首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iodine (I) is an essential trace element that can influence animal health and productivity. In this study, we investigated the effects of dietary iodine on the antioxidant indices of organ (liver and thyroid gland) and messenger RNA (mRNA) expression of glutathione peroxidase (GSH-Px) in Rex rabbits. A total of 120 4-month-old Rex rabbits (2235.4 ± 13.04 g BW) were divided into four equal groups, and their diets were supplemented with iodine (0, 0.2, 2, or 4 mg/kg dry matter (DM)). The iodine concentration in basal diet (control group) was 0.36 mg/kg DM. In most of measured parameters, supplemental iodine exerted no significant effect. Growth and slaughter performance and organ weight were not influenced significantly by iodine supplementation. Serum T3 was significantly lower in 2-mg I group than in 0.2 and 4-mg I groups (P < 0.05). Superoxide dismutase (SOD), GSH-Px, methane dicarboxylic aldehyde (MDA), and thyroperoxidase (TPO) in the serum and liver were not influenced (P > 0.05). Conversely, serum catalase (CAT) was significantly reduced (P < 0.05). In the thyroid, GSH-Px was higher in the 2-mg I group than in the 0.2- and 4-mg I groups (P < 0.05). RT-PCR results showed that the mRNA expression level of GSH-Px in the liver was not significantly influenced (P > 0.05). In the thyroid gland, the mRNA expression level of GSH-Px was higher in the 2-mg I group than in the 4-mg I group (P < 0.05), which agreed with the activity of GSH-Px. In conclusion, iodine supplementation exerted no effect on the performance and antioxidant capacity of the body, but dietary iodine influenced serum T3 or GSH-Px in the thyroid gland. Thus, on the basis of serum T3 and GSH-Px levels in the thyroid gland, we hypothesized that GSH-Px secretion was increased by adding dietary iodine in the thyroid, which may inhibit the H2O2 generation and further influence the thyroid hormone synthesis.  相似文献   

2.
The aim of this study was to investigate the effect of gallic acid (GA) on liver fibrosis induced by carbon tetrachloride (CCl4). Male BALB/c mice were randomly divided into four groups: normal control group (group A), CCl4-induced liver injury control group (group B), and CCl4 induction with GA of low dose (5 mg/kg) and high dose (15 mg/kg) treatment group (group C and group D). GA was intra-gastric given for mice once a day after 2 weeks of CCl4 induction. Animals were killed at the eighth week. Degrees of fibrosis and collagen percentage were measured. Hyaluronic acid (HA), type IV collagen (cIV), malondialdehyde (MDA), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma-glutamyl transferase (γ-GT) were determined. Expression of matrix metalloproteinases-2 (MMP-2) and tissue inhibitor of matrix metalloproteinases-1 (TIMP-1) mRNA levels were examined by RT-PCR. Western blotting was carried out to evaluate the changes of MMP-2 protein. HE and VG stainings showed GA in a dose-dependent manner improved significantly the fibrosis condition in CCl4-injured mice (P < 0.05 or P < 0.01). Also, the concentrations of HA, cIV, and MDA, as well as the serum levels of ALT, AST, and γ-GT were markedly reduced by GA (P < 0.05 or P < 0.01), and decreases in MMP-2, TIMP-1 mRNA, and MMP-2 protein were observed as well (P < 0.05 or P < 0.01). GA could exert protective effect on liver injury and reduce liver fibrosis induced by CCl4 in mice, which might be through the inhibition of hepatic stellate cell activity.  相似文献   

