首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of rutin and gallic acid on growth, phytochemical and defense gene activation of rice (Oryza sativa L.) was investigated. The seeds of rice were primed with different concentrations of rutin and gallic acid (10–60 µg mL?1) to explicate the effect on germination on water agar plates. Further, to study the effect of most effective concentrations of gallic acid (60 µg mL?1) and rutin (50 µg mL?1), greenhouse pot experiment was set up to determine the changes in growth, antioxidant and defense parameters. The results revealed more pronounced effect of gallic acid on total chlorophyll and carotenoids as well as on total flavonoid content and free radical scavenging activities. Gene expression analysis of OsWRKY71, PAL, CHS and LOX genes involved in strengthening the plant defense further validated the results obtained from the biochemical analysis. Microscopic analysis also confirmed reduction in total reactive oxygen species, free radicals like H2O2 and O2 ? by exogenous application of gallic acid and rutin. The data obtained thus suggest that both gallic acid and rutin can affect the growth and physiology of rice plants and therefore can be used to develop effective plant growth promoters and as substitute of biofertilizers for maximizing their use in field conditions.  相似文献   

2.
Hartmannella vermiformis and Acanthamoeba polyphaga are frequently isolated from drinking water and permissive to Legionella pneumophila parasitization. In this study, extracellular factor(s) produced by H. vermiformis and A. polyphaga were assessed for their effects on cultivability of L. pneumophila. Page’s amoeba saline (PAS) was used as an encystment medium for H. vermiformis and A. polyphaga monolayers, and the culture supernatants (HvS and ApS, respectively) were assessed against L. pneumophila growth. Compared to PAS and ApS, HvS significantly inhibited L. pneumophila strain Philadelphia-1 (Ph-1) cultivability by 3 log10 colony forming unit (CFU) mL?1 after 3 days of exposure compared to <0.5 log10 CFU mL?1 reduction of strain Lp02 (P?<?0.001). Flow cytometric analysis revealed changes in the percentage and cultivability of three bacterial subpopulations: intact/slightly damaged membrane (ISM), undefined membrane status (UD), and mixed type (MT). After 3 days of HvS exposure, the MT subpopulation decreased significantly (31.6 vs 67.2 %, respectively, P?<?0.001), while the ISM and UD subpopulations increased (+26.7 and +6.9 %, respectively) with the ISM subpopulation appearing as viable but nonculturable (VBNC) cells. HvS was separated into two fractions based on molecular weight, with more than 99 % of the L. pneumophila inhibition arising from the <5 kDa fraction (P?<?0.001). Liquid chromatography indicated the inhibitory molecule(s) are likely polar and elute from a Novapak C18 column between 6 and 15 min. These results demonstrate that H. vermiformis is capable of extracellular modulation of L. pneumophila cultivability and probably promote the VBNC state for this bacterium.  相似文献   

3.
A time-resolved spectroscopic study of the isolated photosynthetic reaction center (RC) from Heliobacterium modesticaldum reveals that thermal equilibration of light excitation among the antenna pigments followed by trapping of excitation and the formation of the charge-separated state P800 +A0 occurs within ~25 ps. This time scale is similar to that reported for plant and cyanobacterial photosystem I (PS I) complexes. Subsequent electron transfer from the primary electron acceptor A0 occurs with a lifetime of ~600 ps, suggesting that the RC of H. modesticaldum is functionally similar to that of Heliobacillus mobilis and Heliobacterium chlorum. The (A0  ? A0) and (P800 + ? P800) absorption difference spectra imply that an 81-OH-Chl a F molecule serves as the primary electron acceptor and occupies the position analogous to ec3 (A0) in PS I, while a monomeric BChl g pigment occupies the position analogous to ec2 (accessory Chl). The presence of an intense photobleaching band at 790 nm in the (A0  ? A0) spectrum suggests that the excitonic coupling between the monomeric accessory BChl g and the 81-OH-Chl a F in the heliobacterial RC is significantly stronger than the excitonic coupling between the equivalent pigments in PS I.  相似文献   

