PHA) in Rhodococcus ruber NCIMB 40126 with gluconate or glucose as carbon source, respectively, was studied. In addition, we examined the mobilization of these storage compounds in the absence of a carbon source. R. opacus accumulated TAGs only after the exhaustion of ammonium in the medium, and, with a fixed concentration of the carbon source, the amounts of TAGs in the cells increased with decreasing concentrations of ammonium in the medium. When these cells were incubated in the absence of an additional carbon source, about 90% of these TAGs were mobilized and used as endogenous carbon source, particularly if ammonium was available. R. ruber accumulated a copolyester consisting of 3-hydroxybutyrate and 3-hydroxyvalerate already during the early exponential growth phase, whereas TAGs were synthesized and accumulated mainly during the late exponential and stationary growth phases. In the stationary growth phase, synthesis of TAGs continued, whereas PHA was partially mobilized. In the absence of an additional carbon source but in the presence of ammonium, mobilization of TAGs started first and was then paralleled by the mobilization of PHA, resulting in an approximately 90% and 80% decrease of these storage compounds, respectively. During the accumulation phase, interesting shifts in the composition of the two storage compounds occurred, indicating that the substrates of the PHA synthase and the TAG synthesizing enzymes were provided to varying extents, depending on whether the cells were in the early or late exponential or in the stationary growth phase. Received: 12 January 2000 / Received revision: 22 February 2000 / Accepted: 25 February 2000  相似文献   

19.
Studies were conducted to characterize the metabolism of the unusual fatty acid petroselinic acid (18:1cis[delta]6) in developing endosperm of the Umbelliferae species coriander (Coriandrum sativum L.) and carrot (Daucus carota L.). Analyses of fatty acid compositions of glycerolipids of these tissues revealed a dissimilar distribution of petroselinic acid in triacylglycerols (TAG) and the major polar lipids phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Petroselinic acid comprised 70 to 75 mol% of the fatty acids of TAG but only 9 to 20 mol% of the fatty acids of PC and PE. Although such data appeared to suggest that petroselinic acid is at least partially excluded from polar lipids, results of [1-14C]acetate radiolabeling experiments gave a much different picture of the metabolism of this fatty acid. In time-course labeling of carrot endosperm, [1-14C]acetate was rapidly incorporated into PC in high levels. Through 30 min, radiolabel was most concentrated in PC, and of this, 80 to 85% was in the form of petroselinic acid. One explanation for the large disparity in amounts of petroselinic acid in PC as determined by fatty acid mass analyses and 14C radiolabeling is that turnover of these lipids or the fatty acids of these lipids results in relatively low accumulation of petroselinic acid mass. Consistent with this, the kinetics of [1-14C]acetate time-course labeling of carrot endosperm and "pulse-chase" labeling of coriander endosperm suggested a possible flux of fatty acids from PC into TAG. In time-course experiments, radiolabel initially entered PC at the highest rates but accumulated in TAG at later time points. Similarly, in pulse-chase studies, losses in absolute amounts of radioactivity from PC were accompanied by significant increases of radiolabel in TAG. In addition, stereospecific analyses of unlabeled and [1-14C]acetate-labeled PC of coriander endosperm indicated that petroselinic acid can be readily incorporated into both the sn-1 and sn-2 positions of this lipid. Because petroselinic acid is neither synthesized nor further modified on polar lipids, the apparent metabolism of this fatty acid through PC (and possibly through other polar lipids) may define a function of PC in TAG assembly apart from its involvement in fatty acid modification reactions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号