3.
An experiment was conducted to investigate the effects of zinc glycinate (Zn-Gly) supplementation as an alternative for zinc sulphate (ZnSO4) on productive and reproductive performance, zinc (Zn) concentration and antioxidant status in broiler breeders. Six hundred 39-week-old Lingnan Yellow broiler breeders were randomly assigned to 6 groups consisting of 4 replicates with 25 birds each. Breeders were fed a basal diet (control group, 24 mg Zn/kg diet), basal diet supplemented with 80 mg Zn/kg diet from ZnSO4 or basal diet supplemented with 20, 40, 60 and 80 mg Zn/kg diet from Zn-Gly. The experiment lasted for 8 weeks after a 4-week pre-test with the basal diet, respectively. Results showed that Zn supplementation, regardless of sources, improved (P?<?0.05) the feed conversion ratio (kilogram of feed/kilogram of egg) and decreased broken egg rate, and elevated (P?<?0.05) the qualified chick rate. Compared with the ZnSO4 group, the 80 mg Zn/kg Zn-Gly group significantly increased (P?<?0.05) average egg weight, fertility, hatchability and qualified chick rate, whereas it decreased (P?<?0.05) broken egg rate. The Zn concentrations in liver and muscle were significantly higher (P?<?0.05) in 80 mg Zn/kg Zn-Gly group than that in ZnSO4 group. Compared with ZnSO4 group, 80 mg Zn/kg Zn-Gly group significantly elevated (P?<?0.05) the mRNA abundances of metallothionein (MT) and copper-zinc superoxide (Cu-Zn SOD), as well as the Cu-Zn SOD activity and MT concentration in liver. Moreover, the 80 mg Zn/kg Zn-Gly group had higher (P?<?0.05) serum T-SOD and Cu-Zn SOD activities than that in the ZnSO4 group. This study indicated that supplementation of Zn in basal diet improved productive and reproductive performance, Zn concentration and antioxidant status in broiler breeders, and the 80 mg Zn/kg from Zn-Gly was the optimum choice for broiler breeders compared with other levels of Zn from Zn-Gly and 80 mg/kg Zn from ZnSO4.  相似文献   

4.
d-galactose (GAL) causes aging-related changes and oxidative stress in the organism. We investigated the effect of carnosine (CAR) or taurine (TAU), having antioxidant effects, on hepatic injury and oxidative stress in GAL-treated rats. Rats received GAL (300 mg/kg; s.c.; 5 days/week) alone or together with CAR (250 mg/kg/daily; i.p.; 5 days/week) or TAU (2.5 % w/w; in rat chow) for 2 months. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and hepatic malondialdehyde (MDA), protein carbonyl (PC) and glutathione (GSH) levels and superoxide dismutase (SOD), glutathione peroxidase (GSH-0050x), and glutathione transferase (GST) activities were determined. Hepatic expressions of B cell lymphoma-2 (Bcl-2), Bax and Ki-67 were evaluated. Serum ALT, AST, hepatic MDA, and PC levels were observed to increase in GAL-treated rats. Hepatic Bax expression, but not Bcl-2, increased, Ki-67 expression decreased. GAL treatment caused decreases in GSH levels, SOD and GSH-Px activities in the liver. Hepatic mRNA expressions of SOD, but not GSH-Px, also diminished. CAR or TAU treatments caused significant decreases in serum ALT and AST activities. These treatments decreased apoptosis and increased proliferation and ameliorated histopathological findings in the livers of GAL-treated rats. Both CAR and TAU reduced MDA and PC levels and elevated GSH levels, SOD and GSH-Px (non significant in TAU?+?GAL group) activities. These treatments did not alter hepatic mRNA expressions of SOD and GSH-Px enzymes. Our results indicate that CAR and TAU restored liver prooxidant status together with histopathological amelioration in GAL-induced liver damage.  相似文献   