4.
Abelmoschus manihot, an ornamental plant, was examined for phytoremediation purposes in accordance with the ability to accumulate cadmium and physiological mechanisms of cadmium tolerance. A net photosynthetic rate (A N) glasshouse experiment for 60 days was conducted to investigate the influence of different cadmium amounts (0–100 mg kg?1) on the growth, biomass, photosynthetic performance, reactive oxygen species (ROS) production, antioxidative enzyme activities, Cd uptake and accumulation of A. manihot. Exposure to cadmium enhanced plant growth even at 100 mg kg?1, without showing symptoms of visible damage. The cadmium concentration of shoots (stems or leaves) and roots was more than the critical value of 100 mg kg?1 and reached 126.17, 185.26 and 210.24 mg kg?1, respectively. BCF values of A. manihot plants exceeded the reference value 1.0 for all the Cd treatments, and TF values were greater than 1 at 15–60 mg kg?1 Cd treatment. The results also showed that cadmium concentrations of 60 mg kg?1 or less induced a significant enhancement in plant net photosynthetic rate (A N), stomatal conductance (G s), transpiration rate (T r), photosynthetic pigments and F v/F m. These parameters were slightly decreased at the higher concentration (100 mg kg?1). The ROS production (O2 ?, H2O2) and antioxidative response including SOD, CAT and POD were significantly enhanced by increasing cadmium. These results suggest that A. manihot can be considered as a Cd-hyperaccumulator and the hormetic effects may be taken into consideration in remediation of Cd contamination soil.  相似文献   

5.
The recent increase in human diseases and cancers requires new drugs to combat them. Sources have been found in rare microorganisms, those from extreme habitats, and from endophytes. In this study, the biological activity of endophytic fungi associated with the Brazilian medicinal plant Combretum leprosum was assessed. Cytotoxic and antiproliferative effects were evaluated using seven human cancer cells lines (HeLa, ECV304, B16F10, J744, P388, Jurkat and k562). In addition the minimum inhibitory concentration (MIC) against pathogenic human fungal was determined using four Candida species and the filamentous fungi Cryptococcus neoformans and Trichophyton rubrum. A compound from extracts of phylotype Aspergillus oryzae CFE108 exhibited the most significant cytotoxicity effect against histiocytic sarcoma J774 (IC50 of 0.80 μg?mL?1), leukemia Jurkat (IC50 of 0.89 μg?mL?1), bladder carcinoma ECV304 (IC50 of 3.08 μg?mL?1) and cervical cancer HeLa (IC50 of 2.97 μg?mL?1). The extract from phylotypes Fusarium oxysporum CFE177 displayed antifungal activity and inhibited the growth of Candida glabrata (4 μg?mL?1) as well as that of C. neoformans and T. rubrum with the lowest MIC being 62.5 μg?mL?1. In addition, the fractions from A. oryzae CFE108 showed marked morphological activity (rounding up) on endothelial cells (tEnd.1 cells), which is indicative of potential antivascular activity. Our results indicate that the endophytes associated with this medicinal plant may be a source of novel drugs.  相似文献   

6.
For the Fe–O2(S = 0) linkages of oxyhemes, valence bond (VB) structures are re-presented for the McClure [FeII(S = 1) + O2(S = 1)], Pauling–Coryell [FeII(S = 0) + O2*(S = 0)], and Weiss [FeIII(S = ½) + O2 ?(S = ½)] models of bonding. The VB structures for the McClure and Weiss models are of the increased-valence type, with more electrons participating in bonding than occur in their component Lewis structures. The Fe–O bond number and O–O bond order for the McClure structure are correlated with measured Fe–O and O–O bond lengths for oxymyoglobin. Back-bonding from O 2 ? to FeIII of the Weiss structure gives a restricted form of the McClure structure. The McClure and Weiss increased-valence structures are used to provide VB formulations of mechanisms for the oxyhemoglobin + NO reaction. The products of these two formulations are Hb+ and NO3 ? (where Hb is hemoglobin) and Hb+ and OONO?, respectively. Because Hb+ and NO3 ? are the observed products, they provide an experimental procedure for distinguishing the McClure and Weiss models. It is also shown that the same type of agreement between McClure-type theory and experiment occurs for oxycoboglobin + NO, cytochrome P450 monooxygenases, and related hydrogen atom transfer reactions. In the appendices, the results of density functional theory and multireference molecular orbital calculations for oxyhemes are related to one formulation of the increased-valence wavefunction for the McClure model, and theory is presented for the calculation of approximate weights for the Lewis structures that are components of the McClure increased-valence structure.  相似文献   

7.
Carbon balancing within the plant species is an important feature for climatic adaptability. Photosynthesis and respiration traits are directly linked with carbon balance. These features were studied in 20 wild rice accessions Oryza spp., and cultivars. Wide variation was observed within the wild rice accessions for photosynthetic oxygen evolution or photosynthetic rate (A), dark (R d), and light induced respiration (LIR) rates, as well as stomatal density and number. The mean rate of A varied from 10.49 μmol O2 m?2 s?1 in cultivated species and 13.09 μmol O2 m?2 s?1 in wild spp., The mean R d is 2.09 μmol O2 m?2 s?1 and 2.31 μmol O2 m?2 s?1 in cultivated and wild spp., respectively. Light induced Respiration (LIR) was found to be almost twice in wild rice spp., (16.75 μmol O2 m?2 s?1) compared to cultivated Oryza spp., Among the various parameters, this study reveals LIR and A as the key factors for positive carbon balance. Stomatal contribution towards carbon balance appears to be more dependent on abaxial surface where several number of stomata are situated. Correlation analysis indicates that R d and LIR increase with the increase in A. In this study, O. nivara (CR 100100, CR 100097), O. rufipogon (IR 103404) and O. glumaepatula (IR104387) were identified as potential donors which could be used in rice breeding program. Co-ordination between gas exchange and patchiness in stomatal behaviour appears to be important for carbon balance and environmental adaptation of wild rice accessions, therefore, survival under harsh environment.  相似文献   

8.

Aims

Responses of typical wetland plant Acorus tatarinowii to diesel stress were investigated to provide basis of ecological monitoring system and phytoremediation for diesel-contaminated wetland.

Methods

Greenhouse experiments were established to determine the germinability of seedlings, hydrogen peroxide in leaves, and DNA damage in roots exposed to a range of potentially phytotoxic diesel.

Results

The presence of diesel did not benefit the growth of A. tatarinowii. The germination ratio and germination rate decreased with the increase of diesel concentration, both the lowest value appeared when the concentration of diesel was 10,000 mg?kg?1. The lowest diesel concentration (2,000 mg?kg?1) in the soil significantly reduced the length, average diameter, and projected area of root, especially on the stress of the higher diesel concentration (4,000, 8,000, and 10,000 mg?kg?1). Furthermore, H2O2 concentration in leaves rose with the increasing concentration of diesel. However, no DNA oxidative damage to root was observed in our experiment.

Conclusions

Diesel exposure significantly inhabited the seed germination, root elongation, and seedlings growth of A. tatarinowii. Diesel stress caused the accumulation of H2O2 in the leaves of A. tatarinowii.  相似文献   

9.
In the present work, in order to investigate the electronic excited-state intermolecular hydrogen bonding between the chromophore coumarin 153 (C153) and the room-temperature ionic liquid N,N-dimethylethanolammonium formate (DAF), both the geometric structures and the infrared spectra of the hydrogen-bonded complex C153–DAF+ in the excited state were studied by a time-dependent density functional theory (TDDFT) method. We theoretically demonstrated that the intermolecular hydrogen bond C1?=?O1···H1–O3 in the hydrogen-bonded C153–DAF+ complex is significantly strengthened in the S1 state by monitoring the spectral shifts of the C=O group and O–H group involved in the hydrogen bond C1?=?O1···H1–O3. Moreover, the length of the hydrogen bond C1?=?O1···H1–O3 between the oxygen atom and hydrogen atom decreased from 1.693 Å to 1.633 Å upon photoexcitation. This was also confirmed by the increase in the hydrogen-bond binding energy from 69.92 kJ mol?1 in the ground state to 90.17 kJ mol?1 in the excited state. Thus, the excited-state hydrogen-bond strengthening of the coumarin chromophore in an ionic liquid has been demonstrated theoretically for the first time.  相似文献   