5.
Learning and memory abilities are associated with alterations in gut function. The two-way proanthocyanidins-microbiota interaction in vivo enhances the physiological activities of proanthocyanidins and promotes the regulation of gut function. Proanthocyanidins extracted from lotus seedpod (LSPC) have shown the memory-enhancing ability. However, there has been no literature about whether Lactobacillus casei-01 (LC) enhances the ameliorative effects of LSPC on learning and memory abilities. In this study, learning and memory abilities of scopolamine-induced amnesia mice were evaluated by Y-maze test after 20-day administration of LC (109 cfu/kg body weight (BW)), LSPC (low dose was 60 mg/kg BW (L-LSPC) and high dose was 90 mg/kg BW (H-LSPC)), or LSPC and LC combinations (L-LSPC+LC and H-LSPC+LC). Alterations in antioxidant defense ability and oxidative damage of brain, serum and colon, and brain cholinergic system were investigated as the possible mechanisms. As a result, the error times of H-LSPC+LC group were reduced by 41.59% and 68.75% relative to those of H-LSPC and LC groups respectively. LSPC and LC combinations ameliorated scopolamine-induced memory impairment by improving total antioxidant capacity (TAOC) level, glutathione peroxidase (GSH-Px) and total superoxide dismutase (T-SOD) activities of brain, serum and colon, suppressing malondialdehyde (MDA) level of brain, serum and colon, and inhibiting brain acetylcholinesterase (AchE), myeloperoxidase, total nitric oxide synthase and neural nitric oxide synthase (nNOS) activities, and nNOS mRNA level. Moreover, LC facilitated the ameliorative effects of H-LSPC on GSH-Px activity of colon, TAOC level, GSH-Px activity and ratio of T-SOD to MDA of brain and serum, and the inhibitory effects of H-LSPC on serum MDA level, brain nNOS mRNA level and AchE activity. These results indicated that LC promoted the memory-enhancing effect of LSPC in scopolamine-induced amnesia mice.  相似文献   

6.
We investigated the regulation of antioxidant system under acetaminophen (AAP) toxicity. Twelve male New Zealand rabbits were divided into two groups with the following treatments: Group 1 animals were intraperitoneally injected with single saline (control). Group 2 animals were treated with intraperitoneal injection of AAP at a dose of 250 mg/kg body weight. Four hours following the treatments, blood samples were collected and the rabbits were sacrificed to collect liver samples. Hepatocellular damage was evaluated by aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels as well as histopathological examinations and immunohistochemical analysis. Tissue-reduced glutathione (GSH), nitric oxide (NO·), and malondialdehyde (MDA) levels were also measured. mRNA expression levels of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) were measured by semi-quantitative RT-PCR. It was found that liver GSH was reduced significantly in AAP-treated rabbits (< 0.05), while MDA and NO· levels were increased when they were compared to control (< 0.05). Blood AST and ALT levels were also increased following AAP treatment (< 0.05). Hepatocellular degeneration and severe necrosis were detected in histopathological examinations. Increased immunostaining was observed for inducible nitric oxide synthase (iNOS) and nitrotyrosine in the liver. There were no changes in mRNA expression levels of SOD, CAT, and GSH-Px after AAP treatment compared to control group. These results suggest that the expression of these enzymes, which are involved in the antioxidant system, may not be altered after AAP toxicity, although classical toxic changes such as depletion of GSH, hepatocellular necrosis, and increased immunostaining for iNOS and nitrotyrosine were detected.  相似文献   

7.
Little is known about the effective role of Hypericum perforatum on hepatic ischemia–reperfusion (I/R) injury in rats. Hence, albino rats were subjected to 45 min of hepatic ischemia followed by 60 min of reperfusion period. Hypericum perforatum extract (HPE) at the dose of 50 mg/kg body weight (HPE50) was intraperitonally injected as a single dose, 15 min prior to ischemia. Rats were sacrificed at the end of reperfusion period and then, biochemical investigations were made in serum and liver tissue. Liver tissue homogenates were used for the measurement of malondialdehyde (MDA), catalase (CAT) and glutathione peroxidase (GPx) levels. At the same time alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) were assayed in serum samples and compared statistically. While the ALT, AST, LDH activities and MDA levels were significantly increased, CAT and GPx activities significantly decreased in only I/R-induced control rats compared to normal control rats (p < 0.05). Treatment with HPE50 significantly decreased the ALT, AST, LDH activities and MDA levels, and markedly increased activities of CAT and GPx in tissue homogenates compared to I/R-induced rats without treatment–control group (p < 0.05). In oxidative stress generated by hepatic ischemia–reperfusion, H. perforatum L. as an antioxidant agent contributes an alteration in the delicate balance between the scavenging capacity of antioxidant defence systems and free radicals in favour of the antioxidant defence systems in the body.  相似文献   

8.
This study was conducted to investigate the effects of maternal zinc glycine (Zn-Gly) supplementation as an alternative for zinc sulfate (ZnSO4) on mortality, zinc (Zn) concentration, and antioxidant status in a developing embryo and 1-day-old chick. Six hundred 39-week-old broiler breeders were randomly assigned to 6 treatments, each treatment including 5 replicates with 20 birds each. Six treatments received a basal diet (control, 24 mg Zn/kg diet) or a basal diet supplemented with ZnSO4 (80 mg Zn/kg) or Zn-Gly (20, 40, 60, or 80 mg Zn/kg), respectively. The experiment lasted for 8 weeks after a 4-week pre-experiment with a basal diet. At the last week, 100 eggs per replicate were randomly collected for incubation. Compared with the control treatment, Zn supplementation decreased (P < 0.05) embryo mortalities of the late stage and the whole period, increased (P < 0.05) liver Zn concentration in the embryo of d9, d19, and 1-day-old chick, and improved (P < 0.05) antioxidant status in the embryo of d19 and 1-day-old chick. Compared with the ZnSO4 treatment, 80 mg Zn/kg Zn-Gly treatment significantly decreased (P < 0.05) the late stage embryo mortality and increased (P < 0.05) liver Zn concentration in the embryo of d9, d19, and 1-day-old chick. The 80 mg Zn/kg Zn-Gly treatment significantly increased (P < 0.05) copper-zinc superoxide dismutase activity in d19 embryo and 1-day-old chick, total superoxide dismutase activity in 1-day-old chick, and copper-zinc superoxide dismutase messenger RNA (mRNA) abundance of d9 embryo and 1-day-old chick than that in ZnSO4 treatment. The liver metallothionein concentration of the developing embryo and 1-day-old chick and its mRNA abundance of d19 embryo were also significantly increased (P < 0.05) in the 80 mg Zn/kg Zn-Gly treatment in comparison with ZnSO4 treatment. In conclusion, maternal Zn supplementation decreased embryo mortalities of the late stage and the whole period by increasing liver Zn concentration and antioxidant status in d19 embryo and 1-day-old chick, and 80 mg Zn/kg from Zn-Gly treatment was the optimum choice.  相似文献   

9.
The objective of this study was to determine the concentration of total selenium (Se) and the proportions of total Se comprised as selenomethionine (SeMet) and selenocysteine (SeCys) in the postmortem tissues of female pheasants (Phasianus Colchicus Torquator) offered diets that contained graded additions of selenised-enriched yeast (SY) or a single comparative dose of sodium selenite (SS). Thiobarbituric acid reactive substances (TBARS) and tissue glutathione peroxidase (GSH-Px) activity of breast (Pectoralis Major) were assessed at 0 and 5 days postmortem. A total of 216 female pheasant chicks were enrolled into the study. Twenty-four birds were euthanased at the start of the study, and samples of blood, breast muscle, leg muscle (M. Peroneus Longus and M. Gastrocnemius), heart, liver, kidney and gizzard were collected for determination of total Se. Remaining birds were blocked by live weight and randomly allocated to one of four dietary treatments (n = 48 birds/treatment) that either differed in Se source (SY v. SS) or dose (control (0.17 mg total Se/kg), SY-L and SS-L (0.3 mg/kg total Se as SY and SS, respectively) and SY-H (0.45 mg total Se/kg)). Following 42 and 91 days of treatment, 24 birds per treatment were euthanased, and samples of blood, breast muscle, leg muscle, heart, liver, kidney and gizzard were retained for determination of total Se and the proportion of total Se comprised as SeMet or SeCys. Whole blood GSH-Px activity was determined at each time point. Tissue GSH-Px activity and TBARS were determined in breast tissue at the end of the study. There were increases in both blood and tissues to the graded addition of SY to the diet (P < 0.001), but the same responses were not apparent with the blood and tissues of selenite-supplemented birds receiving a comparable dose (SY-L v. SS-L). Although there were differences between tissue types in the distribution of SeMet and SeCys, there were few differences between treatments. There were effects of treatment on erythrocyte GSH-Px activity (P = 0.012) with values being higher in treatments SY-H and SS-L when compared with the negative control and treatment SY-L. There were no effects of treatment on tissue GSH-Px activity, which is reflected in the overall lack of any treatment effects on TBARS.  相似文献   