10.
The present study aims to investigate the levels of polyphenols and antioxidant activity in one of the most important commercial species of seaweeds in Kamchatka, an edible brown seaweed Saccharina bongardiana. Six extracts of S. bongardiana, acetone, methanol, ethanol, and the respective 70 % aqueous solutions, were assessed for total phenol content in order to determine the most efficient extracting solvent. The total phenol content was measured by the Folin–Ciocalteu method and expressed as phloroglucinol equivalents (PGE). The antioxidant tests used were 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, linoleic acid-β carotene oxidation inhibiting assay, and Fe2+ ion chelating method. Higher phenolic contents were obtained using aqueous organic solvents, as compared to the respective absolute solvents; 70 % acetone was found to be the most efficient solvent (1.039 mg PGE 100 mg?1 dry algal powder). High significant correlations were noted between total phenol content and the tested antioxidant activities; so the aqueous organic extracts exhibited the highest antioxidant activities versus DPPH radicals (EC50 values of 0.6–1.1 mg dry weight (DW) mL?1), linoleic acid-β carotene oxidation (74–78 % at 0.8 mg DW mL?1), as well as ferrous ions (EC50 values of 5.0–7.9 mg DW mL?1). Some methodological recommendations regarding the assays used and the expression of results are proposed.  相似文献   

11.
Microalgal starch is a potential feedstock for biofuel production. Nutrient stress is widely used to stimulate starch accumulation in microalgae. Cell growth and starch accumulation in the marine green microalga Tetraselmis subcordiformis were evaluated under extracellular phosphorus deprivation with initial cell densities (ICD) of 1.5, 3.0, 6.0, and 9.0?×?106 cells mL?1. The intracellular stored phosphorus supported cell growth when extracellular phosphorus was absent. The maximum starch content of 44.1 % was achieved in the lowest ICD culture, while the maximum biomass productivity of 0.71 g L?1 day?1, starch concentration of 1.6 g L?1, and starch productivity of 0.30 g L?1 day?1 were all obtained in the culture with the ICD of 3.0?×?106 cells mL?1. Appropriate ICD could be used to regulate the intracellular phosphorus concentration and maintain adequate photosynthetic activity to achieve the highest starch productivity, along with biomass and starch concentration. The recovery of phosphorus-deprived T. subcordiformis in medium containing 0.5, 1.0, or 6.0 mM KH2PO4 was also tested. Cell growth and starch accumulation ability could be recovered completely. A phosphorus pool in T. subcordiformis was shown to manipulate its metabolic activity under different environmental phosphorus availability. Though lower starch productivity and starch content were achieved under phosphorus deprivation compared with nitrogen- or sulfur-deprived conditions, the higher biomass and starch concentration make T. subcordiformis a good candidate for biomass and starch production under extracellular phosphorus deprivation.  相似文献   

12.
The development of nanotechnologies has increased the amount of manufactured metal oxide nanoparticles in the environment. In the view of nanoparticle dispersion to the environment, assessment of their toxicity becomes very crucial. Aluminum oxide (Al2O3) nanoparticles have wide range of use in industry as well as personal care products. The aim of this study was to evaluate the dose dependent effects of 13-nm-sized Al2O3 nanoparticles on wheat correlating with the appearance of enzymatic and non-enzymatic antioxidant defense response. Wheat roots were exposed to different concentrations of Al2O3 nanoparticles (5, 25 and 50 mg mL?1) for 96 h. The effects of Al2O3 nanoparticles were studied using different parameters such as H2O2 content, superoxide dismutase and catalase activity, lipid peroxidation, total proline, photosynthetic pigment and anthocyanin content. The results indicated that while Al2O3 nanoparticles caused a dose dependent increase in H2O2 content, superoxide dismutase activity, lipid peroxidation and proline contents, the catalase activity was decreased in compare the control. Moreover, total chlorophyll, chlorophyll a, carotenoids and anthocyanin contents reduced in the highest concentration 50 mg mL?1. In conclusion, Al2O3 nanoparticles caused oxidative stress in wheat after 96 h.  相似文献   

13.
Efforts to increase the productivity of microalgal cultures have been focused on the improvement of photobioreactors, but little attention has been paid to the nutritional requirements of microalgae in order to improve culture media formulation. In this study, the main goal was obtaining a high productivity for Tetraselmis suecica (Chlorophyta) in semicontinuous culture by adding magnesium (Mg), silicon (Si), and strontium (Sr) at concentrations from 0.01 to 10 mM; at the time, the effect on steady-state cell density, biochemical composition, and antioxidant activity of T. suecica was evaluated. Because productivity is higher in high-density cultures, the work was focused many times to cell density. Mg (3 mM) and Sr (0.1 mM) added separately reached the highest steady-state cell density (7.0?×?106?±?0.4 cells mL?1) in comparison to control (4.2?±?0.1 cells mL?1), but simultaneous addition had a synergic effect, achieving 8.7?×?106?±?0.6 cells mL?1. Silicon (3 mM) significantly affected the steady-state cell density, reaching 6.0?±?0.3 cells mL?1 and increased the cell ash-free dry weight, reaching 127?±?7.9 pg cell?1 in comparison to control (102.7?±?5.0 pg cell?1), resulting in an ash-free dry weight productivity of 0.75?±?0.07 g?L?1 day?1. The highest fatty acids content and antioxidant activity, measured by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) method were obtained with Sr 10 mM. Sr treatments showed a high correlation (R 2?=?0.98) between DPPH inhibition and polyphenolic content, explaining its high antioxidant activity. Therefore, the addition of Mg, Si, and Sr to culture medium of T. suecica is recommended to achieve high steady-state cell density in semicontinuous cultures.  相似文献   