10.
The present study aimed at detecting DNA damage and fragmentation as well as histone acetylation depending on oxidative stress caused by CCl4 intoxication. Also, the protective role of N-acetyl cysteine, a precursor for GSH, in DNA damage is investigated. Sixty rats were used in this study. In order to induce liver toxicity, CCl4 in was dissolved in olive oil (1/1) and injected intraperitoneally as a single dose (2 ml/kg). N-acetyl cysteine application (intraperitoneal, 50 mg/kg/day) was started 3 days prior to CCl4 injection and continued during the experimental period. Control groups were given olive oil and N-acetyl cysteine. After 6 and 72 h of CCl4 injection, blood and liver tissue were taken under ether anesthesia. Nuclear extracts were prepared from liver. Changes in serum AST and ALT activities as well as MDA, TAS, and TOS levels showed that CCl4 caused lipid peroxidation and liver damage. However, lipid peroxidation and liver damage were reduced in the N-acetyl cysteine group. Increased levels in 8-hydroxy-2-deoxy guanosine and histone acetyltransferase activities, decreased histone deacetylase activities, and DNA breakage detected in nuclear extracts showed that CCl4 intoxication induces oxidative stress and apoptosis in rat liver. The results of the present study indicate that N-acetyl cysteine has a protective effect on CCl4-induced DNA damage.  相似文献   

11.
An experiment is conducted to investigate the effects of selenium (Se) source and level on growth performance, tissue Se concentrations, antioxidation, and immune functions of heat-stressed broilers from 22 to 42?days of age. A total of 210 22-day-old Arbor Acres commercial male chicks were assigned by body weight to one of seven treatments with six replicates of five birds each in a completely randomized design involving a 3?×?2 factorial arrangement plus one Se-unsupplemented basal diet control (containing 0.027?mg of Se/kg). The three Se sources were sodium selenite (Na2SeO3), Se yeast, and AMMS Se (Se protein), and the two supplemental Se levels were 0.15 or 0.30?mg Se/kg. All birds were reared under heat-stressed condition (33?±?1?°C during 0900?C1700?hours and 27?±?1?°C during 1900?C0700?hours with a relative humidity of 60?C80?%). The results showed that heat-stressed chicks fed Se-supplemented diets had higher (P?<?0.10) average daily feed intake, Se concentrations in liver and breast muscle, liver glutathione peroxidase (GSH-Px) activity, serum antibody titers against H5N1(Re-4 strain), H5N1(Re-5 strain) and lower (P?<?0.01) mortality compared with the control. Chicks fed the diets supplemented with 0.30?mg/kg of Se had higher (P?<?0.05) Se concentrations in liver and breast muscle, liver GSH-Px activity, and serum antibody titer against H5N1 (Re-4 strain) than those fed the diets supplemented with 0.15?mg/kg of Se. Broilers fed the diets supplemented with Se yeast had higher (P?<?0.001) Se concentrations in liver and breast muscle than those fed the diets supplemented with Na2SeO3 or AMMS Se. However, broilers fed the diets supplemented with AMMS Se had higher (P?<?0.05) serum antibody titers against H5N1 (Re-4 strain) and H5N1 (Re-5 strain) than those fed the diets supplemented with Na2SeO3. These results indicated that Se yeast was more effective than Na2SeO3 or AMMS Se in increasing tissue Se retention; however, AMMS Se was more effective than Na2SeO3 or Se yeast in improving immune functions of heat-stressed broilers.  相似文献   