14.
The B3LYP/6-31G (d) method of density functional theory (DFT) was used to study molecular geometry, electronic structure, infrared spectrum (IR) and thermodynamic properties. The heat of formation (HOF) and calculated density were estimated to evaluate the detonation properties using Kamlet–Jacobs equations. Thermal stability of 3,5,7,10,12,14,15,16-octanitro- 3,5,7,10,12,14,15,16-octaaza-heptacyclo[7.5.1.12,8.01,11.02,6.04,13.06,11]hexadecane (cage-tetranitrotetraazabicyclooctane) was investigated by calculating the bond dissociation energy (BDE) at unrestricted B3LYP/6-31G (d) level. The calculated results show that the N–NO2 bond is a trigger bond during thermolysis initiation process. The crystal structure obtained by molecular mechanics (MM) methods belongs to Pna21 space group, with cell parameters a?=?12.840 Å, b?=?9.129 Å, c?=?14.346 Å, Z?=?6 and ρ?=?2.292 g·cm?3. Both the detonation velocity of 9.96 km·s?1 and the detonation pressure of 47.47 GPa are better than those of CL-20. According to the quantitative standard of energetics and stability, as a high energy density compound (HEDC), cage-tetranitrotetraazabicyclooctane essentially satisfies this requirement.  相似文献   

15.
Enhanced catalytic activities of different lignocellulases were obtained from Armillaria gemina under statistically optimized parameters using a jar fermenter. This strain showed maximum xylanase, endoglucanase, cellobiohydrolase, and β-glucosidase activities of 1,270, 146, 34, and 15 U mL?1, respectively. Purified A. gemina xylanase (AgXyl) has the highest catalytic efficiency (k cat/K m?=?1,440 mg?mL?1?s?1) ever reported for any fungal xylanase, highlighting the significance of the current study. We covalently immobilized the crude xylanase preparation onto functionalized silicon oxide nanoparticles, achieving 117 % immobilization efficiency. Further immobilization caused a shift in the optimal pH and temperature, along with a fourfold improvement in the half-life of crude AgXyl. Immobilized AgXyl gave 37.8 % higher production of xylooligosaccharides compared to free enzyme. After 17 cycles, the immobilized enzyme retained 92 % of the original activity, demonstrating its potential for the synthesis of xylooligosaccharides in industrial applications.  相似文献   

16.
Hydrogen peroxide (H2O2) inactivates mushroom tyrosinase in a biphasic manner, with the rate being faster in the first phase than in the second one. The inactivation of the enzyme is dependent on H2O2 concentration (in the range of 0.05–5.0 mM), but independent of the pH (in the range of 4.5–8.0). The rate of inactivation of mushroom tyrosinase by H2O2 is faster under anaerobic conditions (nitrogen) than under aerobic ones (air). Substrate analogues such as L-mimosine, L-phenylalanine, p-fluorophenylalanine and sodium benzoate protect the enzyme against inactivation by H2O2. Copper chelators such as tropolone and sodium azide also protect the enzyme. Under identical conditions, apotyrosinase is not inactivated by H2O2, unlike holotyrosinase. The inactivation of mushroom tyrosinase is not accelerated by an OH?dot generating system (Fe2+-EDTA-H2O2) nor is it protected by OHdot scavengers such as mannitol, urate, sodium formate and histidine. Exhaustive dialysis or incubation with catalase does not restore the activity of H2O2-inactivated enzyme. The data suggest that Cu2+ at the active site of mushroom tyrosinase is essential for the inactivation by H2O2. The inactivation does not occur via the OHdot radical in the bulk phase but probably via an enzyme-bound OHdot.  相似文献   