12.
The present study was designed to evaluate the in vitro and in vivo ameliorative antioxidant potential of secoisolariciresinol diglucoside (SDG). In vitro antioxidant activity of synthetic SDG was carried out using DPPH, reducing power potency, and DNA protection assays. Wistar albino rats weighing 180–220 g were used for in vivo studies and liver damage was induced in the experimental animals by a single intraperitoneal (I.P.) injection of CCl4 (2 g/kg b.w.). Intoxicated animals were treated orally with synthetic SDG at (12.5 and 25 mg/kg b.w.) and Silymarin (25 mg/kg) for 14 consecutive days. The levels of catalase (CAT), superoxide dismutase (SOD), peroxidase (POX), and lipid peroxidase (LPO) were measured in liver and kidney homogenates. The synthetic SDG exerts high in vitro antioxidant potency as it could scavenge DPPH at a IC50 value of 78.9 μg/ml and has dose-dependent reducing power potency and protected DNA at 0.5 mg/ml concentration. Oral administration of synthetic SDG at 12.5 and 25 mg/kg b.w. showed significant protection compared to Silymarin (25 mg/kg) and the activities of CAT, SOD, and POX were markedly increased (P < 0.05), whereas LPO significantly decreased (P < 0.001) in a dose-dependent manner in liver and kidney in both pre- and post-treatment groups when compared to toxin-treated group. The results of in vitro and in vivo investigations revealed that synthetic SDG at 25 mg/kg b.w. is associated with beneficial changes in hepatic enzyme activities and thereby plays a key role in the prevention of oxidative damage in immunologic system.  相似文献   

13.
Cardiovascular diseases (CVDs) are the major health problem of advanced as well as developing countries of the world. The aim of the present study was to investigate the protective effect of the Solidago virgaurea extract on isoproterenol-induced cardiotoxicity in rats. The subcutaneous injection of isoproterenol (30 mg/kg) into rats twice at an interval of 24 h, for two consecutive days, led to a significant increase in serum lactate dehydrogenase, creatine phosphokinase, alanine transaminase, aspartate transaminase, and angiotensin-converting enzyme activities, total cholesterol, triglycerides, free serum fatty acid, cardiac tissue malondialdehyde (MDA), and nitric oxide levels and a significant decrease in levels of glutathione and superoxide dismutase in cardiac tissue as compared to the normal control group (P?<?0.05). Pretreatment with S. virgaurea extract for 5 weeks at a dose of 250 mg/kg followed by isoproterenol injection significantly prevented the observed alterations. Captopril (50 mg/kg/day, given orally), an inhibitor of angiotensin-converting enzyme used as a standard cardioprotective drug, was used as a positive control in this study. The data of the present study suggest that S. virgaurea extract exerts its protective effect by decreasing MDA level and increasing the antioxidant status in isoproterenol-treated rats. The study emphasizes the beneficial action of S. virgaurea extract as a cardioprotective agent.  相似文献   

14.
The experiment was conducted with the objective of examining the effects of high molybdenum on the cell cycle and apoptosis of kidney in broilers by the methods of flow cytometry. Three hundred 1-day-old Avian broilers were randomly divided into four groups, and fed on diets as follows: control diet (Mo 13 mg/kg) and high molybdenum diets (Mo 500 mg/kg, high molybdenum group I; Mo 1,000 mg/kg, high molybdenum group II; Mo 1,500 mg/kg, high molybdenum group III) for 6 weeks. The results showed that the relative weight of kidney were higher (P?<?0.05 or P?<?0.01), and the cellular percentages of G0/G1 phase were lower, and cellular percentages of S phase and the proliferating index were higher in high molybdenum groups II and III than in control group (P?<?0.01). The percentage of renal cell apoptosis was increased in high molybdenum groups II and III when compared with that of control group (P?<?0.01). Immunohistochemical test showed that there were increased frequencies of positive cells containing Bax protein and decreased frequencies of positive cells containing Bcl-2 protein in high molybdenum groups II and III. It was concluded that dietary high molybdenum (1,000 mg/kg and 1,500 mg/kg) impaired the progression of renal cells from S phase to G2M phase obviously and induced renal cell apoptosis.  相似文献   

15.
Ginkgo biloba extract EGb761 is widely used to treat patients with learning and memory impairment in Alzheimer’s disease and Parkinson’s disease in China. However, it is not yet clear whether the analog of EGb761 (EGb) has a protective effect on the learning and memory damage induced by chronic fluorosis. In this study, 30 Wistar rats were randomly divided into three groups: a control group, a sodium fluoride (NaF) + EGb group, and a NaF group. The rats were administered 0.5 ml water containing NaF (100 mg/l) and EGb (120 mg/kg) per day via gavage. After 3 months, the rats’ capacity for learning and memory was tested using a Y-maze. Damage to hippocampal neurons was evaluated by histological examination of the CA3 area. Superoxide dismutase (SOD) activity and the levels of glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) were measured. Furthermore, the expression levels of Bcl-2 and Bax and the levels of cleaved Caspase3 in the hippocampus were evaluated by RT-PCR and Western blotting. The results showed that EGb could improve learning and memory abilities, enhance the activities of SOD and GSH-Px, attenuate the level of MDA, upregulate the ratio of Bcl-2/Bax, and downregulate the level of cleaved Caspase3.  相似文献   

16.
The study was conducted to determine the effects of iron glycine chelate (Fe-Gly) on growth, tissue mineral concentrations, fecal mineral excretion, and liver antioxidant enzyme activities in broilers. A total of 360 1-day-old commercial broilers (Ross?×?Ross) were randomly allotted to six dietary treatments with six replications of ten chicks per replicate. Broilers were fed a control diet with no Fe supplementation, while five other treatments consisted of 40, 80, 120, and 160?mg Fe/kg diets from Fe-Gly, and 160?mg Fe/kg from ferrous sulfate, respectively. After a 42-day feeding trial, the results showed that 120 and 160?mg Fe/kg as Fe-Gly improved the average daily gain (P?<?0.05) and average daily feed intake (P?<?0.05) of broilers (4?C6?weeks). Addition with 120 and 160?mg Fe/kg from Fe-Gly and 160?mg Fe/kg from FeSO4 increased Fe concentration in serum (P?<?0.05), liver (P?<?0.05), breast muscle (P?<?0.05), tibia (P?<?0.05), and feces (P?<?0.01) at 21 and 42?days. There were linear responses to the addition of Fe-Gly from 0 to 160?mg/kg Fe on Fe concentration in serum (21?days, P?=?0.005; 42?days, P?=?0.001), liver (P?=?0.001), breast muscle (P?=?0.001), tibia (P?=?0.001), and feces (21?days, P?=?0.011; 42?days, P?=?0.032). Liver Cu/Zn superoxide dismutase activities of chicks were increased by the addition of 80, 120, and 160?mg Fe/kg as Fe-Gly to diets at 42?days. There were no differences in liver catalase activities of chicks among the treatments (P?>?0.05). This study indicates that addition with Fe-Gly could improve growth performance and iron tissue storage and improves the antioxidant status of broiler chickens.  相似文献   

17.
Hypercholesterolemia and lipid peroxidation play complementary roles in atherosclerosis. Artichoke (Cynara scolymus L., Asteraceae) leaf extract (ALE), rich in antioxidants, has cholesterol-reducing effect. We investigated the effect of ALE on serum and hepatic lipid levels and pro-oxidant–antioxidant balance in the liver and heart of hypercholesterolemic rats. Rats were fed on 4% (w/w) cholesterol and 1% cholic acid (w/w) supplemented diet for 1 month. ALE (1.5 g/kg/day) was given by gavage during the last 2 weeks. High cholesterol (HC) diet caused significant increases in serum and liver cholesterol and triglyceride levels. It increased malondialdehyde (MDA) and diene conjugate (DC) levels in both tissues. Hepatic vitamin E levels and hepatic and cardiac glutathione peroxidase (GSH-Px) activities decreased, but superoxide dismutase and glutathione transferase activities, glutathione, and vitamin C levels remained unchanged due to HC diet. Serum cholesterol and triglyceride levels and ratio of cholesterol to high-density lipoprotein (HDL)-cholesterol decreased in ALE plus HC-treated rats, but liver cholesterol and triglyceride levels remained unchanged. Significant decreases in hepatic and cardiac MDA and DC levels and increases in hepatic vitamin E and GSH-Px activities were observed in ALE-treated hypercholesterolemic rats. Our results indicate that ALE decreases serum lipids and hypercholesterolemia-induced pro-oxidant state in both tissues.  相似文献   