17.
Photosynthetic and respiratory responses (P–E curves) of Gracilaria parvispora from the southeast Gulf of California were studied at four temperatures (20, 25, 30, 35 °C) and salinity (25, 30, 35, 40 psu) combinations. The alga showed acclimation in its photosynthetic and respiratory responses to tropical temperature as well as to oceanic salinity. A positive effect of temperature on photosynthetic rate (P max) was observed for all salinities. Photosynthetic rates for treatments at 20 and 25 °C were lower (<9.2 mg O2?g dry weight (dw)?1?h?1) than for treatments at 30 and 35 °C (>12 mg O2 g dw?1?h?1). G. parvispora showed limited tolerance to low salinities (25 psu) and low temperatures (20 °C) and the interaction between temperature and salinity was significant (analysis of variance, P?<?0.05). Responses to salinity indicated adaptation to oceanic salinity. Photosynthetic responses were lower at 25 psu than at higher salinities. The lowest P max values (6.2–8.2 mg O2?g dw?1?h?1) were observed at the lowest salinity (25 psu) regardless of temperature. Compensation and saturation irradiances (26–170 and 57–149 μmol photons m?2?s?1, respectively) indicate adaptation to lower irradiances in shallow (1–2 m depth) habitats, where turbidity can be high, and the capacity of shade adaptation has been developed. Results suggest distribution of this species is mainly related to salinity or temperature. The potential mariculture efforts of G. parvispora would be limited by low temperatures in winter, and indicate that this species will probably not be able to spread further due to low temperatures (<15 °C) in the upper part of the Gulf of California.  相似文献   

18.
Understanding spatio-temporal patterns of grassland evapotranspiration (ET) and water use efficiency (WUE) in arid areas is important for livestock production and ecological conservation. Xinjiang, China, was used as an example in the Biome-BGC model to explore spatio-temporal patterns of grassland ET and WUE from 1979 to 2012 in arid areas. The ET ranked from high to low as follows: among seasons, summer (142.4 mm), spring (49.7 mm), autumn (45.9 mm) and winter (7.7 mm); among regions, the Tianshan Mountains (357.9 mm), northern Xinjiang (221.3 mm) and southern Xinjiang (183.2 mm); among grassland types, mid-mountain meadow (387.7 mm), swamp meadow (358.3 mm), typical grassland (343.9 mm), desert grassland (236.2 mm), alpine meadow (229.7 mm), and saline meadow (154.7 mm). The WUE ranked from high to low as follows: among seasons, summer (0.60 g C kg H2O?1), autumn (0.48 g C kg H2O?1) and spring (0.43 g C kg H2O?1); among regions, northern Xinjiang (0.73 g C kg H2O?1), the Tianshan Mountains (0.69 g C kg H2O?1) and southern Xinjiang (0.26 g C kg H2O?1); among grassland types, mid-mountain meadow (0.86 g C kg H2O?1), typical grassland (0.84 g C kg H2O?1), swamp meadow (0.77 g C kg H2O?1), saline meadow (0.52 g C kg H2O?1), alpine grassland (0.37 g C kg H2O?1) and desert grassland (0.34 g C kg H2O?1). In Xinjiang grasslands, the spatio-temporal ET patterns were more strongly influenced by precipitation than by temperature, whereas most high WUE values occurred when precipitation and temperature were relatively conducive to grass growth.  相似文献   

19.
20.
The interaction between K2Cr2O7 and urease was investigated using fluorescence, UV-vis absorption, and circular dichroism (CD) spectroscopy. The experimental results showed that the fluorescence quenching of urease by K2Cr2O7 was a result of the formation of K2Cr2O7–urease complex. The apparent binding constant K A between K2Cr2O7 and urease at 295, 302, and 309 K were obtained to be 2.14?×?104, 1.96?×?104, and 1.92?×?104 L mol?1, respectively. The thermodynamic parameters, Δ and Δ were estimated to be ?5.90 kJ mol?1, 43.67 J mol?1 K?1 according to the Van’t Hoff equation. The electrostatic interaction played a major role in stabilizing the complex. The distance r between donor (urease) and acceptor (K2Cr2O7) was 5.08 nm. The effect of K2Cr2O7 on the conformation of urease was analyzed using UV-vis absorption, CD, synchronous fluorescence spectroscopy, and three-dimensional fluorescence spectra, the environment around Trp and Tyr residues were altered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号