18.
Malondialdehyde (MDA), glutathione (GSH) content, total antioxidant capacity (T-AOC) levels, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and glutathione transferase (GST) activities were studied in serum, liver, and kidney of growing pigs after graded doses of cadmium administration in diets. One hundred ninety-two barrows (Duroc x Landrace x Yorkshire), with similar initial body weight 27.67±1.33 kg, were randomly allotted into 4 different treatments with 3 replications (16 pigs per replication). The treatments received the same basal diet added with 0, 0.5, 5.0, and 10.0 mg/kg cadmium (as CdCl2), respectively. The results showed pigs treated with 10 mg/kg cadmium significantly decreased average daily gain (ADG) (p<0.05) and increased feed/gain ratio (F/G) (p<0.05) compared to the control. In this treatment, the contents of MDA increased significantly (p<0.05), GSH concentrations, T-AOC levels, and the activities of SOD, GSH-PX, and GST decreased significantly (p<0.05). The results indicate 10 mg/kg cadmium could decrease pig antioxidant capacity after extended exposure and cadmium-induced increase lipid peroxidation might not be only the result of the possibility of lower level of GSH but could also be as a result of direct action of cadmium on peroxidation reaction.  相似文献   

19.
Apocynum venetum L., belonging to the family Apocynaceae, is a popular medicinal plant, which is commonly used in the treatment of hypertension, neurasthenia, and hepatitis in China. In the present study, the total flavonoids (TFs) were prepared from the leaves of A. venetum, and its protective effects on carbon tetrachloride (CCl4)-induced hepatotoxicity in a cultured HepG2 cell line and in mice were investigated. Cell exposed to 0.4% CCl4 (v/v) for 6 h led to a significant decrease in cell viability, increased LDH leakage, and intracellular reactive oxygen species (ROS). CCl4 also induced cell marked apoptosis, which was accompanied by the loss of mitochondrial membrane potential (MMP). Pretreatment with TFs at concentrations of 25, 50, and 100 μg/mL effectively relieved CCl4-induced cellular damage in a dose-dependent manner. In vivo, TFs (100, 200, and 400 mg/kg BW) were administered via gavage daily for 14 days before CCl4 treatment. The high serum ALT and AST levels induced by CCl4 were dose-dependently suppressed by pretreatment of TFs (200 and 400 mg/kg BW). Histological analysis also supported the results obtained from serum assays. Furthermore, TFs could prevent CCl4-caused oxidative damage by decreasing the MDA formation and increasing antioxidant enzymes (CAT, SOD, GSH-Px) activities in liver tissues. In summary, both in vitro and in vivo data suggest that TFs, prepared from A. venetum, showed a remarkable hepatoprotective and antioxidant activity against CCl4-induced liver damage.  相似文献   

20.
Cadmium (Cd) is an important environmental pollutant present in soil, water, air, and food. Selenium (Se) can antagonize some metal element toxicity including Cd. To investigate the cytotoxicity of Cd and the protective effects of Se on bird immunocytes in vitro, chicken splenic lymphocytes with CdCl2 (10?6 mol/L), Na2SeO3 (10?7 mol/L), and the mixture (10?7 mol/L Na2SeO3 and 10?6 mol/L CdCI2) were incubated for 12, 24, 36, and 48 h, respectively. A high level of malondialdehyde (MDA) and reactive oxygen species (ROS) productions were observed in Cd treatment group; the activities of catalase (CAT), glutathione peroxidise (GSH-Px), superoxide dismutase (SOD), and the mitochondrial inner transmembrane potential (ΔΨm) were significantly lower in Cd treatment group than those in controls (P?P?mRNA level of Bak, p53, caspase-3, caspase-9, and cytochrome c (Cyt c) and decreased Bcl-2, Bcl-xl, and CaM were observed in Cd treatment group. Se ameliorated ΔΨm and [Ca2+]i for mitochondria function restoring, and Se was able to modulate the expression of relative genes. In conclusion, concurrent treatment with Se reduced the Cd-induced morphological changes and oxidative stress, ion disorder, and apoptosis, suggesting that the toxic effects of Cd on the chicken splenic lymphocytes were partly meliorated by Se.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号